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Abstract: Personal identification based on radar gait measurement is an important application of bio-
metric technology because it enables remote and continuous identification of people, irrespective of
the lighting conditions and subjects’ outfits. This study explores an effective time-velocity distribution
and its relevant parameters for Doppler-radar-based personal gait identification using deep learning.
Most conventional studies on radar-based gait identification used a short-time Fourier transform
(STFT), which is a general method to obtain time-velocity distribution for motion recognition using
Doppler radar. However, the length of the window function that controls the time and velocity reso-
lutions of the time-velocity image was empirically selected, and several other methods for calculating
high-resolution time-velocity distributions were not considered. In this study, we compared four
types of representative time-velocity distributions calculated from the Doppler-radar-received signals:
STFT, wavelet transform, Wigner–Ville distribution, and smoothed pseudo-Wigner–Ville distribution.
In addition, the identification accuracies of various parameter settings were also investigated. We
observed that the optimally tuned STFT outperformed other high-resolution distributions, and a short
length of the window function in the STFT process led to a reasonable accuracy; the best identification
accuracy was 99% for the identification of twenty-five test subjects. These results indicate that STFT is
the optimal time-velocity distribution for gait-based personal identification using the Doppler radar,
although the time and velocity resolutions of the other methods were better than those of the STFT.

Keywords: biometrics; Doppler radar; gait recognition; person identification; deep learning;
time-velocity distribution

1. Introduction

In recent times, biometric technology is extensively used in surveillance and monitor-
ing systems, with the most common application being that of facial recognition via camera
for authentication purposes [1,2]. In addition, smart speakers have had a recent surge in
popularity and are also used for personal identification [3]. However, such techniques
have serious privacy concerns. To overcome these privacy issues, personal identification
techniques using various biometric information, such as fingerprints, irises, veins, brain
waves, and heartbeat characteristics, have been investigated [4,5]. However, the acquisi-
tion of such biometric information often requires physical contact with the user and/or a
complex setup. Therefore, personal identification based on unconstrained daily activities is
an important research topic. In particular, gait-based personal identification has recently
been studied, as walking is a representative daily activity that can be easily measured and
applied for continuous identification [6,7].

The use of cameras herein is primarily for personal identification using gait informa-
tion [8,9]; however, there are privacy issues similar to facial recognition, with their accuracy
depending on the lighting conditions and a subject’s outfit. Methods using depth sensors
have also been studied [10,11]; however, their accuracy depends on the lighting conditions,
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similar to those in the case of cameras. Moreover, measurement of wide areas is relatively
difficult. Another approach is the use of accelerometers, including those used in wearable
devices and smartphones [12,13]. However, in this case, the user is required to carry or
wear sensors.

Doppler radar is a promising prospect for solving the aforementioned problems
with other sensors [14,15]. Doppler radar can remotely measure the time variation in the
velocities during human movements based on frequency transitions caused by the Doppler
effect. During Doppler radar motion measurement, the participants are not required to
wear sensor devices, and there are no restrictions on the participants’ outfits. Gait-based
personal identification using the micro-Doppler radar and applying deep learning to time-
velocity distribution, which was calculated as the short-time Fourier transform (STFT) of
the radar-received signals, has yielded high accuracy [16–23]. It has been reported that the
identification of two persons has an accuracy of 99% [16], and identification of 20 persons
has an accuracy of 97% [17]. Furthermore, several person identification methods have been
recently developed which are suitable for various types of realistic scenarios such as a
multi-person scenario [18], use of a relatively small amount of training data [19,20], and
scenarios which assume people walking in arbitrary directions [21].

However, most conventional studies on Doppler-radar-based personal identification
do not consider the relationships between gait identification accuracy and time-velocity
distributions and their resolutions. For example, there are multiple methods for calculat-
ing the time-velocity distributions other than STFT, such as wavelet transform (WT) [24],
Wigner–Ville distribution (WVD) [25], and smoothed pseudo-WVD (SPWVD) [26]. These
time-frequency analysis techniques have been recently used for various signal classification
problems based on deep learning techniques, such as electrocardiogram techniques [27–29].
Thus, even for the Doppler radar techniques, several researchers have efficiently used
such deep-learning- and time-frequency (time-velocity)-based methods for human motion
classification problems [30–32]. However, methods other than STFT have rarely been ap-
plied to gait-based personal identification using Doppler radars. Although Dong et al. [33]
presented the effects of time-velocity distribution on gait identification, no significant dif-
ferences between the STFT and WVD-based methods were observed because the numbers
of participants and test trials were limited, and their various parameter settings, which
control the time-velocity resolution, were not considered. Thus, an efficient time-velocity
distribution and parameter setting have not been established for Doppler-radar-based
personal gait identification.

