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Abstract: The comparison of low-rank-based learning models for multi-label categorization of
attacks for intrusion detection datasets is presented in this work. In particular, we investigate
the performance of three low-rank-based machine learning (LR-SVM) and deep learning models
(LR-CNN), (LR-CNN-MLP) for classifying intrusion detection data: Low Rank Representation (LRR)
and Non-negative Low Rank Representation (NLR). We also look into how these models’ performance
is affected by hyperparameter tweaking by using Guassian Bayes Optimization. The tests has been
run on merging two intrusion detection datasets that are available to the public such as BoT-IoT
and UNSW- NB15 and assess the models’ performance in terms of key evaluation criteria, including
precision, recall, F1 score, and accuracy. Nevertheless, all three models perform noticeably better after
hyperparameter modification. The selection of low-rank-based learning models and the significance
of the hyperparameter tuning log for multi-label classification of intrusion detection data have been
discussed in this work. A hybrid security dataset is used with low rank factorization in addition
to SVM, CNN and CNN-MLP. The desired multilabel results have been obtained by considering
binary and multi-class attack classification as well. Low rank CNN-MLP achieved suitable results
in multilabel classification of attacks. Also, a Gaussian-based Bayesian optimization algorithm is
used with CNN-MLP for hyperparametric tuning and the desired results have been achieved using c
and γ for SVM and α and β for CNN and CNN-MLP on a hybrid dataset. The results show the label
UDP is shared among analysis, DoS and shellcode. The accuracy of classifying UDP among three
classes is 98.54%.

Keywords: deep learning; IoT; security; low-rank representation; traffic data; support vector
machines; convolutional neural network; multilayer perceptron

1. Introduction

Differentiating between normal attacks and malicious attacks and classification of
classes (known as multiclass classification) of attacks is undoubtedly existing tasks. How-
ever, in the scenario the problem is when many kinds of attacks occur simultaneously on a
shared label known as multilabel classification, what would be the implications? The follow-
ing work discusses the occurrence of multilabel classification keeping in mind the impact
of both binary and multiclass classification. Machine learning and deep learning classifiers
have been used for multi-label classification classifying more than one class of attacks on a
common label [1–4]. Due to the fact that attacks can have a wide variety of characteristics,
including type, severity, and target, it is necessary to develop efficient models in multi-label
classification for attack classification. In addition, an attack may have various objectives,
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such as the theft of confidential information, the impairment of system performance, or the
falsification of system output [5]. To assure the security and dependability of machine learn-
ing systems, attacks must be classified [6]. By identifying and categorizing attacks, security
specialists and system administrators are able to mitigate their impact and prevent new
ones from occurring. The classification of assaults, on the other hand, is a difficult endeavor
that requires the application of cutting-edge machine learning technologies [7]. Effective
models for multi-label attack classification [8] must take into account large and complex
label spaces as well as the high dimensionality and variability of the input data. These
models must also be resistant to adversarial attacks and adaptable enough to accommodate
new attack techniques. The security and dependability of machine learning systems in a
variety of industries, such as banking, healthcare, and critical infrastructure, are reliant on
the development of efficient multi-label attack classification models [9]. Support Vector
Machines (SVM) and Convolutional Neural Networks (CNN) are two prominent machine
learning models that can be used in conjunction with low-rank factorization methods for
the multi-label classification of assaults [10,11]. SVM is a supervised learning method
that can complete classification tasks requiring both binary and multiple labels. SVM
operates by locating a hyperplane that divides the data points into distinct classes and
maximizing the distance between the hyperplane and the closest data points. SVM can be
used to learn decision boundaries that separate multiple attack categories in multi-label
classification. Using low-rank factorization techniques to reduce the dimensionality of the
input data increases the efficacy of the SVM algorithm [12]. SVM may not be optimal for
datasets with multiple dimensions or that are very large. SVM determines the hyperplane
that optimizes the margin between classes, which can be a time-consuming process when
dealing with a large number of data points or characteristics. In addition, SVM may not
perform well when the data are highly imbalanced and some classifications are significantly
more abundant than others. Consequently, deep learning approaches emerge [13]. CNN
uses convolutional filters to extract features from data inputs. Using these characteristics,
the provided data are then divided into numerous categories. CNN can be used to acquire
characteristics from the input data and classify an assault into multiple categories when
conducting multi-label classification of assaults. The effectiveness of the CNN model can
be improved by employing low-rank factorization techniques to reduce the number of
parameters [14]. The limitation of CNN is that it may require a large amount of training
data to learn the relevant features for the classification task. CNN relies on the ability to
extract meaningful features from the input data, and this process can be challenging when
the data are complex or noisy [15]. Additionally, CNN may not be suitable for all types
of input data, and may require some preprocessing or feature engineering to extract the
relevant features. Low-rank factorization techniques also have some limitations. These
techniques may not be suitable for all types of data and may require some assumptions
about the underlying structure of the data. Overall, while SVM and CNN with low-rank
factorization can be effective for multi-label classification of attacks, it is important to
consider their limitations and choose the appropriate model based on the characteristics
of the data and the classification task. Low-rank factorization is a technique for reducing
the dimensionality of input data and improving the efficacy of machine learning models.
Using low-rank factorization, the input matrix is partitioned into two or more low-rank
matrices that represent the data’s essential characteristics. Specifically, high-dimensional
data such as images or time series can benefit from this method. In general, low-rank
factorization techniques combined with SVM or CNN can provide a viable solution for
multi-label assault categorization, particularly in fields such as cybersecurity and network
intrusion detection [16].

