
Citation: Mahboob, H.; Yasin, M.M.;

Yasin, J.N.; Haghbayan, M.-H.;

Plosila, P. DCP-SLAM: Distributed

Collaborative Partial Swarm SLAM

for Efficient Navigation of

Autonomous Robots. Sensors 2023, 23,

1025. https://doi.org/10.3390/

s23021025

Academic Editors: Yuanlong Xie,

Shiqi Zheng and Zhaozheng Hu

Received: 24 December 2022

Revised: 13 January 2023

Accepted: 14 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

DCP-SLAM: Distributed Collaborative Partial Swarm SLAM
for Efficient Navigation of Autonomous Robots
Huma Mahboob 1,* , Jawad N. Yasin 1,2 , Suvi Jokinen 1 , Mohammad-Hashem Haghbayan 1 , Juha Plosila 1

and Muhammad Mehboob Yasin 3

1 Autonomous Systems Laboratory, Department of Future Technologies, University of Turku, Vesilinnantie 5,
20500 Turku, Finland

2 ABB Oy, 00380 Helsinki, Finland
3 Department of Computer Networks, College of Computer Sciences & Information Technology,

King Faisal University, Hofuf 31982, Saudi Arabia
* Correspondence: humahb@utu.fi

Abstract: Collaborative robots represent an evolution in the field of swarm robotics that is pervasive
in modern industrial undertakings from manufacturing to exploration. Though there has been much
work on path planning for autonomous robots employing floor plans, energy-efficient navigation
of autonomous robots in unknown environments is gaining traction. This work presents a novel
methodology of low-overhead collaborative sensing, run-time mapping and localization, and naviga-
tion for robot swarms. The aim is to optimize energy consumption for the swarm as a whole rather
than individual robots. An energy- and information-aware management algorithm is proposed to
optimize the time and energy required for a swarm of autonomous robots to move from a launch
area to the predefined destination. This is achieved by modifying the classical Partial Swarm SLAM
technique, whereby sections of objects discovered by different members of the swarm are stitched
together and broadcast to members of the swarm. Thus, a follower can find the shortest path to the
destination while avoiding even far away obstacles in an efficient manner. The proposed algorithm
reduces the energy consumption of the swarm as a whole due to the fact that the leading robots sense
and discover respective optimal paths and share their discoveries with the followers. The simulation
results show that the robots effectively re-optimized the previous solution while sharing necessary
information within the swarm. Furthermore, the efficiency of the proposed scheme is shown via
comparative results, i.e., reducing traveling distance by 13% for individual robots and up to 11% for
the swarm as a whole in the performed experiments.

Keywords: swarm robotics; collaborative sensing; multi-agent systems; energy efficient; swarm
intelligence; leader–follower; collision avoidance

1. Introduction

Swarm robotics is a field inspired by natural self-organizing swarms, such as birds,
bees, ants, and fish [1]. The aim of researchers is to create swarms of autonomous robots
that can mimic such self-organizing behavior in different situations to carry out their
collective mission in an energy-efficient manner [2]. Each robot in the swarm executes
relatively simple control routines to accomplish its task. It uses its onboard sensors for
awareness of the surrounding environment, whereas it relies on wireless messaging for
coordination with other robots of its formation, akin to behavior of individual agents in
a multi-agent system [3]. In the following text, the terms agent and robot are used inter-
changeably. Due to their small size, robustness, and ability to reach difficult or hazardous
environments, there has been exponential increase in research for the development of
novel techniques for the integration of autonomous robots in various applications, such as
surveillance [4], infrastructure inspection [5], military applications [6], GPS-denied envi-

Sensors 2023, 23, 1025. https://doi.org/10.3390/s23021025 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23021025
https://doi.org/10.3390/s23021025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4507-1403
https://orcid.org/0000-0002-2663-9019
https://orcid.org/0000-0002-2806-8619
https://orcid.org/0000-0001-6583-4418
https://orcid.org/0000-0003-4018-5495
https://orcid.org/0000-0003-0013-743X
https://doi.org/10.3390/s23021025
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23021025?type=check_update&version=1


Sensors 2023, 23, 1025 2 of 20

ronments [7], transportation [8], hazardous environments [9], and mapping or atmospheric
research [10].

Of particular interest is the problem of navigation of a swarm of autonomous robots in
an unknown environment, such as a GPS-denied area or where no prior map information
exists. Work in this field presents a wide array of research challenges, such as the ability
to maintain formation, self-localization, collision avoidance, and path finding [3]. Simul-
taneous localization and mapping (SLAM) is a classical and fundamental technique for
mapping and localizing in the field of autonomous robots in environments with no prior
map information. Until relatively recently, SLAM development was mainly concerned
with a single agent or robot, hence leaving a significant gap for the development of SLAM
techniques with multiple agents or a swarm of robots [11,12]. Various collaborative SLAM
(C-SLAM) methodologies and techniques have been researched, where the primary objec-
tive has been to integrate the data gathered by individual robots to build a global map that
is shared between all robots [13]. In collaborative navigation, the actions of one agent may
impact those of other agents in the system; therefore, it is vital to realize how the collabora-
tive navigation can be of assistance. The coordination strategies to attain autonomy for a
swarm of agents can be categorized into the following three types [14,15]: (1) centralized
coordination, in which either a central node or server or an established agent, often labeled
as a dedicated leader, provides the vital parameters to the rest of the agents in the swarm,
such as maneuver information, trajectory planning, and coordination; these are often de-
scribed as virtual structure-based approaches or leader–follower-based approaches [16];
(2) decentralized with coordination-based approaches, in which all agents in the swarm
can directly interact with other agents within their communication range; (3) decentralized
without coordination-based approaches, in which the agents do not interact with each other
to interchange the individually gathered data; in this approach, the agents work on the
observe and react principle [17].

The sensing modes utilized for C-SLAM can be divided into two broad categories,
namely,vision-based and laser/LiDAR-based. Due to their high resolution, robustness
to varying weather conditions, and resilience against lighting conditions, several LiDAR
C-SLAM techniques have been investigated [18–22]. Approaches presented in [18,20] work
by transmitting the locally generated maps of all the robots to a central base station/server
for optimization and stitching purposes. This process requires high availability of the
central server, the failure of which results in the failure of the entire mission. Furthermore,
this approach is very dependent on the communication channel between each robot and
the server, requiring it to be lossless and have high bandwidth. To alleviate the dependence
on a lossless communication channel, ref. [21] presented a three-dimensional LiDAR-based
data-driven descriptor approach to optimize the required transmission bandwidth. The pre-
sented methodology functions on a completely centralized system; it is not suitable for
larger swarms. Most of the present C-SLAM-based approaches are either highly centralized
or the database is split into several segments for assessment, have high computational
costs, or require higher communication bandwidth.

