
Citation: Martínez-Figueroa, G.d.J.;

Córcoles-López, F.; Bogarra, S.

FPGA-Based Smart Sensor to Detect

Current Transformer Saturation

during Inrush Current Measurement.

Sensors 2023, 23, 744. https://

doi.org/10.3390/s23020744

Academic Editor: Alfio Dario Grasso

Received: 25 November 2022

Revised: 6 January 2023

Accepted: 6 January 2023

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FPGA-Based Smart Sensor to Detect Current Transformer
Saturation during Inrush Current Measurement
G. de J. Martínez-Figueroa, Felipe Córcoles-López and Santiago Bogarra *

Department of Electrical Engineering, ESEIAAT, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
* Correspondence: santiago.bogarra@upc.edu

Abstract: Current transformer saturation affects measurement accuracy and, consequently, protection
reliability. One important concern in the case of overcurrent protections is the discrimination between
faults and inrush current in power transformers. This paper presents an FPGA-based smart sensor to
detect current transformer saturation, especially during inrush current conditions. Several methods
have been proposed in the literature, but some are unsuitable for inrush currents due to their particular
waveform. The proposed algorithm implemented on the smart sensor uses two time-domain features
of the measured secondary current: the second-order difference function and the third-order statistic
central moment. The proposed smart sensor presents high effectiveness and immunity against noise
with accurate results in different conditions: different residual flux, resistive burdens, sampling
frequency, and noise levels. The points at which saturation starts are detected with an accuracy of
approximately 100%. Regarding the end of saturation, the proposed method detects the right ending
points with a maximum error of a sample. The smart sensor has been tested on experimental online
and real-time conditions (including an anti-aliasing filter) with accurate results. Unlike most existing
methods, the proposed smart sensor operates efficiently during inrush conditions. The smart sensor
presents high-speed processing despite its simplicity and low computational cost.
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1. Introduction

Current transformers (CTs) are essential instrumentation elements between power
systems and protective relays or measurement devices. The main purpose of a CT is
to reduce a large primary current to a smaller secondary level suitable for connected
devices. The accurate reproduction of the CT primary current is a relevant concern. When
a CT saturates (due to core nonlinearity), it provides distorted signals that reduce the
measurement accuracy and, consequently, protection reliability [1]. The saturation occurs,
mainly, in two scenarios [2]: (1) when the symmetrical primary current is too large and
(2) when there is a transient current with a significant direct component (DC), as happens
in fault currents or inrush currents due to power transformer energization. One of the main
concerns in the case of overcurrent protections is the discrimination between faults and
inrush currents in power transformers. Thus, the distorted CT secondary current must be
compensated to mitigate the protective relays’ vulnerability to CT saturation and ensure
their operation.

There are several methodologies to recover the primary current from distorted CT
secondary current [3–11]. These methodologies require accurate knowledge of the zones
where the current is distorted. Therefore, detecting the saturation intervals in the measured
current is an essential first step to overcoming the problem. The most classical method for
this purpose is presented in [3], which detects CT saturation by comparing the measured
CT secondary current with the theoretical primary current. The last one is obtained using
the previously estimated CT saturation curve and the CT model. This method may be
inadequate to detect CT saturation in real-time conditions.
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In [12], an algorithm is presented to detect CT saturation based on locating the in-
flection points where saturation begins and ends, by using the third difference of the
current and a preset threshold. The algorithm has also been implemented in a digital signal
processor, with good results in detecting saturation of fault currents, regardless of the CT
core residual flux levels. The methodology presented in [13] is also based on detecting
the abrupt change of the current waveform when saturation occurs, using a combination
between the second-order derivative and zero crossing techniques. The second derivative
technique uses an adaptive threshold obtained by curve fitting using unsaturated samples
from the secondary CT current, improving the results of [12].

Using the shape differences between the distorted and undistorted sections of CT
secondary current, [14] proposes a method to detect CT saturation quickly. First, a sym-
metrical variable-length window is defined for the secondary CT current. The least square
error technique is employed to process the current samples inside this window and to make
the estimation of the current samples before and after the window. CT saturation can be
detected based on the difference between these two estimations.

Other methodologies with similar approaches, based on detecting the abrupt changes
of the saturated current waveform, have been proposed in [15–17]. However, these method-
ologies can lead to false CT saturation detections in inrush current occurrence because of
the abrupt changes at each period due to the power transformer saturation, even without
CT saturation.

Recent algorithms with different approaches have been developed [11,18–21], but
there remains a lack of algorithms designed for inrush conditions.

A hybrid method based on a physical and a data-driven model is proposed in [11]
to detect CT saturation. The essential idea is to use the data-driven model (a Fully Con-
volutional Network) to handle the complex and nonlinear characteristics of the CT and
to adopt a physical model, i.e., a short-circuit current model, to reproduce the true short-
circuit current waveform. Hence, the combination of the data and physical models is
implemented in sequence. This method makes next assumptions: the CT magnetizing
inductance is constant and the residual flux is null. Another artificial neural network (ANN)
based CT saturation detector is presented in [18]. A genetic algorithm scheme is used for
ANN optimization.