Our Contributions

1. The use of a hybrid network intrusion dataset, i.e., merging of BoT-IoT and UNSW
NB-15 dataset.
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2. The performance of low-rank optimised SVM by determining the hyperplane effi-
ciently for predicting classifiable labels on reproduced observations.

3. The weight optimization method through a low rank matrix factorization process on
deep learning classifiers (CNN and CNN-MLP) for improvising multilabel classification.

4. The use of Bayesian optimization in conjunction with low-rank factorization SVM, CNN
and CNN-MLP models, enables efficient hyperparameter tuning and model optimization.

2. Related Work

In [3], feature pre-processing techniques, namely feature extraction and feature scal-
ing, were used on the BoT-IoT dataset and SVM achieved 79% accuracy in multi-class
classification. The Bot-IoT dataset was also used in the study [5], which employed the
models k-nearest neighbor (KNN), multi-layer perceptron (MLP), and Naive Bayes (NB).
The research produced extremely good results in terms of accuracy, precision and F1 score.
In this study, an updated dataset and a variety of classical learning models were used. Un-
fortunately, none of the models in this study were tested across multiple classes. Using [8],
the two datasets BoT-IoT and UNSW NB-15 were used. The results were obtained by using
specific features of both the datasets. The various classical learning models such as kNN,
DT, NB and SVM-RBF were used. The accuracy obtained by both DT and NB is 67% on the
29 selected features whereas SVM-RBF obtained an accuracy of about 32% on 14 selected
features with hyperparameters used such as C = 10 and γ = 0.0001. In [17], a combined IDS
was developed using the C5 classifier and the One Class SVM. This study used a Bot-IoT
dataset [18] containing IoT internet traffic with multiple types of cyberattacks to find com-
mon instructions. The various learning classifiers were used in [13], where the performance
of NB and MLP were best on BoT-IoT dataset. Parameters such as accuracy, precision, recall
and f-measure were calculated. The pre-processing techniques, namely feature extraction
and feature selection, were used. These are the results with supervised learning algorithms,
but results with unsupervised ones still need to be calculated. The deep learning classifiers
including CNN and MLP individually applied on the Bot-IoT dataset where accuracy had
been found based on different numbers of epochs and batch sizes so that the prevention of
attacks that happen on an IoT network is feasible [14]. By using the BoT-IoT dataset and
applying pre-processing techniques on it such as data resolution, missing port numbers and
resolving data imbalance, several machine learning algorithms were used in [16] and SVM
achieved 79% accuracy in multiclass classification. For multiclass classification, machine
learning classifier SVM in [19] achieved an accuracy of about 88.3%. The pre-processing
techniques used were missing values, entropy discretization and normalization. The mul-
ticlass classification had been performed on two of the datasets, i.e., BoT-IoT and UNSW
NB-15 individually. The data pre-processing techniques such as one-hot encoding and
min-max normalization had been applied. The classifiers such as MLP, SVM and DT were
used. The experiment resulted in accuracy of about 72% for MLP, 59% of SVM, and 64%
for DT in case of UNSW NB-15 dataset. While performing multiclass with BoT-IoT the
classifiers achieved accuracies of about 91%, 94% and 92%, respectively. The multi-layer
perceptron approach [20] is used in a variety of datasets, including DARPA and CAIDA for
DDoS attack detection, to compare the effectiveness of various machine learning techniques.
The usage of all ML algorithms being optimized reduces the rates of misclassification, which
is the main disadvantage. With BoT-IoT, a novel method utilizing multi-layer perceptrons
is used to assess accuracy as well as other hyperparameters [21]. Convolutional networks
were utilized on UNSW-NB15 in [22], and accuracy metrics were acquired. Only specific
attacks were classified, and the technique used was min-max formulation mixed with deep
learning. The accuracy, detection rate, and false alarm rate performance measures for the
deep learning CNN classifier that was deployed on the BoT-IoT yielded results only for
the binary and multiclass classification of attacks, not for the multilabel classification [23].
The use of CNN in [10] for identification of attacks using the BoT-IoT dataset achieved an
accuracy of about 89%. It is anticipated that this algorithm will be included into the NIDS
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so that it can be utilized real-time to counterattack threats. Also, there exist some of the
different techniques used for low rank experimentation as shown in Table 1.

Table 1. Existing techniques with advantages and limitations.

Ref. No./Year Technique Data-Cleaning Discretization Normalization Advantages Limitations

[24]/2015 Inexact Augmented
Lagrange Multiplier X X X

For complex data LRSR
with spatial clustering
for better performance.

LRR and LRSR
not shown much
improvement for
simple data. Occupy-
ing single subspace.

[25]/2016 Inexact Augmented
Lagrange Multiplier X X X

Instead of occupying sin-
gle subspace,occupies
multi subspace. Re-
moval of Outliers
and Noise with no
computational cost.

LRS coefficient ma-
trix is missing.

[26]/2016
Linearized alter-
nating direction
method (LADM)

X X X
LRS coeffient matrix is
obtained using LADM.

No systematical way
to estimate parame-
ters Lambda 1 and
Lambda 2.