Minimization of the energy consumption of a swarm as a whole is another important
research area with core emphasis on a varied set of themes, such as dealing with external
influences [23,24], optimization of consumption due to ranging sensors [25], efficient inter-
robot communication [26], optimization of distance to be traveled [27,28], or recharging
optimization [29,30]. In this respect, we present DCP-SLAM, a LiDAR-based distributed
collaborative partial SLAM framework for swarm robotics. In the proposed DCP-SLAM
technique, we focus on energy efficiency of the swarm as a whole rather than trying to
accurately map individual obstacles. We argue that the requirement of maintaining a
safe distance from obstacles allows us to conduct trajectory planning even with partially
discovered obstacles. Moreover, a cluster of obstacles where interobstacle distance does
not allow a robot to pass between them can be fuzzified into one large obstacle without
causing excessive elongation of the collision-free path. Furthermore, this fuzzification
reduces communication cost as less data need to be transmitted. Thus, in order to have a



Sensors 2023, 23, 1025 3 of 20

low-bandwidth low-computation navigation setup for the swarm, an exact replication of
the map is not required to be communicated between the robots. Furthermore, the safe
distance requirement, also referred to as inflation, since each obstacle’s dimensions are
inflated by this amount, covers up the sacrificed error while performing active obstacle
detection and avoidance maneuvers. This is handled in three phases: (i) The first is the
detection and map building phase, in which the point cloud returned by LiDAR after each
scan is utilized to update the obstacle list. Here, we adapt the Euclidean-distance-based
incremental region growing technique of [31] by adding fuzzification while calculating
distances. The concept of fuzzification and merging of objects is explained in Figure 1.
The resulting obstacle list is broadcast to the rest of the swarm. (ii) In the second phase,
the robot generates waypoints for bypassing all known obstacles in the updated obstacle
list. (iii) Finally, the robot will align itself in order to move towards the nearest waypoint as
a temporary goal. Since the obstacle list only contains information about obstacles that have
been fully or partially discovered so far, hitherto unknown obstacles may still be present
and in the way of a robot. Therefore, the robots are required to continually perform scanning
and obstacle detection during navigation. Simulations of various scenarios show that the
DCP-SLAM technique results in swarms where later robots show marked improvement
in their trajectory by utilizing partial maps discovered by their earlier fellows. Even in
complex scenarios, the optimal path is established relatively quickly.

(a) (b)

(c)

(d) (e)

Figure 1. Illustration of DCP-SLAM technique. Unknown obstacles are illustrated in grey. Once
an obstacle (or a part of it) is detected by the onboard sensors of the robot(s), it is illustrated in
red. (a) Initial setup, launchpad where robots are launched from and unknown obstacles are shown.
(b) Robot 1 detects an obstacle while navigating towards goal. Robot 1 broadcasts the information to
following robots. (c) Partial detection of second obstacle by Robot 1, Robot 2 navigating towards the
waypoint dropped by Robot 1. (d) Robot 1 finds unobstructed path to goal, Robot 2 navigates from
the other side of the obstacle, while broadcasting the information. (e) Robot 2 finds unobstructed
path to goal. Followers opt for the optimal path.



Sensors 2023, 23, 1025 4 of 20

The organization of the rest of the paper is as follows: Section 2 provides the related
work and motivation for DCP-SLAM. Section 3 explains working of the proposed algo-
rithm in detail. Simulation results are provided in Section 4. Finally, concluding remarks,
discussion, and future work is presented in Section 5.

2. Related Work

Navigation in environments with no prior map information raises several research
challenges. The autonomous robots or agents, while navigating in unknown environments
and not having to bank on acquiring information from central or remote servers, must
utilize their onboard sensors to observe, analyze, and perform necessary actions based
on the information at hand for collision-free navigation and successful completion of the
mission [25]. At the same time, reducing the power consumed by the autonomous agents,
i.e., effectively exploiting the available resources, in order to increase the mission duration
is of paramount importance [32]. With reference to the existing literature, the proposed
approach relates closely to the detection, avoidance, and energy-efficient path development
for the swarm as a whole.

In SLAM, exploration is fundamental, and its importance becomes even more vital
in swarm SLAM systems (or multi-robot SLAM). Various exploration methodologies are
utilized to facilitate the exploration, such as random walk exploration [33,34], potential
field-based or frontier-based exploration; however, path planning is the most commonly
utilized scheme [35]. Authors in [34] utilized the random walk exploration scheme for a
robot swarm mapping event, and illustrated that an occupancy grid can be produced in a
closed indoor environment. However, in practical situations, the proposed methodology
struggles to work efficiently due to the poor quality of the close-range sensors. Furthermore,
by employing high-precision sensors, this issue can be rectified to virtually produce any
kind of map, as shown in the experiment performed by the authors in [36]. Ideally, the
robots in the swarm should be as simple as possible, and should employ simple algorithms
with low overhead, due to practicality. Therefore, swarm SLAM schemes that are able to
make use of low-cost and low-precision sensors and generating relatively abstract maps
for navigational purposes are of greater importance. Authors in [37] demonstrated such
an approach for generating semantic maps; however, the computational complexity of
the proposed approach is significantly high for real-world scenarios for swarms. Such an
issue, with focus on map retrieval without centralization, is an open problem in the field of
swarm SLAM. As shown in [34], a natural technique for merging the maps to be utilized
by individual robots of the swarm is to accumulate the individual maps on a single central
system. Furthermore, another approach proposed by [11] works by merging individually
generated maps in all robots in the swarm. In this manner, every robot or agent in the
swarm has access to the map; however, for the successful deployment of such an approach,
an external framework or central node is necessary.

Literature differentiates collaborative SLAM (C-SLAM) as centralized or decentralized
architectures, with centralized schemes gathering all the data into a central server (cen-
tral station or a robot) and assessing the trajectories for all the robots. Different sensing
arrangements, such as laser or LiDAR-based [18,38] and vision-based [40? ], are examined
in the centralized C-SLAM. In [38], locally generated maps constructed via utilizing Li-
DARs are sliced, and all the segments of the sliced data are accumulated for the detection
of loop closure. The authors of [18] introduced a large-scale autonomous mapping and
positioning system (LAMP) utilizing a 3D LiDAR scanner mounted on single or multiple
robots to scan the surroundings, and an RGB-D camera for the detection and localization
of known obstacles in the environment. In the proposed scheme, all the robots in the
swarm are connected to a central server or node, and in case of loss of communication
with the base station, the algorithm switches back to classical single-robot SLAM-based
navigation. For vision-based techniques, e.g., the works presented in [40? ], the odometry
key frames obtained by utilizing onboard visual sensing mechanisms are offloaded to a



Sensors 2023, 23, 1025 5 of 20

central server. Moreover, to obtain an optimized solution by discovering overlaps, the
bag-of-words approach is utilized.

On the other hand, for swarms to function effectively, especially in conditions where
communication range is limited or there are poor communication channels, distributed
SLAM is a more appropriate approach. The authors of [12] presented a decentralized
visual SLAM approach, utilizing readily accessible datasets, and analyzed how to reduce
the transmission data. Further investigation is required in order to achieve significant
reduction in data transmission to make the whole system energy-efficient. Another recent
approach [41] proposed simplification of data representation and utilizing maximum clique
outlier rejection for distributed place recognition and pose graph optimization. The algo-
rithm is able to build 3D metric semantic meshes accurately, and is able to handle loop
closure errors that may occur. Ref. [42] utilized the Gauss–Siedel technique, and presented
a two-stage distributed approach, where they used object-based models to reduce the
communication costs between the robots. Furthering the work in [42], authors in [43] pre-
sented DOOR-SLAM, a distributed SLAM technique based on peer-to-peer communication.
The presented methodology utilizes a pose graph optimizer to reject false inter-robot loop
closures. In [22], the authors employed a lightweight Scan Context descriptor to facili-
tate swarm SLAM, and presented a two-stage global and locally distributed optimization
framework. The presented approach runs on a dataset collected by one robot.

Collaborative Sensing for Map Building

The approach presented in [44] results in significant improvements in swarm SLAM
field while utilizing partial feedback from the leading agents in order to find an efficient
path to the destination. However, there is no methodology to detect whether the path to
the destination discovered by the agent is the most efficient one. This is due to the fact that
in the aforementioned approach, as soon as an agent successfully finds an unobstructed
path to the destination goal, it broadcasts the tracker points for the rest of the agents in the
swarm to follow to be able to reach the destination. Therefore, the presented methodology
of partial swarm SLAM is further enhanced in this work by the constant sharing of findings
between agents in the swarm in order to build a map in a collaborative manner.