In [19], the author proposes a CT saturation detection algorithm for bus-bar differential
protection based on the measurement of the power system source impedance seen at the
relay location. Impedance calculation is based on a first-order differential equation of an
RL model of a transmission line, with three consecutive samples of bus-bar voltage and CT
secondary current.

A Savitzky–Golay filter is used in [20] to detect CT saturation. This filter is a method
of smoothing and differentiating noisy discrete data based on local least square polynomial
approximation. In [21], the authors propose an algorithm that combines the Savitzky–Golay
filter with the Empirical Mode Decomposition technique, which decomposes a signal into
its physically meaningful components.

Other methodologies are based on the frequency spectrum of saturated current [22,23].
These methodologies use time-frequency techniques such as Wavelet transform, and Hilbert-
Huang transform. This approach is not useful with inrush currents due to their high
harmonic content.

This work proposes the design of an FPGA-based smart sensor to detect CT saturation
through the combined use of two simple time-domain features of the measured secondary
current: the second-order difference function and the third-order statistic central moment.
A smart sensor is useful monitoring system with high-performance instrumentation and
online signal processing for true real-time monitoring [24,25]. A smart sensor must include
at least a primary sensor, integrated signal processing capabilities, and communication, but
it can also incorporate data logging, learning, and decision-making [26].

One of the most promising technologies for designing and implementing efficient
smart sensors is the field programmable gate array (FPGA) because of their inherent
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parallelism, high performance, reconfigurability, and low cost [27]. Its parallelism feature
allows several signal processing techniques to be implemented simultaneously on an FPGA.
This is important for achieving a smart sensor with online monitoring and a fast response,
which is mandatory for effective CT saturation detection [28,29]. Common FPGAs integrate
a large number of resources, so implementing, in addition, a primary current reconstruction
technique would be a straightforward task. Additionally, using an FPGA, the smart sensor
can be easily reconfigured to obtain better results if it operates in extreme situations or
conditions not considered during its original design.

Regarding the saturation detection algorithm, using the third central moment of the
secondary current helps the smart sensor to distinguish the abrupt changes in the inrush
current produced by CT saturation from those abrupt changes caused by power transformer
saturation, which the second-order difference function is not capable of doing. Another
disadvantage of derivative-based approaches to detect saturation is that their accuracy
decreases with noisy signals [9], but in the proposed algorithm, this is also sorted out with
the help of the third central moment. The higher-order statistics provide insight into signals,
which is not always available at lower orders [30], such as variance or autocorrelation.
Additionally, Gaussian-distributed signals have the characteristic of disappearing at higher
orders [30,31]. Because so much noise is Gaussian distributed, the third-order central
moment is proper with noisy signals. So, by combining that two time-domain features, a
robust and powerful algorithm is obtained, with immunity against noise and harmonics, in
addition to total independency on the type of CT saturation and type of transient current.

The saturation detection algorithm has been tested offline with simulated signals of
transformer energizations and fault currents contaminated with Gaussian noise. Then, the
smart sensor was physically implemented and tested in online conditions using synthetic
simulated signals with the help of a hardware-in-the-loop (HIL) platform, in order to
verify if it can fulfill the real-time and noise immunity requirements of an industrial relay.
The effectiveness of the smart sensor has also been tested at different sampling rates and
against the use of an anti-aliasing low-pass filter, which can smooth the signal, affecting CT
saturation detection.

2. CT Saturation Detection Algorithm
2.1. CT Model and Saturation

Figure 1 shows a simplified equivalent circuit of a CT, suitable for transient analysis.
It includes the nonlinear magnetizing inductance of the core, the resistance R2, and the
inductance L2. In R2 are included the secondary winding resistance and the burden
resistance, while L2 comprises the secondary leakage inductance and the burden inductance.
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Figure 1. Simplified CT model.

The circuit of Figure 1 is solved by writing Kirchhoff’s voltage law around the sec-
ondary (right) loop, as

u2 − i2R2 − L2
di2
dt

= 0 (1)

where the induced voltage at the magnetizing inductance, u2, is given by

u2 =
dφ
dt

(2)
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and i2 is the current through the secondary winding, which using the nodal rule can be
expressed as a function of the primary current, i1, and the magnetizing current, im, as

i2 =
N1

N2
i1 − im (3)

where N1 and N2 are the primary (commonly equal to 1) and secondary winding
turns, respectively.

The magnetizing behavior of the CT core is represented by the nonlinear inductance,
Lm, which has different values of inductance for different states of operation. It has a high
value under normal conditions (it tends to behave as if it is similar to an open-circuit)
and a low value (it tends to behave as if it is similar to a short-circuit) when the CT is
saturated. The magnetizing current im is related to the flux by the saturation curve, a
nonlinear function that characterizes the nonlinearity of Lm. For the saturation detection
algorithm developed in this section, it is not necessary to know the CT saturation curve in
detail, because the detection is based only on the shape of the measured secondary current.
However, it is necessary to know the information about the core flux and its behavior.