[27]/2017
Alternating di-
rection method
(ADM)

X X X
Fixed Lambda = 2, noise
free data with indepen-
dent subspaces.

Aim to obtain an
effective data repre-
sentation matrix is
still needed.

[28]/2019 Wilcoxon Signed
Rank X X X

Fast and Flexible model
with non-linear behav-
ior and representation of
data matrix.

Low detection perfor-
mance.

[29]/2019 SAW, TOP SIS,
MCM X X X

The collected samples’
low rankness in low-
dimensional space is
used to create an instruc-
tive graph that captures
local information.

Capturing global
information is still
an issue.

[30]/2019 Low-Rank Repre-
sentation X X X

Both local and global
info of the original sam-
ples can be well cap-
tured.

Insufficient creation
of dictionary

[31]/2019 LRaSMD X X X
Proper dictionary is cre-
ated using LR and SM.

Single distribution
can be used to simu-
late both anomalies
and noise, which
separates weak
anomalies and noise.

[32]/2020 Manhattan Distance
LSMD-MoG X X X

Single distribution is re-
placed by MoG. Not
only stable but also ef-
fective for hyperspectral
AD.

Lambda and beta set
to 0.1.

[33]/2020 LELRP-AD X X X Low rank property of
DM is enhanced.

The rank value r and
cardinality c taken to
be specific.

[34]/2021 Manhattan Distance
LSMD-MoG X X X

Finds all anomalies and
shapes them clearly.

WSL can not be used
without LRR.

3. Methodology
3.1. Dataset Details

There exist many intrusion datasets such as CICIDS, DARPA, NSL-KDD, KDD CUP99,
UNSW NB 15, BOT-IOT, etc. By combining the two datasets, BoT-IoT and UNSW NB-15,
an effort has been made to find a workable solution for the classification of attacks when
multiple labels are present while also considering the influence on binary and multiclass
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classification. The features in both the datasets are of datatypes such as categorical, numeric
and nominal [35]. At the time of analysis of the dataset to check whether the dataset is
fit for the experiment or not, an exploratory data analysis for visualizing the data has
been conducted where the total number of entries, rows and columns with missing values,
redundant values, nominal, categorical and numeric datatypes, filling of the missing
values, removal of attributes, data type conversion, correlation, univariate, bivariate and
multivariate analysis, k cross fold stratified technique for the validation process, etc.,
have been checked [18]. The first step of preprocessing the data while concatenating
the two intrusion datasets on the basis of column ‘label’. All variables from both the
data sets are included. Variables whose values are present in one data set but not in the
other are marked as missing values. Cleaning of data is the initial requirement where
missing data and redundant data are the major problems [23]. The redundancy of data
should be removed because at the time of applying the k-fold cross validation strategy
there will be less chances for accurate and precise results. One-hot encoding is used to
convert categorical text into numeric datatype. Correlation function is used to check the
relationship among the features [20]. The next step is the implementation of discretization
on the combined dataset, the collection of cut points that will segment a quantitative
attributes range of values into a limited number of intervals with good class coherence.
The following dataset uses a correlation technique to check the relationship among different
features. The maximum value range varies greatly. A normalized processing method
is used to uniformly and linearly map the value range of each feature within the [0, 1]
intervals, which simplifies arithmetic processing and the elimination of dimensions [36].
The integrated dataset is shown in Figure 1 also having normal and attack type is shown
in Figure 2 with total instances of 187,000. The Figure 3 is showing the total number of
protocols in the integrated dataset.

Figure 1. Integration of two datasets.
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Figure 2. No. of classes having Normal and Attack.

Figure 3. Types of protocols.

3.2. Data Pre-Processing and Mixing

The first stage of data pre-processing is the integration of two incursion datasets based
on the ‘label’ column. The hybrid dataset refers to the collective observations derived
from the integration of several data sets. All variables from both datasets are included [21].
Missing values are assigned to variables that have values present in one dataset but not
in another. Within this hybrid dataset, there are instances that have missing values. Data
cleaning, sometimes referred to as data imputation, is a crucial process that involves
addressing the issue of missing and duplicate data [14]. In order to obtain exact and
reliable results, the missing values may be handled by either leaving them blank, filling
them in manually, replacing them with the attribute mean, or substituting them with the
most probable value. By disregarding the tuple or column that has missing data, there
is a significant likelihood of obtaining inaccurate outcomes and also forfeiting essential
information [16]. One limitation of imputing missing values with the mean is that this
method is only applicable to numeric data types, and does not account for categorical
or ordinal variables included in the dataset [37]. The elimination of data redundancy is
necessary in order to enhance the accuracy and precision of findings while using the k-fold
cross-validation approach. One-hot encoding is used as a means of converting categorical
textual data into a numeric data format [36]. The correlation function is used to assess the
association between the characteristics [19].
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3.3. Discretization

In order to apply discretization to the combined dataset, a set of cut points will be used
to divide the range of values of a quantitative attribute into a finite number of intervals
that exhibit strong class coherence [38]. Data discretization is a technique used to replace
numeric attribute values with intervals. The class-attribute contingency coefficient, like a
typical classification approach, may lack the ability to accurately calculate the correct dis-
cretization intervals when applied to multi-label data [22,24]. The concept of class-attribute
interdependency refers to the relationship between a class and its associated attributes
within a given context. This inter-maximization is a supervised discretization approach that
incorporates knowledge of class information. Its objective is to automatically determine the
optimal number of discrete intervals and cut points, taking into account the relationship
between the class and attribute value maximization [39]. This methodology is used to
achieve the aforementioned objective of identifying the optimal discretization technique.
One additional objective is to decrease the quantity of intervals while maintaining interde-
pendence among class features. Data discretization is a technique used to replace numeric
attribute values with intervals [17].