In this study, we explore efficient time-velocity distributions for personal gait identifi-
cation using Doppler radar and deep learning by comparing the identification accuracy of
various time-velocity distributions involving STFT, WT, WVD, SPWVD, and their various
parameter settings. The contributions of this study are as follows.

• For gait-based person identification using deep learning and Doppler radar, tuning of
micro-Doppler signatures is considered, and the appropriate settings are revealed.

• A comparison of the person identification accuracies of various time-velocity distri-
butions showing that the conventionally used STFT spectrograms achieved the best
accuracy.

• Twenty-five test subjects were successfully identified with an accuracy of approxi-
mately 99%.

2. Radar Gait Measurement and Person Identification Procedure

Figure 1 outlines the procedure of the Doppler radar experiments and person identifi-
cation. Gait measurements were performed to generate the dataset. We used a monostatic
continuous-wave 24 GHz micro-Doppler radar (ILT Office Inc., Toyama, Japan, BSS-110)
installed at a height of 1.0 m. The −3 dB beamwidth in the V- and H-planes of the antenna
were ±14◦ and ±35◦, respectively. The received demodulated radar signals were obtained
at a sampling frequency of 600 Hz. The study participants comprised 25 healthy adults
(mean age: 22.5 years; 22 men and 3 women) who wore their own shoes (none of the
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participants wore shoes that led to relatively difficult walking). The participants were
instructed to walk toward the radar along a straight walkway at a self-selected comfortable
pace.

Figure 1. Outline of the procedure used in this study.

We collected the received signals corresponding to the participants who walked in
the range of 4–12 m because they performed steady-state walking, and the radar could
measure the entire body in this range. We collected the data for 150 gait cycles for each
participant for several days. The received signal of each gait cycle was used as one dataset
for personal identification, and a total of 150 × 25 = 3750 data points were collected. The
length of each input data point is one gait cycle. We extracted the data corresponding to
each gait cycle from the collected data of steady-state walking using the method presented
in [34]. Therefore, the length of each data point was approximately 1 s, which is referred
to as the general value of the walking cycle of human gait; however, the gait cycle of each
data point was different.

We then generated images of the time-velocity distribution calculated using the re-
ceived signals. The focus of this study is to clarify the type and parameters of the time-
velocity distribution that achieves accurate identification. The details involving the gen-
eration method for various types of time-velocity distributions and their parameters are
explained in Section 3. The identification accuracies for the various types and settings of
the generated time-velocity images are compared in Section 4.

We investigated the identification accuracy of the 25 participants using the generated
time-velocity distribution and deep learning. A convolutional neural network (CNN)
was used as the deep learning method, similar to previous studies on Doppler-radar-
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based personal identification. The time-velocity distributions converted to RGB-colored
PNG images of size 224 × 224 were used as the input data for the CNN. Because we
focused on the exploration of the effective time-velocity distribution, the CNN structure
used in this study was fixed to ResNet-18 [35], which is an effective network for various
conventional radar-based motion and person identification systems [23,36]. The basic
structure of ResNet-18 was used with the same empirically tuned parameter settings as
in our previous study [14]. Global average pooling was performed, and a fully connected
layer was then employed using stochastic gradient descent with momentum optimization.
The loss function was a cross-entropy function. The hyperparameters were optimized
for all experiments for their fair comparison. For example, for the STFT spectrogram, a
mini-batch size of 64. The learning rate was 0.01 and was decreased by multiplying it times
0.7 every 10 epochs. These hyperparameters were empirically optimized.

3. Generation of Various Time-Velocity Distribution Images

This section describes the methods for generating the time-velocity distributions: STFT,
WT, WVD, and SPWVD. The procedures to calculate various time-velocity distributions
and their examples and features are presented herein.