Substituting Equation (2) in Equation (1) and neglecting L2 because under application
of modern numerical relays the burden can be considered fully resistive [9], the magnetic
flux in the core is given by

φ = R2

∫
i2dt +φR (4)

where φR is the residual flux in the CT core. Equation (4) shows that the flux is proportional
to the integration of the measured secondary current.

As stated in the previous section, there are two types of CT saturation: symmetrical
and asymmetrical. The first one happens when the primary current is too large, so the
secondary current is chopped (dropped abruptly to zero) during saturation intervals twice
every cycle (once during the positive half cycle and once during the negative half cycle).
The main interest in this paper is asymmetrical saturation, which happens when the applied
primary current has high levels of DC offset, as is the case of the inrush currents in power
transformers. With this type of CT saturation, the secondary current is saturated only once
at each cycle and every during the same half cycle (always positive or negative). Figure 2
shows typical waveforms of these two types of saturation and different types of currents.
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It is important to highlight that even though the asymmetrical saturation is caused
mainly by the DC offset, the magnitude current and other factors influence it. The time it
takes for the CT to saturate, the duration of the saturation intervals, and the shape of the
secondary current at the saturation intervals also depend on the impedance and type of
connected burden, on the CT residual flux, and the X/R ratio of the analyzed system.

If there is residual flux with the opposite polarity of the current, more time is required
for the CT to achieve saturation, while less time is required if they have the same polarity.
The current magnitude also proportionally influences the time it takes for the CT to saturate:
greater magnitude implies less time. The amount of time the CT is saturated is less at each
cycle as the DC component decays, which is ruled by the X/R ratio of the power system in
the case of a fault current, or by the transformer in the case of an inrush current. The inrush
current magnitude is usually lower than fault current magnitude; however, its decaying
time constant is larger.

Finally, the shape of the current during saturation intervals depends mainly on the
burden. If it is purely resistive, the saturated current will drop abruptly to zero, but if the
burden is also inductive, the saturated current has a slower decay. The development of
saturation detection algorithms is essential because not all saturated waveforms are as
evident as those shown in Figure 2, which have sharp edges and largely missed intervals.
With low levels of saturation, detection is more complicated.

2.2. Time-Domain Features

The proposed smart sensor is based on the second-order difference function to detect
abrupt current changes and, therefore, when the saturation starts at each cycle.

The second-order difference of the current i2 at the n instant, can be obtained as

di2(n) = i2(n)− 2i2(n − 1) + i2(n − 2) (5)

as a function of the n current sample and the last two previous samples.
As seen in Figure 3, the second-order difference function has peaks every time the

measured current has a steep change, so the CT saturation can be detected. However,
the regular changes in inrush current due to power transformer saturation also can be
incorrectly detected as CT saturation inceptions. Moreover, it also presents lower peaks as
a consequence of noise. Then, to improve the use of this function, the combined use of the
third-order statistic central moment is suggested, which is one of the higher-order statistics.
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A central moment is a statistic moment of a probability distribution of a random
variable or discrete-time series about its mean; that is, it is the expected value of a specified
integer power of the deviation of the random variable from the mean [30]. A higher-order
moment relates to the spread and shape of the distribution.
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The third central moment, m3, of a time-discrete series x(k) is defined as [30]

m3 =
1
N

N

∑
k=1

(x(k)− x)3 (6)

where N is the number of samples and x is the time-series mean. This definition does
not take into account the normalization around the standard deviation. This paper uses a
sliding window along the measured current to obtain a moving version of the third central
moment. If the window has a length of L samples, the moving third moment can be
calculated as

mi2,3(n) = m3[i2(n), i2(n − 1), . . . , i2(n − L + 1)] (7)

where it is considered an overlap of L − 1 samples between each adjacent window. Figure 4
shows an example of the moving third moment for an inrush current.
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2.3. Start of Saturation

In order to detect a CT saturation inception due to a transient primary current, the
following algorithm has to be accomplished:

1. Set an initial threshold value, TH, equal to 0.05 pu;
2. Set a third-moment threshold value, m3TH, equal to 0.003 pu;
3. Calculate in real time the two time-domain features (di2 and mi2,3), with Equations

(5) and (7), for the secondary CT current. To calculate mi2,3, it must be considered an
overlap L equal to 10 samples;

4. Detect maximum or minimum local peaks in mi2,3 and compare them with the thresh-
old value TH. If the absolute peak value is greater than the absolute value of existing
TH, the latter will be updated with the peak value;

5. To detect the first CT saturation inception at n instant, it must be fulfilled that:

• If TH is positive, di2(n) must be negative with an absolute value greater than the
threshold value;

• If TH is negative, di2(n) must be positive and greater than the absolute thresh-
old value;

6. The TH value is updated with the third part of di2(n) value, corresponding to the first
CT saturation;

7. The subsequent CT saturation inceptions are detected if:

• If TH is positive, di2(n) must be positive and greater than the threshold. In
addition, mi2,3(n) or mi2,3(n − 1) must be different from zero and with an absolute
value greater than m3TH;
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• If TH is negative, di2(n) must be negative and lower than the threshold value.
Furthermore, mi2,3(n) or mi2,3(n − 1) must be different from zero and with an
absolute value greater than m3TH.