3.4. Normalization

The range of maximum values varies widely. In order to facilitate arithmetic processing
and elimination of dimensions, a normalized processing method is adopted to uniformly
and linearly map the value range of each feature within the [0, 1] intervals [23]. After
attaining numerical values in the dataset with a attributes and b labels, min(a) is the
minimum value of attribute and max(a) is the maximum value of attribute where the
difference between these max and min values have a large scope, and as a result min-max
normalization technique can be applied [18].

3.5. Low Rank Factorization

In the following work, non-negative matrix factorization (NMF) has been used to
reduce the dimensionality of the dataset, extract the most important characteristics, and pre-
serve the interpretability of the data. The original dataset is divided into two non-negative
matrices by NMF, each of which holds the related feature weights and latent features [9].
The created latent characteristics can then be used as inputs to machine learning models to
improve their effectiveness in detecting abnormalities and identifying attack patterns.

In order to implement the non-negative matrix factorization on the high-dimensional
and sparse dataset, the matrix A can be defined as follows:

W ≈ MNT (1)

where M is an a × b matrix with a instances and b features, N is an a × r matrix containing
a instances and r latent features, and AT is an b × r matrix containing r latent features
and b features. The goal of low-rank matrix factorization is to find the matrices N and
M that minimize the reconstruction error between M and MNT , subject to the low-rank
constraints. To extract important features and to reduce data’s high dimensionality, a low
rank matrix MNT has been produced.

rank(MNT) ≤ r (2)

Finding the ideal choices for M and N that minimize the reconstruction error and
meet the low-rank requirements is the aim of the optimization issue. Numerous methods,
such as gradient descent or alternating least squares, can be used to solve this problem.
The ideal values for M and N have been determined, the latent features included in N can
be employed as inputs to deep learning models to improve their efficiency in identifying
attack patterns and detecting anomalies [12]. A low-rank coefficient matrix seeks out one,
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recognizes, and accurately represents the data sets’ structure. Equation (3) demonstrates
the definition of the sparsecoding-like model for clean data.

minZ‖ Z ‖∗s.t.X = XZ (3)

The given solution Q for above is shown in Equation (4):

Z = NX NT
X (4)

where NX are column vectors, X are singular vectors. X = XZ is considered as the least
square solution. The entries E in the column vectors and singular vectors NX NT

X can
intuitively be zero. Low rank matrix factorization functions better in finding the entire
feature space design and removing outliers from the data at the same time. It defines
a nuclear norm minimization to handle distorted high-dimensional data as shown in
Equation (5):

minZ, E‖ Z ‖+ λ‖ E ‖2, 1′s.t.X = MZ + E (5)

3.6. LR-SVM

Figure 4 shows a hybrid dataset that has been used for solving the multilabel classi-
fication for the recognition of shared label among different classes. The discussion and
working of baseline model and LR-SVM is in [40]. The pre-processing techniques has been
used as the dataset after merging contains redundancies and inconsistencies. The first step
is data cleaning to fill missing values with that of the mean values in the column. The data
discretization has been used to convert the nominal and categorical values in that of the
discrete values by entropy binning method so that maximum boundaries can be induced
on the sorted list [19].

Figure 4. Proposed methodology LR-SVM.

The removal of outliers or repetitive values and the use of Z-score normalization
have come into the picture. After applying the three pre-processing techniques using
correlation where high dependabilities among features are selected based on that, highly
correlated features are selected. The dataset has been divided into 80–20 rule for training
and testing. A decision matrix has been obtained by 80% of training of the highly correlated
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features by using a k-cross-fold stratified validation comprising alternatives and criteria [38].
The process of LR-SVM is described in [40]. The decision matrix can be normalized by

xij =
uij√

∑
p
k=1u2

kj

(6)

i = 1 . . . p, j = 1 . . . q where uij is the score or threshold of alternative Ai and criteria Cj.
The evaluation of alternatives by the row values of features and evaluation of criteria

on the basis of shared labels correspond to the classes of attacks. The present dataset with
alternatives and criteria has not been representative to the complete dataset. To make
the dataset representative, the use of weights has been introduced. The first method of
assigning weights is based on “assumption”, which is a vague method. The second method
is using the weights of the pre-trained weights of the baseline model, which is known as
weighted mapping. The weighted normalized decision matrix can be calculated as

Zij = WiXxij; j = 1 . . . p, i = 1 . . . q

Let Wi = [w1, w2 . . . wq] be the local criteria weight vector with the value ∑n
i=1 Wi = 1.