3.1. STFT Spectrogram

This section describes the method for generating the time-velocity distributions. This
subsection presents the most commonly used STFT methods. The STFT of the radar-
received signal s(t) (t: time) is expressed as [25]:

S(t, ωd) =
∫

s(τ)w(τ − t)e−jωdτdτ, (1)

where w(t) is a window function, and this study used a general Hamming window function
with the length of WL (note that we confirmed that the accuracies of the gait identifications
presented in this paper are only slightly changed for other representative window functions
involving Hann and Blackman window functions). The radial velocity vd can be calculated
using the Doppler angular velocity ωd as:

vd =
c

4π f0
ωd, (2)

where f 0 is the transmitting frequency (24 GHz), and c is the speed of light. For micro-
Doppler-radar-based personal identification, the magnitude squared of the STFT, which is
referred to as a spectrogram, is often used. Using Equation (2), the STFT spectrogram of
the received signal |S(t, vd)|2 is calculated, and its images are input to a machine-learning
algorithm, such as a CNN. Figure 2 shows examples of the spectrogram images with the
window length WL of 128 samples for steady-state gaits of three participants. The similar
images for the same participants and different tendencies depending on the participants
could be confirmed.

Although most studies on micro-Doppler-radar-based personal identification have
used STFT spectrogram images, the effects of their resolution, which is determined by
the window length WL, have not been investigated. Figure 3 illustrates examples of
the spectrograms of gait for various WL calculated using the same data with an overlap
length of WL−1. This figure clearly shows that the velocity (frequency) resolution of the
spectrogram improved when a large WL was set. However, a larger WL results in a lower
time resolution. Thus, the expressed information on gait in the spectrogram depends on
WL, and we investigated the relationship between WL and personal identification accuracy.
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Figure 2. Examples of STFT spectrogram images. Each panel corresponds to a different participant
(subfigures (a–c) show the spectrogram images of participants (a), (b), and (c), respectively).

Figure 3. Examples of STFT spectrogram images for various window lengths. WL = (a) 4, (b) 8, (c) 16,
(d) 32, (e) 64, (f) 128, and (g) 256 samples.

3.2. WT Scalogram

WT is another popular time-frequency analysis method owing to its resolution flexi-
bility. The WT of s(t) is expressed as [32]:

WT(a, u) =
∫

s(τ)
1√
a

ψ∗
(

τ − u
a

)
dτ, (3)

where * indicates a complex conjugate, a is the scale factor (corresponding to the velocity),
u is the shift factor, and ψ(t) is the wavelet function. We used a Morse wavelet [37] as the
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wavelet function because it can easily control both the time and frequency resolutions,
which are expressed as follows:

ψ(t) =
1

2π

∫
2(eγ/b)b/γωbe−ωγ

ejωtdω, (4)

where b and γ are the parameters that control the time and frequency resolutions, respec-
tively. For personal identification, we used images having the magnitude squared of the
WT, called a scalogram.

Figure 4 shows examples of the scalograms for various settings of b and γ. In contrast
to the STFT, the time and scale (velocity) resolutions are not fixed in the scalogram and are
controlled by these parameters. We investigated the personal identification accuracy for
various parameter settings and compared the results of the WT scalogram with those of the
STFT spectrogram.

Figure 4. Examples of WT scalogram images. (b, γ) = (a) (8, 3), (b) (16, 3), (c) (32, 3), (d) (8, 8), (e) (16, 8),
and (f) (32, 8).

3.3. WVD

WVD is a high-resolution time-frequency analysis method without a trade-off between
the time and frequency resolutions that exist in the STFT and WT. The WVD of s(t) is
expressed as [25]:

WVD(t, ωd) =
∫

s
(

t +
τ

2

)
s∗
(

t− τ

2

)
e−jωdτdτ. (5)

The WVD can determine the frequency spectrum for each time bin, and the time and
frequency resolutions are equivalent to the physical limitations determined by the sampling
frequency. However, owing to the interference of the multifrequency components, the
WVD includes many cross-terms. Figure 5 shows an example of the WVD of the Doppler-
radar-received signal of the gait. Compared with the STFT spectrograms shown in Figure 3,
the velocity components of the walking motion are not clearly confirmed because of the
many cross-terms. Thus, WVD has not been widely used for Doppler radar-based motion
recognition. However, we can hypothesize that these cross-terms can be considered as the
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features of individuals in the personal identification problem. Thus, we investigated the
accuracy of personal gait identification using WVD images.