Figure 5 shows the flowchart that summarizes this CT saturation detection algorithm.
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the n time using the trapezoidal rule as 
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 φ = φ − + − −    (8) 

Figure 5. Flowchart of the CT saturation detection algorithm. (TH: threshold value, m3TH: third
moment threshold value, i2: secondary CT current, mi2,3: moving third-order central moment,
di2: second-order difference function, n: sample number).

2.4. End of Saturation

It can be assumed that at the saturation instant, the CT core flux is the same as when
the saturation ends. According to Equation (4), the CT flux is proportional to the integration
of the secondary CT current. It is necessary to know the residual flux φR and R2 values to
obtain the CT flux. Because φR only displaces the flux about the vertical axis and R2 scales
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the flux waveform, a pseudo-flux proportion to the actual flux can be obtained at the n time
using the trapezoidal rule as

φ̃(n) = φ̃(n − 1) +
i2(n) + i2(n − 1)

2
[t(n)− t(n − 1)] (8)

Therefore, the end of the saturation interval can be determined when the instantaneous
pseudoflux magnitude falls below the magnitude corresponding to the saturation instant.

3. Smart Sensor

The block diagram of the general architecture of the proposed smart sensor is shown
in Figure 6 The smart sensor is divided into three main stages: a primary sensor, a data
acquisition system (DAS), and an FPGA-based processor.
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The primary sensor stage consists of a current sensor (as a Hall Effect clamp meter)
connected to the secondary CT side. As explained in the Section 1, the smart sensor has
not been tested on fully real conditions, so the primary sensor has not been included on
the prototype. The CT saturation detection algorithm has been tested using Simulink
computer simulations, and the smart sensor prototype (FPGA-based processor) has been
implemented in a dSPACE MicroLabBox platform (which incorporates a Xilinx FPGA) and
tested with the help of a HIL (Typhoon platform), which provides in real time the measured
CT secondary current signal.

The MicroLabBox incorporates analog to digital converters with a 16-bit resolution, a
sampling frequency of 1 million samples per second (sps), and an input range from −10 V
to +10 V. In this paper, the measured signal has been resampled internally in the DSPACE to
reduce the sampling frequency to 4000 sps, which is in the range of the common sampling
frequencies in digital relaying systems. The signal conditioning previous to the conversion
includes a fully-differential isolation amplifier to obtain electrical isolation and a low-pass
anti-aliasing filter, allowing the correct harmonic analysis.

The FPGA-based processor is the smart sensor’s final stage, responsible for the CT
saturation detection, performed by the two time-domain features processing cores, an
integrator core, and a decision stage. All these cores are described in detail in the following
subsections. This processor delivers the saturation indicator signal, which can be sent
to another device so that an optional communication interface can also be implemented
in the FPGA. The FPGA-based processor also includes the necessary drivers for proper
communication with the DAS and the finite state machine (FSM), which is necessary to
handle the operation of all the processing cores.
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FPGA-Based Processor

The FPGA-based processor consists of two main stages. The first stage contains the
two time-domain features processing cores and the integrator core, and the second stage
decides whether there is saturation.

These processing cores are fully implemented on a single FPGA (Xilinx Kintex-
7 XC7K325T), and the authors fully developed them under Very high speed integrated
circuit Hardware Description Language (VHDL) and the standard libraries from IEEE.
Commercially available processing cores and libraries have not been used.

Figure 7 shows the block diagram of the general architecture of the processing core
for the second-order difference function, according to Equation (5). There are three input
signals, x(n), STR, and SR, and two output signals, D2, and END. x(n) is the secondary
CT current to be processed, a signal of 18-bit in a 2.16 fixed-point format. STR is a 1-bit
indicator signal to start the calculation, and SR is a 1-bit signal to indicate to the processing
core that a new x(n) sample is available to be read. D2 is the result of the processing core,
an 18-bit signal with the same format as x(n). Finally, END is a 1-bit signal that indicates
that a calculation has been finished and a new result is available to be read.
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The processing core uses two parallel registers (Register 1 and Register 2) connected in
cascade to store the last two input samples, x(n − 1) and x(n − 2). Each time a new sample
is available at the input x(n), the two registers are enabled, so the last sample is stored, and
the antepenultimate sample is discarded. There is another register to control the flow of
the output result. The core also includes an FSM to control the enabling of registers and
therefore the data flow. This FSM also handles the indicator signals (STR, SR, and END).