A threshold has been selected, which is obtained as the average value of alternatives
and criteria. Based on this threshold value, if the value obtained is less than the threshold
value a Negative Ideal Solution is obtained, otherwise if the value obtained is more than or
equal to the threshold value the positive ideal solution is obtained. Based on this moving
towards negative ideal solution, the results are non-achievable. The desired results are
achieved by moving towards the positive ideal solution. For positive (I+) and negative
(I−) ideal solutions

(I+) = z+1 . . . z+q = (maxiZij|j ∈ J)(miniZij|j ∈ J′) (7)

(I−) = z−1 . . . z−q = (miniZij|j ∈ J)(maxiZij|j ∈ J′) (8)

where J is the benefit criteria and J′ is the cost criteria.
The point near the threshold value is the relative closeness and low-ranking towards

positive ideal solution has been accomplished. Relative Closeness (RC) to the ideal solution is

RCi =
N−i

N+
i − N−i

(9)

Ranking as per RCi = (i = 1, 2 . . . n) where RCi = 1 indicates the highest rank and
RCi = 0 indicates the lowest rank.

The results obtained were fed to SVM, where the use of radial basis function kernel
and hyperparameters “C” and “gamma” has been optimized using different values and
the desired results have been obtained on epochs and the learning rate.

3.7. LR-CNN-MLP

The proposed method shown in Figure 5 enhances the performance of multi-label
classification on CSV datasets by combining the positive attributes of CNNs and low-rank
matrix factorization. The matrix factorization layer and the convolutional neural network
layer compose the MF-CNN architecture. The matrix factorization layer employs NMF
or singular value decomposition (SVD) methods to divide the initial input matrix P into
two low-rank matrices, A and B. The latent properties of the input data are represented
by the decomposed matrices A and B, which can be utilized to train the CNN layer. The
CNN layer uses the well-known convolutional and pooling algorithms to extract high-
level properties from the input data after receiving the deconstructed matrices A and B.
The acquired features are then processed through a fully connected layer with softmax
activation to obtain the final multi-label classification results. The attack dataset, i.e., the
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hybrid dataset has been used and fed as input. The same three preprocessing techniques
have been implemented. After loading the dataset, the dataset has been split into a training
set, validation set and testing set. The low rank factorization has been performed on the
training dataset to obtain low dimensional representation. The hyperparameter, i.e., rank
“r” has been defined. The decision training matrices with random non-negative values have
been initialized. The CNN model has been built using multiple convolutional and pooling
layers. The hyperparameters such as number of filters, filter size, activation function and
pooling size have been defined. The low dimensional representation obtained above has
been used as an input to CNN model. The relevant data features have been extracted by
applying convolutionals, activation function and pooling operations.

h = relu(W ∗ R + b) (10)

where W is the set of convolutional filters of size (F × K), b is the bias term of size F, relu is
the rectified linear unit activation function, and h is the output feature maps of size (F × S).

p = maxpool(h) (11)

where maxpool is the max pooling operation and p is the output pooled feature maps of
size (F × R), R is the reduced spatial dimension.

Figure 5. Proposed methodology LR-CNN-MLP.

The output of the final pooling layer has been flattened. The MLP model with multiple
fully connected layers has been built. The hyperparameters such as number of neurons
and activation function have been defined.

Z1 = f (W1 ∗ X + b1) (12)
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where W1 is the weight matrix of the first hidden layer, b1 is the bias vector, f is the activation
function, and Z1 is the output of the first hidden layer.

The flattened output from the CNN and low dimensional representation has been
concatenated and to obtain hidden representations linear transformations and activation
function have been applied. To prevent overfitting, dropout regularization has been
applied to hidden representations. To obtain probability estimates for each label linear
transformation, sigmoid functions have been applied to the output of the final layer.
After this, the model has been trained using training and validation sets. The binary cross
entropy loss function has been defined, and we initialize the model weights with random
values. To optimize the model weights, stochastic gradient descent with backpropagation
has been used. Using the validation set, the hyperparameters have been tuned. Now the
model has been tested using the testing set. The trained model has been used to make
predictions on the testing set. The performance metrics such as accuracy, precision and
recall have been evaluated. The same steps have been repeated for multiple runs with
different random initializations of the low-rank matrix factorization and model weights to
obtain an ensemble of models. We output the probability estimates for each label in the
multi-label classification problem as the average of the probability estimates obtained from
the ensemble of models.

3.8. Bayesian Optimization

The traditional methods of manually running the models can be inefficient, sensitive
to noise, and difficult to use in cases where the objective function is not well-defined. Like-
wise, grid search involves evaluating the objective function at every point in a pre-defined
grid, which can be very time-consuming, especially if the objective function is expensive to
evaluate. On the other hand, there exists a technique called random search, which involves
evaluating the objective function at a random subset of points, which can also be time-
consuming and may not yield accurate results if the objective function is noisy. However,
traditional optimization techniques require the user to specify a search space, which can be
difficult to accomplish in cases where the objective function is not well-understood. This
is because the user must know the possible values that the hyperparameters can take on
in order to specify a search space [11]. Here, Bayesian optimization uses a probabilistic
model to estimate the best next point to evaluate, which can help to avoid wasting time
and resources on evaluating points that are unlikely to be optimal. Moreover, the number
of evaluations required to discover the optimal solution is also reduced. Thus, it can be
concluded as a sequential model-based optimization technique that uses surrogate models
and acquisition functions to direct the search for the best solution in the most efficient
way possible. It is an effective method for optimizing hyperparameters. Algorithm 1 dis-
cusses the optimal selection of hyperparameter using Gaussian-based Bayesian parameter
optimization for multi-label classification.