We now present a collaborative sensing approach whereby individual agents form
partial maps of known obstacles discovered by other agents, and utilize this information
to find the shortest path to their respective goals. It is to be noted that all agents continue
sensing their environment to avoid possible collisions with hitherto unknown obstacles or
hidden parts of partially discovered obstacles, continuously passing on any such observa-
tion to all other agents to update their world view. Figure 1a shows the general map. Grey
objects are unknown obstacles, whereas red objects or red parts of the objects imply de-
tected/partially detected obstacles, respectively. As illustrated in Figure 1b, Robot 1 detects
an obstacle while navigating towards its goal. Figure 1c shows a scenario in which Robot 1
partially detected a large obstacle and decides to bypass it, while Robot 2 is following the
first waypoint dropped by Robot 1. Upon reaching waypoint 2 or the partially detected
obstacle Figure 1d, Robot 2 navigates from the other side of the obstacle to complete the
detection. This approach also facilitates finding an alternate route that may be superior to
the previously discovered path. Upon detection of the optimal path, the rest of the robots
will utilize the available information to locally evaluate the options and select the route
that is optimal for themselves, as illustrated in Figure 1e.

3. Proposed Approach

Algorithm 1 provides the general pseudocode for navigation and obstacle detection.
All agents execute this top-level algorithm locally by utilizing their onboard processing
units. In the beginning of the mission, all the agents are assigned IDs and connection
between them is set up in a leader–follower manner. A global leader is declared, and in
a hierarchical manner, the respective leaders are connected to the immediate respective
followers, in the initialization phase of the algorithm. Afterwards, the respective agent



Sensors 2023, 23, 1025 6 of 20

starts navigation if it has not reached the designated goal, i.e., |Γi
S − ΓG| > ρ, where Γi

S
and ΓG are the coordinates of the i th agent and the goal, respectively, and ρ is the radius
defined around the goal point to handle any errors that may occur while acquiring the
coordinates. If the agent has not yet reached the desired goal, and any obstacle(s) is(are)
detected by the onboard ranging sensors, the attributes of the detected obstacle are then
stored in an obstacle list (§[i][j:0→n]), where i stands for the i th agent and j : 0→ n stands
for the j th obstacle in the list. The respective agent then checks whether this particular
object has already been detected by any of the agents that may have navigated through
the same path by calling the Merge Objects() function. This Merge Objects() function will
perform the following actions if the detected obstacle is present in the obstacle list or if
the detected obstacle is not present in the obstacle list. If the latter is true, then based on
the attributes of the detected obstacles in the obstacle list and the newly detected obstacle,
it is determined whether the newly detected obstacle is a completely different obstacle
or part of a previously partially detected obstacle. These attributes are then passed onto the
Shortest Path Obstacle Avoidance() function in order for the agent to be able to perform
collision avoidance actively.

Algorithm 1 Navigation

Input: Self.ID: Sid; Leader is Alive: Lalive; Self.Coordinates: Γi
S;

Output: Obstacle list: §[i][j:0→n];
Constant: Goal.Coordinates: ΓG; Goal.Radius: ρ;

Sid ← Initialization, ID allocation;

if Sid == 1 then
Leader← Self;
Lalive ← False;

else
Leader← Self; . Connection to respective leaders
Lalive ← True;

end if

while |Γi
S − ΓG| > ρ do

if §[i][j:0→n] ← Obstacle Detection() then
Merge Objects and Update Map(§[i][j:0→n]);
Shortest Path Obstacle Avoidance(§[i][j:0→n], Γi

S, ΓG);
end if
Continue Navigation;

end while

3.1. Collision Avoidance and Map Building

When an agent is launched, it executes the obstacle avoidance algorithm to find the
shortest path to its destination while avoiding known obstacles. It selects the nearest
inflection point as its temporary goal or waypoint, and moves towards this waypoint while
continuously sensing its environment for hitherto unseen obstacles. In the case that an
obstacle is sensed on its way to the waypoint, the agent performs collision avoidance while
simultaneously broadcasting the coordinates of the newly discovered parts of the obstacle.
All agents update their individual maps by adding the newly gathered information and
run the Merge Objects algorithm to merge multiple sections of the same obstacle into
one obstacle. After the agent has moved clear of the obstacle, the process of selecting the
waypoint towards its goal is repeated until it completes its mission.

3.2. Merge Objects and Update Map

Algorithm 2 starts by checking whether the detected obstacle exists in the obstacle list
(§[i]). Then, for each existing obstacle in the list, the current detected obstacle’s distance is



Sensors 2023, 23, 1025 7 of 20

compared with a defined margin of error (λe). If the distance or gap between the existing
obstacle in the list and the current detected obstacle is equal to or less than λe, both obstacles
are merged together and considered to be a single obstacle. Otherwise, the current detected
obstacle is added to the obstacle list. The updated list is then broadcast by the agent to rest
of the agents.

Algorithm 2 Merge Objects and Update Map

Input: Obstacle list: §[i][j:0→n]; Self.ID: Sid; Leader is Alive: Lalive; Self.Coordinates: Γi
S;

Constant: Temporary obstacle variable: Tempobj; Obstacle dimensions: D[i][j]
o+α;Margin of

error: λe

for i in §[i] do
Tempobj ← §[i];
for j in §[i][j] do

if | Tempobj −− §[i][j]| ≤ λe then
Merge→ Tempobj∪ §[i][j];

else
Add Tempobj to §[i];

end if
Broadcast();

end for
end for

3.3. Shortest Path with Obstacle Avoidance

Algorithm 3 shows the pseudocode of the shortest path calculation, as illustrated
in Figure 2, while utilizing the collision avoidance algorithm. The algorithm starts by
analyzing the attributes of the detected obstacle(s) from the obstacle list, i.e, §[j:0→n] (Line 1),

where Dj
o is the j th obstacle’s distance from the agent, ∠j

o is the angle at which the obstacle
lies, and Dj

o+α represents the obstacle’s dimensions (o: 0→ α). The agent in question then
updates the Euclidean distance (E) to the goal from its current position, i.e., ΓG and Γi

S,
respectively (Line 2). Afterwards, for each detected obstacle, it is checked whether the
obstacle poses a potential collision risk, i.e., lies within the planned trajectory of the agent.
This is achieved by analyzing whether the obstacle’s detected dimensions intersect E at
any point (Lines 3–5). It is important to note here that the agent may or may not be able to
detect the complete obstacle, as the obstacle may be larger than the detection range of the
onboard sensor system of the agent. In either case, the extreme edges of the obstacle that
are visible to the agent are recorded. If the straight line passes through any of the detected
obstacle(s), then based on the available information, the agent calculates new waypoints
for collision-free navigation (Line 6). Finally, the waypoint closest to the calculated shortest
path is selected as a temporary goal for the agent to navigate towards (Line 12).

Here, we present two methods of path selection with obstacle avoidance, namely,
shortest path planning with obstacle avoidance (SP-OA) and immediate waypoint selection
with obstacle avoidance (IWp-OA). First, we explain shortest path planning with the
obstacle avoidance algorithm with reference to Figure 3. Consider that a robot at position R
is planning its path towards its goal G. Furthermore, its map of the world is populated by
three obstacles, A, B, and C, that have been discovered by earlier robots. The steps taken by
the said robot, as described in the algorithm Y, are as follows:



Sensors 2023, 23, 1025 8 of 20

 

 

R 

G 

WP1 

WP2 

WP3 

WP4 

WP5 

WP11 

WP7 

WP6 

WP10 WP9 

WP8 

A1 

A2 

A3 

A4 

B1 B3 

B2 B4 

C1 

C2 

C3 

C4 

L1 

L2 

 

O
bs

ta
cl

e 
 B

 O
bs

ta
c l

e 
 C

 

Shortest path
Collision free path
Line of sight

O
bs

ta
cl

e 
 A

Figure 2. Shortest path planning with obstacle avoidance.