Figure 8 depicts the general architecture of the second processing core for computing
the moving third-order central moment according to Equations (6) and (7). This processing
core has the same inputs and outputs as the previous processing core, plus a new 4-bit
signal L, which indicates the length of the sliding window to the core. Again, L − 1 parallel
registers connected in cascade to store the L − 1 last input samples. The input x(n) and
the registers’ outputs, are connected through a multiplexor to a mean block. With the
help of the multiplexor and a counter, the flow of current and past input samples can be
controlled by the FSM. It is important to note that according to Equation (6), the mean
of L input samples has to be subtracted from each sample, so the L samples must remain
available until the mean calculation is finished. This is possible with the presented core
design because the used FPGA has a base operating frequency (100 MHz) much larger than
the sampling frequency. With two multipliers, the third power in Equation (6) is performed
to finally obtain the mean again. The FSM handles all the indicator signals and the internal
control signals for the mean blocks, registers, multiplexor, and counter.
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Figure 8. Architecture of the processing core for computing the moving third-order central moment.

The mean structure, whose basic architecture is shown in Figure 9, is based on a
digital structure known as accumulator. An accumulator is composed of an adder and
two parallel registers. Both register inputs are connected to the adder output, whereas one
register output is connected in feedback to one of the adder inputs. The function of this
structure is to compute successive sums using only one adder. After the accumulator, a
divider structure is used to divide the sum of all samples of the input signal x(n) between
the number of samples L, obtaining the mean (18-bit MEAN signal). There is no division
operator in the IEEE standard VHDL libraries, so it is necessary to design a digital structure
for this purpose. The divider is based on a successive approximations register (SAR). This
divider computes the division using a successive approximations approach. The SAR
successively approximates the quotient value, comparing the quotient and divisor product,
with the dividend until the product value is equal or very close to the dividend value.
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Figure 10 shows the architecture of the last processing core for computing the integral
of the secondary CT current, according to the trapezoidal rule. With a register at the input
x(n), the processing core stores the previous sample, which is added to the current sample
and then multiplied by a factor of 0.000125, which corresponds to half of the sampling
period, (t(n) − t(n − 1))/2. Finally, successive sums are computed with an accumulator to
obtain the cumulative integral at any time.
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Finally, the decision stage is compounded by a simple peak detector and if-else de-
cisions. Figure 11 shows the basic architecture of the peak detector, which is based on a
comparator block.
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Figure 11. Architecture of the peak detector.

Table 1 summarizes the resources usage of the FPGA and the processing time of each
core in clock cycles, depending on the number of samples to be processed at each time
(L) and the word length of the samples (i.e., e and f, which are the integer and fractional
parts of each sample, respectively). For a period clock of 10 ns and a sampling frequency
of 4000 sps, it is clear that the FPGA-based processor is fast enough to accomplish the
real-time requirement.

Table 1. Usage of FPGA resources.

Processing Core Logic Elements Registers 9-Bit Multipliers Memory Bits Clock Cycles

Second-order
difference 480 56 2 0 2

Third central
moment 1900 430 8 0 2L + 2(e + f ) + 1

Integral 494 74 2 0 2
Decision stage 254 80 0 0 3
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4. Validation and Results

The proposed algorithm to detect CT saturation has been validated by simulations
using MATLAB (algorithm implementation) and Simulink (CT model). It has been tested
with fault short-circuit currents on a 120 kV network. The CT is rated 2000 A/5 A, 5 VA. The
primary winding, which consists of a single turn passing through the CT core is connected
in series with a shunt inductor rated 69.3 Mvar, 69.3 kV (120 kV/sqrt(3)), 1 kA rms. The
secondary winding consisting of 400 turns is connected to a resistive burden. In the case of
inrush currents, the algorithm has been tested using a 150 MVA transformer with a rated
voltage of 289 kV.

Figure 12 shows the results during inrush current measurement with different levels
of resistance burden (0.8 Ω, 1 Ω, 1.5 Ω, and 3 Ω), inside the typical range of digital relays
resistance. As explained before, more burden impedance implies a larger CT core flux,
so the saturation is more severe with more resistance burden. In all cases, the algorithm
detects with 100% efficiency the saturation without false positive detections. The saturation
inception, in all cases, is detected just when the first sample of the measured secondary
current does not coincide with that of the ideal secondary current without saturation.
Regarding the end of saturation, the proposal fails at most one sampling period (0.25 ms),
detecting in some cases the end of saturation a period after the event, but never before. This
occurs with more frequency when the burden resistance is smaller. Figure 13 shows the
results for fault currents with the same cases of resistance burden. The results are similar to
the inrush currents, detecting even the light CT saturation on the last cycles.
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Finally, the smart sensor has been tested in real-time conditions. As explained, a 
hardware-in-the-loop platform (Typhoon HIL) has been used to emulate a power trans-
former energization (100 MVA, 289 kV), and the measurement with a 2000:5 CT (with a 
different saturation curve than the one used in the simulations), and the signals are sent 
to the smart sensor implemented in an FPGA in a MicroLabBox dSPACE. Figure 16 shows 
the experimental setup for these tests. 