The alpha (α) and beta (β) hyperparameters in Bayesian optimization algorithms
primarily relate to the prior distribution hyperparameters used in Bayesian inference.
The form and features of the prior distribution over the unknown function being modeled
are influenced by these hyperparameters. The alpha hyperparameter, denoted as α, is
associated with the prior mean function of the Gaussian process surrogate model used
in Bayesian optimization. It computes the overall mean value of the function under
consideration. A greater alpha value corresponds to a higher prior mean function, meaning
that the objective function will have a higher expected value. The beta hyperparameter,
denoted as β, is associated with the prior covariance function (kernel) of the Gaussian
process surrogate model. It controls the smoothness or roughness of the function being
modeled. A lower value of beta indicates a smoother function, whereas a higher value of
beta results in a more rough or oscillatory function.
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Algorithm 1 Optimal selection of hyperparameter using Gaussian-based Bayesian parame-
ter optimization for multi-label classification.
Input: Attack dataset in CSV format (dataset)
Output: Probability estimates for each label in the multi-label classification problem
Step 1: Load the dataset and split it into training Xtrain and testing sets Xtest.
Step 2: Perform data pre-processing on Xtrain.
Step 3: Define the rank r, no. of classes n, no. of labels k, iters, learning rate lr, epochs and
optimizer as hyperparameters.
Step 4: Initialize CNN-MLP model and train it on Xtrain and target labels Y (n * k).
spm←model (Pscore(conv(Xtrain)))/Phyp(conv(Xtrain))
Step 4.1: Apply the parameters to objective function
hyp∗ = arg minhyp∈k f(k)
Step 4.2: Update surrogate probabilistic model for new parameters.
spm←model (Pscore(conv(Xtrain)))/Phyp(conv(Xtrain))
Step 5: Obtain weights ‘W’ of last fully connected layer.
Step 6: Perform low-rank matrix factorization on ‘W’.
W = Mtrain Ntrainˆ T
where Mtrain = h*r
Ntrain = r*k
Step 7: Initialize r with random values.
Step 8: Define a function ‘updater (Mtrain, Ntrain, lr)’ at last fully connected layer.
Step 8.1: Obtain the low-rank matrix until convergence:
Mtrain = Mtrain * (Xtrain * Ntrain)/(Mtrain * Ntrain.T * Ntrain)
Ntrain = Ntrain * (Xtrain.T * Mtrain)/(Ntrain * Mtrain.T * Mtrain)
Step 8.2: Compute the residuals
E=W-Mtrain Ntrainˆ T
Step 8.3: Compute the gradient of ‘Mtrain’ ‘Ntrain’ w.r.t
grad Mtrain =−2E − Ntrain
grad Ntrain= −2E ˆ T Mtrain
Step 8.4: Update Mtrain and Ntrain using learning rate as
Mtrain = Mtrain−(lr* grad Mtrain)
Ntrain = Ntrain−(lr* grad Ntrain)
Step 8.5: Update the weights as last fully connected layers.
W = Mtrain Ntrain ˆ T
Step 9: Replace the weights of last fully connected layer in CNN-MLP with updated
weights
Mtrain Ntrain.
Step 10: Retrain the CNN-MLP model on Mtrain and target labels Y using fully connected
layer.
Step 11: Repeat Steps 5–9 for ’iters’ iterations
Step 12: Probability estimates for each label in the multi-label classification problem as the
average of the probability estimates obtained from the ensemble of models.

4. Results and Discussion

The following section discusses the results based on low rank factorization with SVM,
CNN and CNN-MLP.

4.1. Parameter Tuning for Proposed SVM-Based Attack-Type Label Classification

Due to the class representation being imbalanced, the weighted classes parameter
has been used. This allows the disparity of the classes to be rectified, the results of which
are shown in Table 2, where the results are based on the different number of epochs and
learning rates. The role of learning rate in optimization is used to determine the step size at
each loop with a minimum of a loss function. The number of epochs are 200 with a learning
rate of 0.015 that achieved the best results with 87.26% accuracy.
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Table 2. Multi-label classification results on proposed methodology (LR-SVM).

Epochs Learning Rate Accuracy

Epochs = 150

lr = 0.010 85.35%
lr = 0.015 81.34%
lr = 0.020 82.21%
lr = 0.025 82.56%

Epochs = 200

lr = 0.010 85.45%
lr = 0.015 87.26%
lr = 0.020 85.65%
lr = 0.025 86.69%

Epochs = 250

lr = 0.010 83.20%
lr = 0.015 86.24%
lr = 0.020 86.54%
lr = 0.025 86.44%

4.2. Parameter Tuning for Proposed CNN and CNN-MLP Based Attack-Type Label Classification

Table 3 shows the results of the proposed methodology (LR-CNN) on multilabel
classification. The experiment has been conducted on different learning rates. The best
result is on learning rate 0.0020 where precision is 0.891, recall is 0.926, f1-score is 0.909 with
highest accuracy of 94.26%. Figure 6 shows different parameters for LR-CNN on different
learning rates. Table 4 shows the results of proposed methodology (LR-CNN-MLP) on
multilabel classification. Again, the experiment has been conducted on different learning
rates. The best result is on learning rate 0.0020 where precision is 0.944, recall is 0.979,
f1-score is 0.961 with highest accuracy of 98.17%. Figure 7 shows different parameters
for LR-CNN-MLP on different learning rates. Both LR-CNN and LR-CNN-MLP give
the best results on learning rate of 0.0020. Therefore, no impact of different learning
values has been observed. Figure 8 shows the ML and DL classifiers along with their
corresponding accuracies.