Figure 5. An example of WVD image.

3.4. SPWVD

The SPWVD is a smoothed WVD for removing the cross-terms in the WVD; it is
expressed as follows [25,26]:

SPWVD(t, ωd) =
x

Φ
(
t− t′, ωd −ω′d

)
WVD(t, ωd)dt′dω′d, (6)

where Φ(t, ωd) is the smoothing function. In this study, we used the two-dimensional
Gaussian function for Φ(t, ωd), which is expressed as:

Φ(t, ωd) = exp
(
− t2

α2 −
ωd

2

β2

)
(7)

where α and β are the parameters that control the resolution in terms of time and velocity,
respectively.

Figure 6 shows examples of the SPWVDs for various values of α and β. When α
and β are set to smaller values, a high-resolution time-velocity distribution is obtained.
However, several cross-terms remain with extremely small values. In contrast, larger values
of these parameters sufficiently remove the cross-terms, although the resolutions worsen.
As shown in Figure 6, SPWVDs with larger parameters tend to produce results that are
similar to the spectrograms shown in Figure 3. SPWVDs with smaller parameters are
high-resolution time-velocity distributions compared to the STFT and WT with smaller
cross-terms compared to the WVD.

As presented in this section, various time-velocity distributions with different parame-
ter settings generate the input images with different resolutions. In the next section, we
evaluate the personal gait identification accuracy for the aforementioned time-velocity
distribution types and resolution of the input time-velocity images.
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Figure 6. Examples of SPWVD images. (α, β) = (a) (4, 4), (b) (4, 16), (c) (4, 64), (d) (64, 4), (e) (64, 16),
and (f) (64, 64).

4. Evaluation and Discussion
4.1. Evaluation Method

We evaluated and compared the accuracy of the gait identification of the participants
using images of various time-velocity distributions with various parameter settings, as
described in the previous section. We also investigated the identification accuracy according
to the number of participants N; cases with N = 5, 15, and 25 participants were considered.
When we investigated the identification of five or fifteen participants, the participants
were randomly selected from the twenty-five participants. For accuracy evaluation, we
performed a hold-out validation. In each case, the CNN was trained using 70% of the data
(105 data points per participant), and the remaining 30% of the data were used as test data.
Thus, the sizes of training data for N = 5, 15, and 25 were 525, 1575, and 2625 images; those
of test data for N = 5, 15, and 25 were 225, 675, and 1125 images, respectively. The number
of training and test data was the same for all time-velocity distributions. Subsequently,
ten trials of hold-out validations were conducted by varying the training/test data split.
The training and test data were randomly selected from the generated dataset. Notably,
the length of each data point is one gait cycle. The mean and standard deviation of the
classification accuracy across all trials were calculated.

4.2. Results for STFT

Table 1 summarizes the results for the personal gait identification using the STFT
spectrogram images for various window lengths WL and number of participants N. All the
N and WL values of the 32 samples (53.3 ms) achieved the best accuracy of approximately
99%. We achieved accurate gait identification of 99.1% in the identification of 25 participants.
The results revealed that the identification accuracy worsens when either the time or
frequency resolution is relatively low.
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Table 1. Results for STFT spectrogram.

No. of Participants N
Window Length WL 5 15 25

4 samples (6.67 ms) 88.0 ± 2.2% 76.0 ± 2.0% 70.4 ± 1.7%
8 samples (13.3 ms) 94.6 ± 1.8% 93.6 ± 1.1% 93.4 ± 0.7%

16 samples (26.7 ms) 98.4 ± 1.1% 98.2 ± 0.3% 98.8 ± 0.6%
32 samples (53.3 ms) 98.8 ± 0.3% 99.3 ± 0.2% 99.1 ± 0.4%
64 samples (0.107 s) 98.2 ± 0.9% 98.9 ± 0.4% 98.5 ± 0.4%
128 samples (0.213 s) 98.7 ± 0.8% 98.0 ± 0.5% 98.5 ± 0.2%
256 samples (0.427 s) 91.8 ± 1.4% 92.8 ± 1.3% 94.3 ± 0.6%

Figure 7 shows an example of the convergence curves obtained for the results of
N = 25 and WL = 32 samples. As shown in these curves, the accuracy is converged with
small epochs without overfitting. We confirmed the similar tendencies of the conventional
curves for all cases. Thus, there are no requirements for data augmentation for the accurate
personal gait identification based on our experimental data.