In Figure 17, the results for the measurement of two inrush currents with different 
polarity are shown. The saturation inceptions have been correctly detected with 100% ef-
ficiency. Regarding the end of saturation, the proposal fails at most one sampling period, 
detecting in some cases the end of saturation a period after the event. 

It has also been tested the influence of the sampling frequency (Figure 18). It has been 
found that higher sampling frequencies lead to a more accurate end-of-saturation detec-
tion. With sampling frequencies smaller than 4000 sps, the algorithm does not ensure good 
results because the threshold levels and sliding window length established in the Section 
2 have to be changed. This is because at different sampling frequencies, the magnitudes 
of the two used time-domain features change, even for the same signal, as seen in Figure 
18. 

Figure 12. Performance of proposed algorithm on inrush currents for different resistive CT burdens:
(a) 0.8 Ω, (b) 1 Ω, (c) 1.5 Ω, (d) 3 Ω.
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Figure 13. Performance of proposed algorithm on fault currents for different resistive CT burdens:
(a) 0.8 Ω, (b) 1 Ω, (c) 1.5 Ω, (d) 3 Ω.

Figure 14 shows the results against inrush currents and fault currents measurement
with different levels of Gaussian noise (signal-to-noise ratio of 35 dB and 50 dB) and a
burden resistance of 1.5 Ω. It has been found that the algorithm ensures good results
starting from a signal-to-noise ratio of 35 dB, which validates the immunity against noise
of the algorithm. Figure 15 presents the results during inrush current measurement with
different levels of CT residual flux (0.2 and 0.75 pu). More residual flux implies an earlier
saturation, but not more severe saturation so the results are very similar in both cases
without notable differences.

Finally, the smart sensor has been tested in real-time conditions. As explained, a
hardware-in-the-loop platform (Typhoon HIL) has been used to emulate a power trans-
former energization (100 MVA, 289 kV), and the measurement with a 2000:5 CT (with a
different saturation curve than the one used in the simulations), and the signals are sent to
the smart sensor implemented in an FPGA in a MicroLabBox dSPACE. Figure 16 shows the
experimental setup for these tests.

In Figure 17, the results for the measurement of two inrush currents with different
polarity are shown. The saturation inceptions have been correctly detected with 100%
efficiency. Regarding the end of saturation, the proposal fails at most one sampling period,
detecting in some cases the end of saturation a period after the event.

It has also been tested the influence of the sampling frequency (Figure 18). It has been
found that higher sampling frequencies lead to a more accurate end-of-saturation detection.
With sampling frequencies smaller than 4000 sps, the algorithm does not ensure good
results because the threshold levels and sliding window length established in the Section 2
have to be changed. This is because at different sampling frequencies, the magnitudes of
the two used time-domain features change, even for the same signal, as seen in Figure 18.
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5. Conclusions

In this paper, a new methodology and its implementation into an FPGA-based smart
sensor to detect the CT saturation mainly during inrush conditions is presented. The
methodology and the smart sensor are tested and validated by changing next features for
both simulation and real time scenarios: the burden resistance, the signal-to-noise ratio,
the CT residual flux, and sampling frequency. Good results have been achieved in all
cases, mainly to detect the initiation of CT saturation. Regarding the end of saturation
detection, the methodology can be improved if the secondary winding inductance and
the burden impedance are considered, in order to calculate an accurate core flux, instead
of the pseudoflux used in this paper. For this, it would be necessary to consider that the
FPGA-based processor should be reconfigured for each power system.

Attention must be paid to choosing the correct values for the thresholds and the length
of the sliding window in calculating the moving third central moment, depending on the
sampling frequency used.

Unlike most published CT saturation methodologies, the proposed algorithm shows
effective results during inrush current measurement.

It has also been demonstrated the potential of an autonomous FPGA-based smart
sensor with the integrated capability of signal processing and decision-making. The
processing cores use very low FPGA resources, showing that this technology is well
suited for designing and developing high-performance signal processing methods for
smart sensors. One of the main advantages of this smart sensor is its simplicity and low
computational cost with high-speed processing. It can also quickly adapt to operate online
with any relay or measurement system.