Algorithm 3 Shortest path with Obstacle Avoidance

Input: Obstacle list: §[i][j:0→n]; Self.Coordinates: Γi
S; Goal.Coordinates: ΓG;

Output: Obstacle’s distance: D[i][j]
o ; Obstacle’s angle: ∠[i][j]

o ; Obstacle dimensions: D[i][j]
o+α;

Temporary Goal: Γtemp;
Constant: Safe Distance: sd;

1: D[i][j]
o ,∠[i][j]

o ,D[i][j]
o+α ← §[i][j:0→n];

2: Order § based on increasing D[i][j]
o ;

3: E← ΓGΓi
S; . line segment between Self and Goal

4: for § in §[i][j:0→n] do
5: for each edge DoDo+α of § do . one edge to other of the obstacle
6: if edge DoDo+α Intersects E at Point I then
7: WP(i) = (Do − sd), WP(i + 1) = (Do+α + sd);
8: end if
9: end for . End for all edges of the object §

10: Γtemp = WP(i) if (|WP(i) − I1| < |WP(i + 1) − I1| in WPi) else WP(i + 1);

11: end for . End of all objects in the object list §[i][j:0→n]

12: Move to Γtemp;

1. The robot draws a straight line from its current position R to its goal G to determine
whether it intercepts any edge of the known obstacles. In the instant case, the line RG
is intercepted by the edge C1C2 of the obstacle C at point I1.

2. Next, it chooses two waypoints that are a minimum safe distance away from vertices
C1 and C2; let us call these W1 and W2. Possible paths are RW1 followed by W1G;,
and RW followed by W2G.

3. The robot iterates steps 1 and 2 above for all possible path segments, always progress-
ing from left to right, creating a new waypoint for each edge that intercepts any path,
and repeating steps 1 and 2.

4. We now have a directed acyclic graph (DAG) with multiple obstacle-free paths from
the robots current position to the goal.



Sensors 2023, 23, 1025 9 of 20

5. The robot now selects the first waypoint on shortest obstacle-free path as its temporary
goal and starts moving towards it.

 

 

L1 

R 

G 

WP1 WP4 L2 

WP2 

A 

C 

B 

C1 

C2 

A1 

A2 

RWP2 

RWP1 

Collision free path 
 Line of sight

Figure 3. Immediate waypoint selection.

This algorithm will be re-run every time a new obstacle is discovered, a hidden part
of a known obstacle is discovered by the robot’s onboard sensors, or such a finding is
communicated by other robots in the swarm. As an alternate approach in the interest
of saving computation time and energy, we propose a simplified version of the above
algorithm. In this approach, the robot works backwards from the goal, choosing the shorter
of two paths at each intersection upon reaching an obstacle. The simplified approach is
explained below with reference to Figure 3.

1. The robot draws a straight line from its current position R to its goal G and determines
whether it intercepts any edge of the known obstacles. In the instant case, the line RG
is intercepted by the edge C1C2 of the obstacle C at point I1.

2. Since the top left corner C1 is nearer to I1 than the bottom left corner C2, it decides to
circumvent the obstacle from the top left corner C1. It chooses a waypoint that is a
minimum safe distance away from C1, let us call it W1, and sets this waypoint as its
temporary goal.

3. It repeats steps 1 and 2 above; this time, the line RW1 is intercepted by the edge A1 A2
of obstacle A at point I2. The robot avoids obstacle A from bottom left corner A2
and chooses a waypoint WP2 that is a minimum safe distance away from vertex A2.
The robot now sets its temporary goal to WP2.

4. The robot repeats step 1 by drawing a straight line RW2. Since this line is not inter-
cepted by any known obstacle, the algorithm finishes, and the robot starts moving
towards its temporary goal WP2.

The concept of fuzzification of objects is exemplified in Figure 4. In this example, three
points, A, B and C, are returned by the LiDAR sensor. The level of inflation or minimum
safe distance sd is shown by the red line. The three points are fuzzified in all directions by
the level of inflation, shown as red lines in the four dimensions around each point. Next,
rectangular objects are created that encompass all edges of the fuzzified points. The objects
that overlap, or are adjacent, are merged into one object. Thus, in Figure 4, points A and B
are assumed to belong to one object, while point C probably belongs to a second object.

Since there may be other obstacles in the way that are yet to be discovered, planning a
complete path to the final goal may be an unnecessary effort at this stage. Additionally,
for this reason, the robots continually scan their immediate environment for any hitherto
unseen obstacles. They also continue listening to broadcasts from other robots for informa-
tion about a discovery of a new obstacle or the discovery of further sections of a known
obstacle. In either case, the path planning algorithm is executed again to ensure that the
path followed by the robot is obstacle-free.



Sensors 2023, 23, 1025 10 of 20

Figure 4. Concept of fuzzification.

4. Simulation Results

A two-dimensional XY plane, i.e., all the objects (robots and obstacles) are at the same
altitude, of 12 km × 6 km is used, with unknown obstacles randomly scattered in space.
The number of agents are set to ten and are launched from the same coordinates one after
the other. Robots move with a maximum speed of 72 km per hour, or 20 m per second.
Python graphics are utilized for simulation purposes. For simulation and testing, we
utilized the mathematical models of differential drive robots, and further equipped them
with the output of a simulated LiDAR sensor in a two-dimensional plane. The following is
a kinematic model of a differential drive robot:

ẋ = vcosθ,

ẏ = vsinθ,

θ̇ =
v∆

W

(1)

where ẋ and ẏ are the x and y positions of the robot, v is the velocity, and θ̇ is the heading
angle of the robot.

The following equation is utilized to calculate the turning curve of the robot:

∆V =
vr − vl

W
(2)

where ∆V is the difference between the left and the right wheel speed, vr and vl are the
right and the left speeds, respectively, and W is the width of the robot.

In order to show the progress of the swarm graphically, the field was scaled to fit
the available screen resolution, each pixel representing 10 m. The following are the initial
conditions and assumptions defined for our work:

1. The robots pass through a vast passage area between the launch zone and delivery
zone.

2. There are randomly placed multiple obstacles in the passage area.
3. The communication channel between the robots is considered to be ideal and lossless.
4. Utilizing onboard localization methods, the robots obtain their position vector.
5. The range of LiDAR sensors is 100 m.

Figure 5 shows the effectiveness of utilizing the fuzzy nature of the proposed technique.
As can be seen in Figure 5a, Robot #1, on the left of the figure moves along the straight line
towards the goal, shown by red circle in the bottom right, and discovers obstacle #1 using
a LiDAR sensor; the point cloud is indicated by red dots on the left edge of the obstacle.
Using the immediate waypoint with Obstacle Avoidance (IWp-OA) algorithm, it chooses
to circumvent the obstacle from below since the the length of edge discovered so far is
smaller on this side. As shown in Figure 5b, Robot #2 finds that an already discovered part
of obstacle #1 is in the way of the goal, and it decides to circumvent obstacle #1 from above
since, by then, most of the left edge is discovered and the top corner seems the shorter way.
In another instance, presented in Figure 5c, Robot #1 has discovered, and communicated



Sensors 2023, 23, 1025 11 of 20

to other robots, obstacle #4 and the bottom part of obstacle #5. Robot #2 has discovered
obstacle #3 and avoids this obstacle by going below it. It has also discovered the top
part of obstacle #5. Utilizing the already available information, Robot #3 initially aims
to go over the top of obstacle #3, and later discovers obstacle #2; however, since the gap
between obstacle #2 and obstacle #3 is narrower than the minimum safe distance, the two
are merged and recorded as one obstacle, shown by the blue grid encompassing both
obstacles in Figure 5d. As robot #3 is already near the top edge of the merged obstacle,
as shown in the simulation screenshot in Figure 5e, it decides to circumvent it from above.
Robot #4, after clearing obstacle #1 from above, finds the merged obstacle in its way and
decides to bypass it from below. Similarly, Figure 5f shows that Robot #5, or any other
following robots, benefits from the information gathered by earlier robots and chooses to
pass over the top right corner of obstacle #5, resulting in the shortest path.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Simulation snapshots: showing the operation of the IWp-OA algorithm. (a) Robot 1
avoiding the first detected obstacle from the bottom edge. (b) Robot 2 circumvents the obstacle from
above to discover an alternate route. (c) Robots 1 and 2 have partially discovered obstacle 5. (d) Robot
3 discovers obstacle 2, and utilizing fuzzification, combines it with the already discovered obstacle
3. (e) Robot 4 chooses the trajectory, by utilizing the broadcast information, to bypass obstacle 3
from below. (f) Robot 5 utilizes information provided by all other robots and chooses the optimal
trajectory.