Figure 7. Example of convergence curves for STFT with N = 25 and WL = 32 samples.

4.3. Results for WT

We then investigated the accuracy of the WT scalograms that have flexibility in terms
of time and velocity resolution settings. Table 2 lists the results of the WT scalograms for
various b and γ values. For all N values, the identification accuracies for (b, γ) = (8, 32)
achieved the highest accuracy of approximately 98%. Relatively larger values of b and γ
indicate that the resolutions in time and scale are the same. These results indicate that the
identification accuracy is low when the time or scale resolution is high. Figure 8 shows the
results for WT with various parameter settings for N = 25. As shown in this figure, larger
values of b were ineffective compared with the results for b = 16 and 32. Furthermore, larger
γ values slightly deteriorate the identification accuracy for various b values. These results
indicate that there are appropriate resolutions of the WT scalograms for the gait-based
person identification, similar to the STFT spectrograms.
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Table 2. Results for WT Scalogram.

No. of Participants N
b γ 5 15 25

8 3 96.0 ± 1.3% 95.8 ± 0.6% 96.8 ± 0.7%
8 8 96.8 ± 1.1% 96.7 ± 0.9% 97.4 ± 0.7%
16 3 96.7 ± 1.0% 96.9 ± 0.7% 97.4 ± 0.4%
16 8 96.4 ± 0.3% 97.0 ± 0.7% 98.1 ± 0.4%
32 3 97.0 ± 0.9% 97.5 ± 0.8% 97.7 ± 0.4%
32 8 97.9 ± 1.0% 97.8 ± 0.6% 98.1 ± 0.3%

Figure 8. Identification accuracies using WT for various parameters (N = 25).

4.4. Results for WVD and SPWVD

Subsequently, we examined the effectiveness of the higher-resolution time-velocity
distributions of WVD and SPWVD. Table 3 shows the representative results for the WVD
and SPWVD. For all N values, the SPWVD achieved better accuracy than the WVD with
appropriate parameter settings. These results indicate that the suppression of cross-terms
was effective for gait identification, despite the reduction in the time-frequency distribution
resolution due to the smoothing process in the SPWVD. Figure 9 shows the results for
the SPWVD with various parameter settings for N = 25. We observed that there exists an
optimal setting for both α and β. However, the optimal accuracy did not exceed 96%, which
is worse than the results for STFT and WT.

Table 3. Results for WVD and SPWVD.

No. of Participants N
α β 5 15 25

WVD - - 94.2 ± 1.5% 92.0 ± 1.1% 92.9 ± 1.0%

SPWVD

4 4 93.4 ± 1.6% 94.2 ± 1.2% 95.2 ± 0.8%
4 64 95.6 ± 1.0% 95.1 ± 0.9% 95.0 ± 0.6%
64 4 92.7 ± 2.5% 90.7 ± 1.3% 93.1 ± 0.4%
64 64 94.5 ± 1.4% 92.2 ± 0.9% 92.1 ± 0.9%
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Figure 9. Identification accuracies using SPWVD for various parameters (N = 25). Relationships
between accuracy and (a) α, (b) β.

4.5. Overall Comparison and Discussion

The above results include various novel findings for the radar-based personal gait
identification method with respect to the efficient time-velocity distribution images and
their resolutions. Thus, we compared the results obtained using the various time-velocity
distributions to clarify the findings and contributions of this study. Note that this study
dealt with the personal identification based on only the natural human walking, and the
properties of the signals of all participants and data are similar. Therefore, the discussion
based on the time-velocity resolution (e.g., window length of the STFT) is reasonable.

Initially, we compared our results with those described in the previous subsections.
Figure 10 shows the mean and standard deviation of the identification accuracies for the
optimal settings of all methods. Although all methods achieved accurate identification of
over 92%, the STFT method achieved significantly better results for all N. These results indi-
cate that the various time-velocity distributions, which can flexibly control the resolutions
and achieve high resolutions, were effective to a certain extent. However, conventionally
used STFT has been revealed to be a more effective generation method for time-velocity
distribution images for personal gait identification.