Sensors 2023, 23, 744 16 of 17

Author Contributions: Conceptualization, G.d.J.M.-F., F.C.-L. and S.B.; methodology, G.d.J.M.-F.;
software, G.d.J.M.-F.; validation, G.d.J.M.-F.; formal analysis, G.d.J.M.-F.; investigation, G.d.J.M.-F.,
F.C.-L. and S.B.; resources, F.C.-L. and S.B.; data curation, G.d.J.M.-F., F.C.-L. and S.B.; writing—
original draft preparation, G.d.J.M.-F.; writing—review and editing, F.C.-L. and S.B.; visualization,
F.C.-L. and S.B.; supervision, F.C.-L. and S.B.; project administration, F.C.-L. and S.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was partially supported by the Mexican Council of Science and
Technology (CONACyT) by the scholarship 739523.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Powell, L.J. Current Transformer Burden and Saturation. IEEE Trans. Ind. Appl. 1979, IA-15, 294–303. [CrossRef]
2. Hargrave, A.; Thompson, M.J.; Heilman, B. Beyond the knee point: A practical guide to CT saturation. In Proceedings of the 71st

Annual Conference for Protective Relay Engineers (CPRE), College Station, TX, USA, 26–29 March 2018. [CrossRef]
3. Kang, Y.C.; Park, J.K.; Kang, S.H.; Johns, A.T.; Aggarwal, R.K. An algorithm for compensating secondary currents of current

transformers. IEEE Trans. Power Deliv. 1997, 12, 116–124. [CrossRef]
4. Khorashadi-Zadeh, H.; Sanaye-Pasand, M. Correction of saturated current transformers secondary current using ANNs. IEEE

Trans. Power Deliv. 2006, 21, 73–79. [CrossRef]
5. Wiszniewski, A.; Rebizant, W.; Schiel, L. Correction of Current Transformer Transient Performance. IEEE Trans. Power Deliv. 2008,

23, 624–632. [CrossRef]
6. Lu, Z.; Smith, J.S.; Wu, Q.H. Morphological Lifting Scheme for Current Transformer Saturation Detection and Compensation.

IEEE Trans. Circuits Syst. I: Regul. Pap. 2008, 55, 3349–3357. [CrossRef]
7. Ajaei, F.B.; Sanaye-Pasand, M.; Davarpanah, M.; Rezaei-Zare, A.; Iravani, R. Compensation of the Current-Transformer Saturation

Effects for Digital Relays. IEEE Trans. Power Deliv. 2011, 26, 2531–2540. [CrossRef]
8. Hooshyar, A.; Sanaye-Pasand, M. Accurate Measurement of Fault Currents Contaminated with Decaying DC Offset and CT

Saturation. IEEE Trans. Power Deliv. 2012, 27, 773–783. [CrossRef]
9. Hajipour, E.; Vakilian, M.; Sanaye-Pasand, M. Current-Transformer Saturation Compensation for Transformer Differential Relays.

IEEE Trans. Power Deliv. 2015, 30, 2293–2302. [CrossRef]
10. Odinaev, I.; Gulakhmadov, A.; Murzin, P.; Tavlintsev, A.; Semenenko, S.; Kokorin, E.; Safaraliev, M.; Chen, X. Comparison of

Mathematical Methods for Compensating a Current Signal under Current Transformers Saturation Conditions. Sensors 2021,
21, 7273. [CrossRef]

11. Yang, S.; Zhang, Y.; Hao, Z.; Lin, Z.; Zhang, B. CT Saturation Detection and Compensation: A Hybrid Physical Model- and
Data-Driven Method. IEEE Trans. Power Deliv. 2022, 37, 3928–3938. [CrossRef]

12. Yong-Cheol, K.; Seung-Hun, O.; Sang-Hee, K. A CT saturation detection algorithm. IEEE Trans. Power Deliv. 2004, 19, 78–85.
[CrossRef]

13. Dashti, H.; Sanaye-Pasand, M.; Davarpanah, M. Fast and Reliable CT Saturation Detection Using a Combined Method. IEEE
Trans. Power Deliv. 2009, 24, 1037–1044. [CrossRef]

14. Hooshyar, A.; Sanaye-Pasand, M. CT Saturation Detection Based on Waveform Analysis Using a Variable-Length Window. IEEE
Trans. Power Deliv. 2011, 26, 2040–2050. [CrossRef]

15. Hooshyar, A.; Sanaye-Pasand, M.; Davarpanah, M. Development of a new derivative-based algorithm to detect current trans-
former saturation. IET Gener. Transm. Distrib. 2012, 6, 207–217. [CrossRef]

16. Hooshyar, A.; Sanaye-Pasand, M.; El-Saadany, E.F. CT Saturation Detection Based on Waveshape Properties of Current Difference
Functions. IEEE Trans. Power Deliv. 2013, 28, 2254–2263. [CrossRef]

17. Dos Santos, E.M.; Cardoso, G.; Farias, P.E.; de Morais, A.P. CT Saturation Detection Based on the Distance Between Consecutive
Points in the Plans Formed by the Secondary Current Samples and Their Difference-Functions. IEEE Trans. Power Deliv. 2013,
28, 29–37. [CrossRef]

18. Rebizant, W.; Bejmert, D. Current transformer saturation detection with genetically optimized neural networks. In Proceedings of
the 2005 IEEE Russia Power Tech, St. Petersburg, Russia, 27–30 June 2005; pp. 1–6. [CrossRef]

19. Fernandez, C. An impedance-based CT saturation detection algorithm for busbar differential protection. IEEE Trans. Power Deliv.
2001, 16, 468–472. [CrossRef]