Similarly, Figure 6 shows the trends of the routes taken by robots from different
experimental setups with different launch and goal coordinates. Figure 6a,b show the
overall traces of the robots in the swarm from launch to goal, where the launch and goal
are slightly towards the center of the initial obstacles. Figure 6c shows the detection and
resultant trend when the launch and goal are both moved towards one side of the obstacles.
All the robots take similar routes. The robots 1 and 2 performed the optimization for finding
an efficient path; afterwards, the rest of the robots followed the discovered optimal path,
as shown. Figure 6d shows the trend when the goal is moved diagonally to the other side
with same placements of the obstacles, and Figure 6e shows the optimization trend when



Sensors 2023, 23, 1025 12 of 20

the obstacles are randomly relocated. Figure 6f,g show the optimization trend over time
by the robots when the goal is moved from one point to another while keeping the launch
coordinates the same. Similarly, Figure 6h–j show the overall trend while covering all
possible scenarios for testing the efficiency of the proposed DCP-SLAM technique.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Simulation results: different experimental scenarios. (a) Experimental scenario 1. (b) Ex-
perimental scenario 2. (c) Experimental scenario 3. (d) Experimental scenario 4. (e) Experimental
scenario 5. (f) Experimental scenario 6. (g) Experimental scenario 7. (h) Experimental scenario 8.
(i) Experimental scenario 9. (j) Experimental scenario 10.



Sensors 2023, 23, 1025 13 of 20

Figure 7 shows the distances traveled by individual robots from mission start until
they reach the goal of the experiments performed in Figure 6. As reflected, the proposed al-
gorithm manages to find the optimal path to the goal relatively effectively and aggressively.

9

10

11

12

13

14

10000

10500

11000

11500

12000

12500

13000

13500

14000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(a)

9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(b)

9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10
Ti

m
e 

(m
in

)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(c)

9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(d)

9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(e)

9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(f)

13

14 9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(g)
13

14 9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(h)

13

14 9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(i)
13

14 9

10

11

12

13

14

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

in
)

D
is

ta
n

ce
 (

m
)

Robot Number

Dist

Time

(j)

Figure 7. Simulation results: results for respective experiments, showing the total distance traveled by
each robot along with the time it took to reach the goal. (a) Experimental scenario 1. (b) Experimental
scenario 2. (c) Experimental scenario 3. (d) Experimental scenario 4. (e) Experimental scenario 5.
(f) Experimental scenario 6. (g) Experimental scenario 7. (h) Experimental scenario 8. (i) Experimental
scenario 9. (j) Experimental scenario 10.



Sensors 2023, 23, 1025 14 of 20

Figure 8 shows the maximum and minimum distance traveled by a single robot in each
experimental scenario, along with the average distance the whole swarm traveled. As is
evident from the results, utilizing the proposed approach optimizes the traveling distance
relatively quickly as compared to the previously proposed PS-SLAM technique [44] or
non-collaborative methods. The results shown in Figure 9 clearly indicate the efficiency
in terms of distance traveled by individual robots and, consequently, the swarm as a whole,
of the proposed DCP-SLAM technique as compared to the PS-SLAM technique. Evidently,
significant consumption is reduced while utilizing the proposed approach, as the distance
the swarm traveled is reduced on average by around 10 km. This amounts to an efficiency
increase by approximately 10% over the previously developed algorithm [44].

Min Max Avg

10

12

14

16

12
.4

2 13
.7

7

12
.6

6

12
.3

2 13
.9

1

12
.7

9

11
.6

7

13
.5

2

11
.9

4

11
.9

7

13
.6

6

12
.3

4

11
.9

5 13
.1

6

12
.1

4

10
.6

2

11
.3

6

10
.6

9

10
.8

8 12
.1

9

11
.4

2

11
.4

3

11
.9

7

11
.5

11
.6 12

.4
3

11
.8

1

12
.5

3

13
.1

7

12
.6

1

D
is

ta
nc

e
(k

m
)

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 EXP9 EXP10

Figure 8. Distance (minimum, maximum, and on average) traveled by the swarm in all experimen-
tal scenarios.

Version January 13, 2023 submitted to Sensors 14 of 19

Min Max Avg

10

12

14

16

12
.4

2 13
.7

7

12
.6

6

12
.3

2 13
.9

1

12
.7

9

11
.6

7

13
.5

2

11
.9

4

11
.9

7

13
.6

6

12
.3

4

11
.9

5 13
.1

6

12
.1

4

10
.6

2

11
.3

6

10
.6

9

10
.8

8 12
.1

9

11
.4

2

11
.4

3

11
.9

7

11
.5

11
.6 12

.4
3

11
.8

1

12
.5

3

13
.1

7

12
.6

1

D
is

ta
nc

e
(k

m
)

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 EXP9 EXP10

Figure 8. Distance (minimum, maximum, and on average) travelled by the swarm in all experimental
scenarios

Figure 8 shows the maximum and minimum distance travelled by a single robot in each340

experimental scenario, along with the average distance the whole swarm travelled. As it is evident341

from the results, utilizing the proposed approach optimizes the travelling distance rather quickly as342

compared to the previously proposed PS-SLAM technique [44] or non-collaborative methods. The343

results shown in Figure 9 clearly indicate the efficiency, in terms of distance travelled by individual344

robots and consequently the swarm as a whole, of the proposed DCP-SLAM technique as compared345

to PS-SLAM technique. Evidently significant consumption is reduced while utilizing the proposed346

approach, as the distance the swarm travelled is reduced on average by around 10km. This accounts347

to an efficiency increase by approximately 10% over the previously developed algorithm [44].348

DCP-SLAM PS-SLAM

100

120

140

12
6.

6

13
7.

7

12
7.

95

13
9.

1

11
9.

45

13
5.

2

12
3.

49

13
6.

6

12
1.

4

13
1.

6

10
6.

9 11
3.

6

11
4.

28 12
1.

9

11
5.

03 11
9.

7

11
8.

17 12
4.

3

12
6.

19 13
1.