Figure 10. Comparison of identification accuracies using various types of time-velocity distributions.

We now discuss the reasons for the results that explain the differences in accuracy
caused by the time-velocity distribution. A comparison of WVD and SPWVD indicated
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that the high-resolution WVD was less accurate than the SPWVD. These results imply that
the rich information included in the cross-terms of the WVD was ineffective for personal
identification. As indicated in the WVD of Figure 5, we can confirm the larger powers of
the background noise caused by several cross-terms compared with the case of the SPWVD
as shown in Figure 6. Such higher background noise might affect the feature extraction.
For the SPWVDs in Figure 6, although the powers of the background noise were larger
for smaller α and β, the components corresponding to the body and legs in the gait were
clearly confirmed compared to that in the case of WVD. Thus, the background noise caused
by the cross-terms of the WVD ineffectively affected gait feature extraction, and SPWVD
achieved better identification accuracy by effectively suppressing the cross-terms.

The ineffectiveness of the cross-terms can be appraised from the comparison between
SPWVD and STFT, and we can confirm from the results that the SPWVD was ineffective
even when the resolution of the time-velocity distribution was similar to that of the STFT
method. These results imply that the cross-terms in the WVD and SPWVD images were
not effectively used for feature extraction of the individuals. Furthermore, the cross-
term suppression effects in SPWVD images are unstable and may lead to deterioration of
identification accuracy.

The comparison between STFT and WT also slightly, but significantly, indicates better
effectiveness of the STFT method despite their similar resolutions (both STFT and WT
have a trade-off between time and velocity resolutions), and the flexibility in the resolu-
tion setting of the WT is better than that of the STFT. These results imply that the STFT
spectrogram includes sufficient and clear information on individual gait features, and its
flexible tuning via WT does not result in additional gait features. One reason why the STFT
can grasp sufficient gait features is that the gait identification based on steady-state gait
was considered in this study; transient state of acceleration and deceleration in walking
is not assumed. Although the WT scalogram is suitable for the acquisition of transient
features based on scaling, this merit might not translate toward the extraction of features
in steady-state walking. It is conjectured that extremely detailed information, which is
ineffective for gait identification based on steady-state walking, was extracted via the WT
scalogram owing to its flexibility in time and velocity resolutions. In fact, the identification
accuracy of the STFT spectrogram with WL of 32 samples was better than that of the WT
scalogram with (b, γ) = (32, 3) despite their similar resolutions. Thus, the STFT spectrogram
is an appropriate method for gait-based person identification using a Doppler radar.

We discuss the factors that influence gait-based personal identification using the
Doppler radar. As shown in Figure 2, it can be seen that participants differ in terms of
received power, trunk velocity, and leg kinetic velocity. While these are all factors that
identify personal gaits, the most important factor would be the leg velocity data. This is
because the WVD cross-terms mask the details of leg kinetic velocity, and the cross-terms
lead to a degradation of identification accuracy according to the comparisons between
WVD and SPWVD.

Furthermore, the trunk movement data are also important to identify personal gait,
even though we can consider that these would not lead to differences in the results for
various time-velocity distributions. Previous research on biomechanics has shown that
trunk velocity and acceleration during walking contain essential information about in-
dividual gait, such as gait changes caused by the differences in physical and cognitive
functions [38,39]. Therefore, trunk motion is essential for individual gait identification.
However, approximately all of our generated time-velocity distribution images clearly
include trunk motion, and this can be considered as the factor that indicates accurate
personal identification to a certain extent for all time-velocity distributions and various
resolution settings. However, this factor on the trunk movement does not lead to large
differences in identification accuracy between the various time-velocity distribution images
because of the clear trunk movement data.

In contrast, received power also reflects information about the location and shape of
the trunk, legs, and arms, and this information includes personal information. However, as
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shown in Figure 2, although the trend of the distribution of received power is the same to
some extent, the details of received power are not highly reproducible in the same person.
Therefore, the factor of received power does not appear to be affected to a greater extent
than trunk and leg movements.

Based on the above discussions, it can be considered that leg movement is an im-
portant factor in radar-based gait identification. In addition, trunk motion appears to
be a factor contributing to the high accuracy of our results, although it does not appear
to be significantly affected by the differences between the various types of time-velocity
distribution images that we are primarily examining in this study.