20. Schettino, B.M.; Duque, C.A.; Silveira, P.M. Current-Transformer Saturation Detection Using Savitzky-Golay Filter. IEEE Trans.
Power Deliv. 2016, 31, 1400–1401. [CrossRef]

http://doi.org/10.1109/TIA.1979.4503656
http://doi.org/10.1109/CPRE.2018.8349779
http://doi.org/10.1109/61.568231
http://doi.org/10.1109/TPWRD.2005.858799
http://doi.org/10.1109/TPWRD.2008.915832
http://doi.org/10.1109/TCSI.2008.924112
http://doi.org/10.1109/TPWRD.2011.2161622
http://doi.org/10.1109/TPWRD.2011.2176965
http://doi.org/10.1109/TPWRD.2015.2411736
http://doi.org/10.3390/s21217273
http://doi.org/10.1109/TPWRD.2022.3141550
http://doi.org/10.1109/TPWRD.2003.820200
http://doi.org/10.1109/TPWRD.2009.2022666
http://doi.org/10.1109/TPWRD.2011.2142404
http://doi.org/10.1049/iet-gtd.2011.0476
http://doi.org/10.1109/TPWRD.2013.2266799
http://doi.org/10.1109/TPWRD.2012.2220382
http://doi.org/10.1109/PTC.2005.4524417
http://doi.org/10.1109/61.956722
http://doi.org/10.1109/TPWRD.2016.2521327


Sensors 2023, 23, 744 17 of 17

21. Biswal, S.; Biswal, M. Detection of current transformer saturation phenomenon for secured operation of smart power network.
Electr. Power Syst. Res. 2019, 175, 105926. [CrossRef]

22. Medeiros, R.P.; Costa, F.B. A Wavelet-Based Transformer Differential Protection with Differential Current Transformer Saturation
and Cross-Country Fault Detection. IEEE Trans. Power Deliv. 2018, 33, 789–799. [CrossRef]

23. Biswal, S.; Quadri, I.A.; Singh, D.; Prasad, S. A Time-Frequency Algorithm for CT Saturation Detection in the Presence of Noise.
In Proceedings of the 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, 19–21 May 2021. [CrossRef]

24. Mekid, S. Further Structural Intelligence for Sensors Cluster Technology in Manufacturing. Sensors 2006, 6, 557–577. [CrossRef]
25. Brida, P.; Krejcar, O.; Selamat, A.; Kertesz, A. Smart Sensor Technologies for IoT. Sensors 2021, 21, 5890. [CrossRef] [PubMed]
26. Rivera, J.; Herrera, G.; Chacón, M.; Acosta, P.; Carrillo, M. Improved Progressive Polynomial Algorithm for Self-Adjustment and

Optimal Response in Intelligent Sensors. Sensors 2008, 8, 7410–7427. [CrossRef] [PubMed]
27. Huerta-Rosales, J.R.; Granados-Lieberman, D.; Garcia-Perez, A.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P.; Valtierra-

Rodriguez, M. Short-Circuited Turn Fault Diagnosis in Transformers by Using Vibration Signals, Statistical Time Features, and
Support Vector Machines on FPGA. Sensors 2021, 21, 3598. [CrossRef] [PubMed]

28. Monmasson, E.; Idkhajine, L.; Cirstea, M.N.; Bahri, I.; Tisan, A.; Naouar, M.W. FPGAs in Industrial Control Applications. IEEE
Trans. Industr. Inform. 2011, 7, 224–243. [CrossRef]

29. De la Piedra, A.; Braeken, A.; Touhafi, A. Sensor Systems Based on FPGAs and Their Applications: A Survey. Sensors 2012,
12, 12235–12264. [CrossRef]

30. Mendel, J.M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some
applications. Proc. IEEE 1991, 79, 278–305. [CrossRef]

31. Nikias, C.L.; Petropulu, A.P. Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework; Prentice Hall: Englewood
Cliffs, NJ, USA, 1993.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.epsr.2019.105926
http://doi.org/10.1109/TPWRD.2017.2764062
http://doi.org/10.1109/ETI4.051663.2021.9619436
http://doi.org/10.3390/s6060557
http://doi.org/10.3390/s21175890
http://www.ncbi.nlm.nih.gov/pubmed/34502784
http://doi.org/10.3390/s8117410
http://www.ncbi.nlm.nih.gov/pubmed/27873936
http://doi.org/10.3390/s21113598
http://www.ncbi.nlm.nih.gov/pubmed/34064191
http://doi.org/10.1109/TII.2011.2123908
http://doi.org/10.3390/s120912235
http://doi.org/10.1109/5.75086

	Introduction 
	CT Saturation Detection Algorithm 
	CT Model and Saturation 
	Time-Domain Features 
	Start of Saturation 
	End of Saturation 

	Smart Sensor 
	Validation and Results 
	Conclusions 
	References