7

D
is

ta
nc

e
(k

m
)

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 EXP9 EXP10

Figure 9. Comparative results of distance travelled by the swarm as a whole

Tables 1, 2, and 3 show total communication cost of each robot in number of messages, Table 1, in349

number of bytes transmitted, Table 2, and energy consumed in transmission, Table 3. We compare two350

scenarios for all experiments, firstly, where a robot transmits the point cloud every time it detects an351

obstacle, resulting in high communication cost for each robot and secondly, where a robot transmits its352

list of vertices of all obstacles detected so far only when it discovers a new object or hitherto unseen353

part of an object. As can be seen from the three tables, the latter scheme results in significant saving in354

communication cost. Since obstacles are gradually discovered and communicated by leading robots,355

the robots towards the tail end of the swarm have almost zero communication cost.356

5. Conclusions and Future Work357

In this article, we present a methodology for finding an optimal solution for navigation of swarm358

of autonomous robots in environments with no-prior map information, utilizing only local onboard359

sensors for observational purposes and inter-robot communication for sharing of observations in a360

Figure 9. Comparative results of distance traveled by the swarm as a whole

Tables 1–3 show total communication cost of each robot in number of messages, Table 1,
in number of bytes transmitted, Table 2, and energy consumed in transmission, Table 3.
We compare two scenarios for all experiments, firstly, where a robot transmits the point
cloud every time it detects an obstacle, resulting in high communication cost for each robot
and secondly, where a robot transmits its list of vertices of all obstacles detected so far
only when it discovers a new object or hitherto unseen part of an object. As can be seen
from the three tables, the latter scheme results in significant saving in communication cost.
Since obstacles are gradually discovered and communicated by leading robots, the robots
towards the tail end of the swarm have almost zero communication cost.



Sensors 2023, 23, 1025 15 of 20

Table 1. Number of message transmissions.

Exp 1 2 3 4 5 6 7 8 9 10

Robot Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj

1 29,340 105 32,353 154 29,907 245 29,187 185 22,097 101 30,606 167 20,900 140 26,582 160 16,420 131 27,225 140

2 27,393 89 30,766 105 35,216 80 35,197 107 20,523 35 21,868 42 15,338 0 19,078 11 17,867 32 18,770 10

3 12,182 0 23,914 38 18,781 0 15,495 0 11,987 0 22,112 1 26,824 82 18,704 1 14,270 56 18,717 1

4 12,182 0 22,402 0 18,781 0 15,854 5 11,987 0 22,112 0 22,022 10 18,700 0 14,271 0 18,717 0

5 12,182 0 19,030 0 18,781 0 15,854 0 11,987 0 22,112 0 23,951 1 18,700 0 10,052 0 18,717 0

6 12,182 0 19,030 0 18,781 0 11,092 0 11,987 0 22,112 0 16,933 56 18,700 0 10,052 0 18,717 0

7 12,182 0 19,030 0 18,781 0 11,092 0 11,987 0 22,112 0 16,933 0 18,700 0 10,052 0 18,717 0

8 12,182 0 19,030 0 18,781 0 11,092 0 11,987 0 22,112 0 15,726 2 18,700 0 10,052 0 18,717 0

9 12,182 0 19,030 0 18,781 0 11,092 0 11,987 0 22,112 0 15,726 0 18,700 0 10,052 0 18,717 0

10 12,182 0 19,030 0 18,781 0 11,092 0 11,987 0 22,112 0 15,726 0 18,700 0 10,052 0 18,717 0

Table 2. Number of kB (kilobytes) transmitted.

Exp 1 2 3 4 5 6 7 8 9 10

Robot Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj

1 82.15 5.46 90.59 8.01 83.74 12.74 81.72 9.62 61.87 5.25 85.69 8.68 58.52 7.28 74.43 8.32 45.98 6.81 76.23 7.28

2 76.70 4.63 86.15 5.46 98.61 4.16 98.55 5.56 57.46 1.82 61.23 2.18 42.95 0 53.42 0.57 50.03 1.66 52.56 0.52

3 34.11 0 66.96 1.98 52.59 0 43.39 0 33.56 0 61.91 0.05 75.11 4.26 52.37 0.05 39.96 2.91 52.41 0.05

4 34.11 0 62.73 0 52.59 0 44.39 0.26 33.56 0 61.91 0 61.66 0.52 52.36 0 39.96 0 52.41 0

5 34.11 0 53.28 0 52.59 0 44.39 0 33.56 0 61.91 0 67.06 0.05 52.36 0 28.15 0 52.41 0

6 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 47.41 2.91 52.36 0 28.15 0 52.41 0



Sensors 2023, 23, 1025 16 of 20

Table 2. Cont.

Exp 1 2 3 4 5 6 7 8 9 10

Robot Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj

7 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 47.41 0 52.36 0 28.15 0 52.41 0

8 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0.10 52.36 0 28.15 0 52.41 0

9 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0 52.36 0 28.15 0 52.41 0

10 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0 52.36 0 28.15 0 52.41 0

Table 3. Energy consumed in transmission (mJ).

Exp 1 2 3 4 5 6 7 8 9 10

Robot Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj Raw Obj

1 82.15 0.55 90.59 0.80 83.74 1.27 81.72 0.96 61.87 0.53 85.69 0.87 58.52 0.73 74.43 0.83 45.98 0.68 76.23 0.73

2 76.70 0.46 86.14 0.55 98.61 0.42 98.55 0.56 57.46 0.18 61.23 0.22 42.95 0 53.42 0.06 50.03 0.17 52.56 0.05

3 34.11 0 66.96 0.19 52.59 0 43.39 0 33.56 0 61.91 0.01 75.11 0.43 52.37 0.01 39.96 0.29 52.41 0.01

4 34.11 0 62.73 0 52.59 0 44.39 0.03 33.56 0 61.91 0 61.66 0.05 52.36 0 39.96 0 52.41 0

5 34.11 0 53.28 0 52.59 0 44.39 0 33.56 0 61.91 0 67.06 0.01 52.36 0 28.15 0 52.41 0

6 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 47.41 0.29 52.36 0 28.15 0 52.41 0

7 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 47.41 0 52.36 0 28.15 0 52.41 0

8 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0.01 52.36 0 28.15 0 52.41 0

9 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0 52.36 0 28.15 0 52.41 0

10 34.11 0 53.28 0 52.59 0 31.06 0 33.56 0 61.91 0 44.03 0 52.36 0 28.15 0 52.41 0



Sensors 2023, 23, 1025 17 of 20

5. Conclusions and Future Work

In this article, we present a methodology for finding an optimal solution for the navi-
gation of a swarm of autonomous robots in environments with no prior map information,
utilizing only local onboard sensors for observational purposes and inter-robot commu-
nication for the sharing of observations in a concise manner. In the presented technique,
robots utilize their onboard ranging sensors to detect and avoid close-range obstacles while
navigating towards their goal. The approach works by utilizing the information regarding
maps built by leading robots for optimizing the routes for rest of the robots in the swarm.
Interestingly, this partial map building approach is robust against communication failure
of one or more robots, since the followers build upon whatever information is at hand and
utilize onboard sensors to augment it. Thus, any gaps owing to lost information are quickly
filled by followers. We have simulated various situations with multiple objects obstructing
the straight path to the destination, and show that the proposed approach results in the
swarm learning its environment in sufficient detail with the passage of few leading robots
so that the remaining members of the swarm can find an optimal path.

Thus, considering the arrival of the whole swarm at the destination as the mission to
be carried out with optimal path traversal, some of the leading robots end up taking longer
routes and discovering hidden parts of partially discovered obstacles. This additional
information is shared with the rest of the swarm, and results in a more informed choice of
route by following robots. This results in optimal path selection for the followers and up to
13% saving in the travel path for individual robots. Furthermore, utilizing the proposed
approach results in efficiency of up to 11% in traveling distance for the swarm as a whole.