Figure 6. Parameters for LR-CNN on different learning rates.
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Figure 7. Parameters for LR-CNN-MLP on different learning rates.

Figure 8. ML/DL classifiers with accuracy.

Table 3. Multi-label classification results on proposed methodology (LR-CNN).

Learning Rate Precision Recall F1-Score Accuracy

lr1 = 0.0010 0.888 0.920 0.904 92.45

lr2 = 0.0015 0.902 0.916 0.901 91.44

lr3 = 0.0020 0.891 0.926 0.909 94.26

lr4 = 0.0025 0.889 0.924 0.907 93.21
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Table 4. Multi-label classification results on proposed methodology (LR-CNN-MLP).

Learning Rate Precision Recall F1-Score Accuracy

lr1 = 0.0010 0.943 0.975 0.959 96.12

lr2 = 0.0015 0.956 0.97 0.963 96.84

lr3 = 0.0020 0.944 0.979 0.961 98.17

lr4 = 0.0025 0.942 0.978 0.960 97.91

4.3. Parameter Tuning for Guassian Based Bayesian Optimization Algorithm

Table 5 shows the results on multilabel classification using Bayesian optimization.
The accuracy 87.26% is the same and without any change in parameters c and γ, lr = 0.0020,
epochs = 150 and optimizer SGD using low-rank SVM. The best two readings selected using
low-rank CNN having parameters α = 1, β = 0.5, lr = 0.001, epochs = 100, layers = 2 and
ADAM optimizer achieved accuracy of 96.36%. The parameters α = 1, β = 0.5, lr = 0.002,
epochs = 200, layers = 2 and SGD optimizer achieved accuracy of 97.65%. The best three
readings selected using low-rank CNN-MLP having parameters α = 1, β = 0.5, lr = 0.001,
epochs = 100, layers = 2 and ADAM optimizer achieved accuracy of 98.89%. The parameters
α = 1, β = 0.5, lr = 0.0015, epochs = 125, layers = 2 and SGD optimizer achieved accuracy of
99.20%. The parameters α = 1, β = 0.5, lr = 0.0020, epochs = 125, layers = 2 and RMSprop
optimizer achieved accuracy of 98.54%. The label UDP is shared among analysis, dos and
shellcode. The accuracy of classifying UDP among three classes is 98.54%, as it successfully
dealt with the framed objectives, properties of datasets and other levels of coarseness. All
these factors together became important for the prediction of labels individually showing
insight knowledge using a confusion matrix as shown in Figure 9.

Figure 9. Confusion matrix corresponding to the Bayesian optimization of the proposed model
of LR-CNN-MLP.
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Table 5. Observational performance evaluation on selection of parameters.

Model Parameter Accuracy

LR-SVM c = 1.0, γ = 0.1, lr = 0.0020, epochs = 150, and optimizer = SGD 87.26%

LR-CNN α = 1.0, β = 0.5, lr = 0.001, epochs = 100, layers = 2, and optimizer = Adam 96.36%
α = 1.0, β = 0.5, lr = 0.002, epochs = 200, layers = 2, and optimizer = SGD 97.65%

LR-CNN-MLP α = 1.0, β = 0.5, lr = 0.001, epochs = 100, layers = 2, and optimizer = Adam 98.89%
α = 1.0, β = 0.5, lr = 0.0015, epochs = 125, layers = 2, and optimizer = SGD 99.20%
α = 1.0, β = 0.5, lr = 0.0020, epochs = 125, layers = 2, and
optimizer = RMSProp

98.54%

4.4. Limitation

The following work is limited to the datasets having a shared label and not being
applicable to the dataset where common labels will be absent. Also, the normalized
confusion matrix has been able to identify the common label UDP among analysis, shellcode
and DoS classes of attacks, but still UDP along analysis and dos are still a point of concern
due to less difference among the predicted and actual classes of attacks.

5. Comparative Analysis

The UNSW-NB 15 dataset is used in [41], where convolutional neural network and
multi layer perceptron deep learning classifiers had been used individually for attack
classification in which the results for root mean square error were good but with a drawback
of non-customization as shown in Table 6.

Table 6. Comparative analysis.

Ref. No./Year Dataset DL Classifier Parameters Findings Limitations

[41] 2019 UNSW-NB15 CNN, MLP Accuracy and F1-Score Good performance in
terms of RMSE. Not easily customizable.

[42] 2020 UNSW-NB15 CNN Accuracy Analysis of min-max for-
mulation with DL. Specific attack types.

[43] 2020 Bot-IoT CNN Accuracy, Detection
Rate, FAR

Results is binary and
multiclass classification

No results for multil-
abel classification

[44] 2021 UNSW-NB15 BCNN MCNN Accuracy, Precision, Re-
call, F-measure

Skip connection method-
ology into CNN

Not performed well on
the specific dataset.

[45] 2021 Bot-IoT MLP Precision and F1-Score Help to monitor traffic
flow in connected host

Only worked in bi-
nary classification

[46] 2022 Bot-IoT CNN Accuracy, Precision and
Training Time

CNN achieved best re-
sults as compared to LR
and DT

Computational and
memory utilization
can be improved by
using optimized gener-
alized techniques.