4.6. Comparison with Other Studies

Our results were compared to those of conventional studies on Doppler-radar-based
gait identification to further clarify the merits and novel findings in this study. Table 4
summarizes the main characteristics of the studies on gait-based personal identification
by applying deep learning to Doppler radar data. The results of this study outperform
various methods in terms of accuracy and shortness of the input data. However, because
the experimental settings, including radar specifications and positions, are different for all
studies, the accuracies listed in Table 4 should be treated as references. Nonetheless, our
study suggests the effectiveness of resolution tuning for the time-velocity distribution in
personal gait identification, as most conventional methods rely on empirically tuned STFT
spectrograms with fixed time and velocity resolutions. That is, this study investigated the
best window length, and the most important finding of this study was that a relatively
shorter window length achieved better identification accuracy. The window length was
significantly shorter than that in all other conventional studies with respect to its ratio to
the length of the input data.

Table 4. Comparison of Different Studies on Doppler-Radar-Based Personal Gait Identification.

Study No. of
Persons

Time-Velocity
Distribution

STFT Window
Length [s]

Length of Each Input
Data Point [s] Accuracy [%]

[17] 20 STFT 0.064
1 84.6
3 96.7

[19] 4 STFT 0.2 1 96.8

[22]
4

STFT 0.13 2
97.1

20 68.9

[23] 15 STFT 0.2 1 94.4

[33] 7
STFT Not provided 4.5 86.4

SPWVD N/A 4.5 85.8

This study 25

WT N/A

Approx. 1 s
(1 gait cycle)

98.1
WVD N/A 92.9

SPWVD N/A 95.2

STFT
0.013 93.4
0.053 99.1
0.43 94.3

The results in [33] indicated similar accuracies for the STFT and SPWVD methods with
respect to the effectiveness of various time-velocity distributions, because their resolution
tunings were not considered. However, we noted that the identification accuracy of the
optimally tuned SPWVD method was lower than that of the STFT method. Similar results
were obtained using the WT and WVD methods. Thus, we demonstrated that an optimally
tuned STFT is the most suitable method. These results implied that although WVD and
SPWVD can identify personal gait with moderate accuracy, the cross-terms included
in these distribution images may deteriorate the identification accuracy compared with
the STFT.
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Based on the novel results obtained from our investigations, the effectiveness of shorter
input data and suitable accuracy for a relatively larger number of people were achieved,
as indicated in Table 4. These findings are also important for practical applications. The
above results include various novel findings for the radar-based personal gait identification
method with respect to the efficient time-velocity distribution images and their resolutions.
Thus, we compared the results obtained using the various time-velocity distributions to
clarify the findings and contributions of this study.

5. Conclusions

To find the effective time-velocity distribution images for Doppler-radar-based per-
sonal gait identification using a CNN, four types of representative time-velocity analysis
methods and their parameter settings were explored: STFT, WT, WVD, and SPWVD. Exper-
imental investigations to identify 25 test subjects determined the appropriate parameters
that controlled the time and velocity resolution for all methods. As a result, the highest
accuracy of 99.1% was achieved with the optimally tuned STFT spectrogram images. The
results revealed that the performance of the STFT method, which is generally used for
radar-based gait identification, was superior to that of WT, WVD, and SPWVD in terms of
high-resolution time-velocity distributions. A significant finding made during this study
was that the high-resolution time-velocity distributions do not necessarily lead to highly
accurate individual identification because of the cross-terms in WVD. We also revealed that
the shorter window function for the STFT is effective for gait identification.

The primary limitation of this study is the small sample size, with 25 participants, 22
of whom are male. Therefore, our dataset may not be sufficient for practical application in
many authentication scenarios. Therefore, future research should involve a larger number
of participants and data, particularly data from female participants. Another significant
limitation is that the study only considered participants walking towards the radar. Future
research should demonstrate that the resolution tuning of the time-velocity distribution
is also effective for gait identification using data from participants walking in arbitrary
directions. Furthermore, the combination of time-velocity distributions generated via
other methods was not considered. The achievement of more accurate identification by
combining various types of time-velocity distributions is a promising direction for the
advancement of biometric technology.
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