Another contribution of this work is that communication cost is limited to transmitting
only significant new discoveries rather than sending the whole point cloud with each
detection event of LiDAR by each member of the swarm. This is a direct result of the
fuzzification and merging of detected obstacles that reduces the number of obstacles.
As long as an obstacle is within the sensing range of a robot’s LiDAR sensor, it receives
several detection points in the point clouds for each scan. If this detection data were to
be communicated to the rest of the swarm, it would result in high communication cost.
Instead, the robot performs several preprocessing steps before transmission. Firstly, it
evaluates whether a detection point belongs to an already detected object or not. Here,
our fuzzification of the detected objects helps in returning affirmative answers for very
close points. If the answer of the first step is negative, it is assumed that the said point
belongs to an undetected object. The aforementioned point is fuzzified to form an object
with dimensions equal to the minimum clearance distance, and the resulting object is added
to the obstacle list. Next, the whole obstacle list is scanned to determine whether any two
objects are adjacent or overlapping, merging such objects into one larger object. Since
the obstacle list is maintained in a sorted order, only one scan is sufficient to merge all
adjacent or overlapping objects. After this final step of merging, the updated obstacle list is
broadcast to the rest of swarm. This scheme results in the saving of communication cost
and economy of associated communication energy.

In our future work, we aim to further develop the proposed methodology by extend-
ing the approach to dynamic environments with moving obstacles. Furthermore, other
interesting aspects to analyze will be the effects of communication delays, IMU drifts,
and other environmental disturbances in dynamic environments.

Author Contributions: Conceptualization, H.M. and M.M.Y.; methodology, H.M. and M.M.Y.; soft-
ware, H.M. and M.M.Y.; validation, J.N.Y. and S.J.; writing—original draft preparation, H.M., M.M.Y.,
J.N.Y., S.J., M.-H.H. and J.P.; writing—review and editing, M.-H.H., M.M.Y. and J.P.; supervision,
M.M.Y., M.-H.H. and J.P.; funding acquisition, M.M.Y., M.-H.H. and J.P; project administration,
M.M.Y. and J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been financially supported by the Academy of Finland funded projects
335512—ADAFI (Adaptive Fidelity Digital Twins for Robust and Intelligent Control Systems) and
330493—AURORA (Autonomous Performance Management in Digital Manufacturing).



Sensors 2023, 23, 1025 18 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hinchey, M.G.; Sterritt, R.; Rouff, C. Swarms and Swarm Intelligence. Computer 2007, 40, 111–113. [CrossRef]
2. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm

Intell. 2013, 7, 1–41. [CrossRef]
3. Yasin, J.N.; Haghbayan, M.H.; Yasin, M.M.; Plosila, J. Swarm formation morphing for congestion-aware collision avoidance.

Heliyon 2021, 7, e07840. . [CrossRef] [PubMed]
4. Grocholsky, B.; Keller, J.; Kumar, V.; Pappas, G. Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 2006, 13, 16–25.

[CrossRef]
5. Besada, J.A.; Bergesio, L.; Campaña, I.; Vaquero-Melchor, D.; López-Araquistain, J.; Bernardos, A.M.; Casar, J.R. Drone Mission

Definition and Implementation for Automated Infrastructure Inspection Using Airborne Sensors. Sensors 2018, 18, 1170.
[CrossRef] [PubMed]

6. Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs):
Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [CrossRef]

7. Madridano,Á.; Al-Kaff, A.; Martín, D.; de la Escalera.; de la, A. 3D Trajectory Planning Method for UAVs Swarm in Building
Emergencies. Sensors 2020, 20, 642. [CrossRef]

8. Tagliabue, A.; Kamel, M.; Verling, S.; Siegwart, R.; Nieto, J. Collaborative transportation using MAVs via passive force control. In
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017;
pp. 5766–5773. [CrossRef]

9. Udroiu, R.; Deaconu, A.M.; Nanau, C. Data Delivery in a Disaster or Quarantined Area Divided into Triangles Using DTN-Based
Algorithms for Unmanned Aerial Vehicles. Sensors 2021, 21, 3572. [CrossRef]

10. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M.
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7,
48572–48634. [CrossRef]

11. Kegeleirs, M.; Grisetti, G.; Birattari, M. Swarm SLAM: Challenges and Perspectives. Front. Robot. AI 2021, 8, 618268. [CrossRef]
12. Cieslewski, T.; Choudhary, S.; Scaramuzza, D. Data-Efficient Decentralized Visual SLAM. In Proceedings of the 2018 IEEE

International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2466–2473. [CrossRef]
13. Lajoie, P.Y.; Ramtoula, B.; Wu, F.; Beltrame, G. Towards Collaborative Simultaneous Localization and Mapping: A Survey of the

Current Research Landscape. Field Robot. 2022, 2, 971–1000. [CrossRef]
14. Mertens, J.C.; Knies, C.; Diermeyer, F.; Escherle, S.; Kraus, S. The Need for Cooperative Automated Driving. Electronics 2020,

9, 754. [CrossRef]
15. Malik, S.; Khan, M.A.; El-Sayed, H. Collaborative Autonomous Driving—A Survey of Solution Approaches and Future Challenges.

Sensors 2021, 21, 3783. [CrossRef] [PubMed]
16. Kerner, B.S. Failure of classical traffic flow theories: Stochastic highway capacity and automatic driving. Phys. A Stat. Mech. Its

Appl. 2016, 450, 700–747. [CrossRef]
17. Knies, C.; Hermansdorfer, L.; Diermeyer, F. Cooperative Maneuver Planning for Highway Traffic Scenarios based on Monte-Carlo

Tree Search. In Proceedings of the AAET 2019—Automatisiertes und vernetztes Fahren, Montreal, QC, Canada, 13–17 May 2019.
18. Ebadi, K.; Chang, Y.; Palieri, M.; Stephens, A.; Hatteland, A.; Heiden, E.; Thakur, A.; Funabiki, N.; Morrell, B.; Wood, S.; et al.

LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of Perceptually-Degraded Subterranean Environments.
In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 80–86. [CrossRef]

19. Wang, Y.; Sun, Z.; Xu, C.Z.; Sarma, S.E.; Yang, J.; Kong, H. LiDAR Iris for Loop-Closure Detection. In Proceedings of the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020;
pp. 5769–5775. [CrossRef]

20. Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell,
B.; et al. LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments.
arXiv 2022. [CrossRef]

21. Dubé, R.; Cramariuc, A.; Dugas, D.; Sommer, H.; Dymczyk, M.; Nieto, J.; Siegwart, R.; Cadena, C. SegMap: Segment-based
mapping and localization using data-driven descriptors. Int. J. Robot. Res. 2020, 39, 339–355. [CrossRef]

22. Huang, Y.; Shan, T.; Chen, F.; Englot, B. DiSCo-SLAM: Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM With
Two-Stage Global-Local Graph Optimization. IEEE Robot. Autom. Lett. 2022, 7, 1150–1157. [CrossRef]

http://doi.org/10.1109/MC.2007.144
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1016/j.heliyon.2021.e07840
http://www.ncbi.nlm.nih.gov/pubmed/34466704
http://dx.doi.org/10.1109/MRA.2006.1678135
http://dx.doi.org/10.3390/s18041170
http://www.ncbi.nlm.nih.gov/pubmed/29641506
http://dx.doi.org/10.1109/ACCESS.2020.3000064
http://dx.doi.org/10.3390/s20030642
http://dx.doi.org/10.1109/ICRA.2017.7989678
http://dx.doi.org/10.3390/s21113572
http://dx.doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.3389/frobt.2021.618268
http://dx.doi.org/10.1109/ICRA.2018.8461155
http://dx.doi.org/10.55417/fr.2022032
http://dx.doi.org/10.3390/electronics9050754
http://dx.doi.org/10.3390/s21113783
http://www.ncbi.nlm.nih.gov/pubmed/34072603
http://dx.doi.org/10.1016/j.physa.2016.01.034
http://dx.doi.org/10.1109/ICRA40945.2020.9197082
http://dx.doi.org/10.1109/IROS45743.2020.9341010
http://dx.doi.org/10.1109/LRA.2022.3191204
http://dx.doi.org/10.1177/0278364919863090
http://dx.doi.org/10.1109/LRA.2021.3138156