Proposed
Methodology Hybrid dataset LR-SVM Accuracy

SVM has not been able
to achieve results in mul-
tilabel classification of at-
tack classes correspond-
ing to one label

Due to high sparsity
and high dimensional-
ity of data in the inte-
grated dataset

Proposed
Methodology Hybrid dataset LR-CNN-MLP Accuracy, Precision, Re-

call and F1-Score

Hybrid CNN-MLP
achieved results in
multilabel classification
of attack classes corre-
sponding to one label

In [41], a convolutional network was used on UNSW-NB15 and an accuracy metric was
obtained, and the technique used was min-max formulation combined with deep learning
where only specific attacks were classified. The deep learning CNN classifier implemented
on BoT-IoT and accuracy, detection rate and false alarm rate performance metrics were
obtained and achieved results in binary and multiclass classification of attacks only, but not
on multilabel classification [43]. In [44], a binary and multiclass convolutional network is
implemented on UNSW-NB15 where four metrics such as accuracy, precision, recall and
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f-measure were obtained. A Skip connection methodology into CNN did not performed
well on the specific dataset. A multilayer perceptron [45] classifier was applied on BoT-IoT
where precision and f1-score were obtained. It helps to monitor traffic flow in connected
host, but only worked in binary classification. In [46], a convolutional deep network
was implemented on BoT-IoT dataset where parameters such as accuracy, precision and
training time parameters were used to achieve the desired results and CNN performed
well in comparison to linear regression and decision trees, but computational and memory
utilization can be still improved by using optimized generalized techniques.

6. Conclusions

As security plays an important role in every field, therefore a secure model has been
developed using machine learning and a hybrid deep learning model. A hybrid security
dataset has been taken and used with low rank factorization in addition to SVM, CNN and
CNN-MLP. The desired multilabel results have been obtained by considering binary and
multiclass attack classification as well. Low rank CNN-MLP achieved suitable results in
multilabel classification of attacks. Also, a Gaussian-based Bayesian optimization algorithm
is used with CNN-MLP for hyperparametric tuning and the desired results have been
achieved using c and γ for SVM and α and β for CNN and CNN-MLP on a hybrid dataset,
i.e., merging of UNSW NB-15 and BoT-IoT datasets.

7. Future Scope

The potential for creating and applying hybrid deep learning models for classifying
threats in the IoT domain is very promising in the future. As the IoT continues to expand
and integrate into many sectors, ensuring strong security measures becomes more impera-
tive. Hybrid deep learning models may provide a complete methodology for the detection
and classification of threats by utilizing the advantages of several methodologies, hence
improving accuracy and resilience. Here are some key aspects for the future scope.

Accuracy and Resilience: Hybrid models have the capability to integrate the strengths
shown by several deep learning architectures, such as convolutional neural networks, recur-
rent neural networks, and transformers, with standard machine learning approaches. This
amalgamation results in improved accuracy and resilience. The integration of this fusion
technique has the potential to improve the accuracy and resilience in the identification and
categorization of diverse attacks on IoT systems.

Transfer Learning: The use of transfer learning and pretraining may provide advan-
tages in scenarios when there is a scarcity of labeled attack data. Transfer learning involves
the fine-tuning of a pretrained model that has been trained on a task relevant to attack
categorization. Hybrid models may use transfer learning to alter pre-trained models for
the purpose of detecting IoT attacks.

Shortage of labeled data: The shortage of labeled data in IoT systems may arise from
the infrequent occurrence and evolving nature of anomalies and assaults. This presents
a challenge for semi-supervised and unsupervised learning approaches. Hybrid models
have the capability to include unsupervised learning methodologies, such as autoencoders
or generative adversarial networks (GANs), in order to effectively identify and classify
previously unseen attack patterns, hence enabling the discovery of anomalies.

Ensemble methods: Ensemble methods refer to a class of machine learning techniques
that combine several individual models to make predictions or decisions. These methods
aim at ensemble approaches, which integrate the predictions of numerous models, have the
potential to improve generalization and overall performance. Robust ensemble frameworks
may be constructed by combining traditional machine learning classifiers or rule-based
systems with hybrid deep learning models.

Real-time detection: Real-time detection is a crucial aspect in the context of IoT systems,
as it serves to mitigate possible harm by promptly identifying and responding to attacks.
This necessitates the implementation of attack detection mechanisms that operate in real-
time or with minimal latency. Hybrid models have the potential to be tuned in order to
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achieve low-latency processing, hence facilitating the prompt identification and mitigation
of attacks.

Continuous Learning and Adaptation: IoT ecosystems exhibit dynamic characteristics,
and the patterns of attacks might undergo evolutionary changes over time. Hybrid models
provide the capability to include methodologies for continuous learning, hence facilitating
their ability to adjust to emerging attack types and uphold classification accuracy.

Privacy-preserving solutions: The data generated by the IoT sometimes include confi-
dential and private information. Hybrid models have the capability to safeguard sensitive
data during model training by using methodologies such as federated learning or differen-
tial privacy.

In summary, the potential for hybrid deep learning models to classify IoT threat
types is significant. In order to enhance the security of IoT systems in light of emerging
threats, it is imperative for researchers and practitioners to devise innovative methodolo-
gies that integrate the strengths of many methods, therefore yielding accurate, resilient,
and flexible solutions.
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