Sensors 2023, 23, 1025 19 of 20

23. Bartashevich, P.; Koerte, D.; Mostaghim, S. Energy-saving decision making for aerial swarms: PSO-based navigation in vector
fields. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27
November–1 December 2017; pp. 1–8. [CrossRef]

24. Al-Sabban, W.H.; Gonzalez, L.F.; Smith, R.N. Wind-energy based path planning for Unmanned Aerial Vehicles using Markov
Decision Processes. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, German,
6–10 May 2013; pp. 784–789. [CrossRef]

25. Yasin, J.N.; Mahboob, H.; Haghbayan, M.H.; Yasin, M.M.; Plosila, J. Energy-Efficient Navigation of an Autonomous Swarm with
Adaptive Consciousness. Remote Sens. 2021, 13, 1059. [CrossRef]

26. Narayanan, K.; Honkote, V.; Ghosh, D.; Baldev, S. Energy Efficient Communication with Lossless Data Encoding for Swarm
Robot Coordination. In Proceedings of the 2019 32nd International Conference on VLSI Design and 2019 18th International
Conference on Embedded Systems (VLSID), Delhi, India, 5–9 January 2019; pp. 525–526. [CrossRef]

27. Majd, A.; Loni, M.; Sahebi, G.; Daneshtalab, M. Improving Motion Safety and Efficiency of Intelligent Autonomous Swarm of
Drones. Drones 2020, 4, 48. [CrossRef]

28. Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Yasin, M.M.; Plosila, J. Energy-Efficient Formation
Morphing for Collision Avoidance in a Swarm of Drones. IEEE Access 2020, 8, 170681–170695. [CrossRef]

29. Tseng, C.M.; Chau, C.K.; Elbassioni, K.M.; Khonji, M. Flight tour planning with recharging optimization for battery-operated
autonomous drones. arXiv 2017. [CrossRef]

30. Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.K.; Elbassioni, K.; Tseng, C.M. Autonomous Recharging and Flight Mission
Planning for Battery-Operated Autonomous Drones. IEEE Trans. Autom. Sci. Eng. 2022, 1–13. [CrossRef]

31. Dubé, R.; Gollub, M.G.; Sommer, H.; Gilitschenski, I.; Siegwart, R.; Cadena, C.; Nieto, J. Incremental-Segment-Based Localization
in 3-D Point Clouds. IEEE Robot. Autom. Lett. 2018, 3, 1832–1839. [CrossRef]

32. Han, Q.; Li, T.; Sun, S.; Villarrubia, G.; de la Prieta, F. “1-N” Leader-Follower Formation Control of Multiple Agents Based on
Bearing-Only Observation. In Proceedings of the Advances in Practical Applications of Agents, Multi-Agent Systems, and
Sustainability: The PAAMS Collection, Salamanca, Spain, 3–4 June 2015; Demazeau, Y.; Decker, K.S.; Bajo Pérez, J.; de la Prieta, F.,
Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 120–130.

33. Dimidov, C.; Oriolo, G.; Trianni, V. Random Walks in Swarm Robotics: An Experiment with Kilobots. In Proceedings of the
Swarm Intelligence, Brussels, Belgium, 7–9 September 2016; Dorigo, M.; Birattari, M.; Li, X.; López-Ibáñez, M.; Ohkura, K.;
Pinciroli, C.; Stützle, T., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 185–196.

34. Kegeleirs, M.; Garzón Ramos, D.; Birattari, M. Random Walk Exploration for Swarm Mapping. In Proceedings of the Towards
Autonomous Robotic Systems, London, UK, 3–5 July 2019; Althoefer, K.; Konstantinova, J.; Zhang, K., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 211–222.

35. Rone, W.; Ben-Tzvi, P. Mapping, localization and motion planning in mobile multi-robotic systems. Robotica 2013, 31, 1–23.
[CrossRef]

36. Allen, J.M.; Joyce, R.; Millard, A.G.; Gray, I. The Pi-puck Ecosystem: Hardware and Software Support for the e-puck and e-puck2.
In Proceedings of the Swarm Intelligence, Barcelona, Spain, 26–28 October 2020; Dorigo, M.; Stützle, T.; Blesa, M.J.; Blum, C.;
Hamann, H.; Heinrich, M.K.; Strobel, V., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 243–255.

37. Rosinol, A.; Abate, M.; Chang, Y.; Carlone, L. Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization
and Mapping. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020, pp. 1689–1696. [CrossRef]

38. Dubé, R.; Gawel, A.; Sommer, H.; Nieto, J.; Siegwart, R.; Cadena, C. An online multi-robot SLAM system for 3D LiDARs. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1004–1011. [CrossRef]

39. Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and
mapping for robotic teams. J. Field Robot. 2019, 36, 763–781 [CrossRef]

40. Karrer, M.; Schmuck, P.; Chli, M. CVI-SLAM—Collaborative Visual-Inertial SLAM. IEEE Robot. Autom. Lett. 2018, 3, 2762–2769.
[CrossRef]

41. Chang, Y.; Tian, Y.; How, J.P.; Carlone, L. Kimera-Multi: A System for Distributed Multi-Robot Metric-Semantic Simultaneous
Localization and Mapping. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, 30 May–5 June 2021; pp. 11210–11218. [CrossRef]

42. Choudhary, S.; Carlone, L.; Nieto, C.; Rogers, J.; Christensen, H.I.; Dellaert, F. Distributed mapping with privacy and communica-
tion constraints: Lightweight algorithms and object-based models. Int. J. Robot. Res. 2017, 36, 1286–1311. [CrossRef]

http://dx.doi.org/10.1109/SSCI.2017.8285178
http://dx.doi.org/10.1109/ICRA.2013.6630662
http://dx.doi.org/10.3390/rs13061059
http://dx.doi.org/10.1109/VLSID.2019.00118
http://dx.doi.org/10.3390/drones4030048
http://dx.doi.org/10.1109/ACCESS.2020.3024953
http://dx.doi.org/10.48550/arXiv.1703.10049v1
http://dx.doi.org/10.1109/TASE.2022.3175565
http://dx.doi.org/10.1109/LRA.2018.2803213
http://dx.doi.org/10.1017/S0263574712000021
http://dx.doi.org/10.1109/ICRA40945.2020.9196885
http://dx.doi.org/10.1109/IROS.2017.8202268
http://dx.doi.org/10.1002/rob.21854
http://dx.doi.org/10.1109/LRA.2018.2837226
http://dx.doi.org/10.1109/ICRA48506.2021.9561090
http://dx.doi.org/10.1177/0278364917732640


Sensors 2023, 23, 1025 20 of 20

43. Lajoie, P.Y.; Ramtoula, B.; Chang, Y.; Carlone, L.; Beltrame, G. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for
Robotic Teams. IEEE Robot. Autom. Lett. 2020, 5, 1656–1663. [CrossRef]

44. Yasin, J.N.; Mahboob, H.; Jokinen, S.; Haghbayan, H.; Yasin, M.M.; Plosila, J. Partial Swarm SLAM for Intelligent Navigation.
In Proceedings of the Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation.
The PAAMS Collection, L’Aquila, Italy, 13–15 July 2022; Dignum, F.; Mathieu, P.; Corchado, J.M.; De La Prieta, F., Eds.; Springer
International Publishing: Cham, Switzerland, 2022; pp. 435–446.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LRA.2020.2967681

	Introduction
	Related Work
	Proposed Approach
	Collision Avoidance and Map Building
	Merge Objects and Update Map
	Shortest Path with Obstacle Avoidance

	Simulation Results
	Conclusions and Future Work
	References

