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Abstract: The study of the human microbiome is a multidisciplinary area ranging from the field
of technology to that of personalized medicine. The possibility of using microbiota biomarkers to
improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or
relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical
chemistry. The well-known advantages of electrochemical biosensors—high sensitivity, fast response,
and the possibility of miniaturization, together with the potential for new nanomaterials to improve
their design and performance—position them as unique tools to provide a better understanding of
the entities of the human microbiome and raise the prospect of huge and important developments in
the coming years. This review article compiles recent applications of electrochemical (bio)sensors
for monitoring microbial metabolites and disease biomarkers related to different types of human
microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical
devices applied to real samples are critically discussed, as well as challenges to be faced and where
future developments are expected to go.
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1. Introduction

In recent decades, research in the field of the microbiome has evolved rapidly, it
currently being a topic of great interest at both the scientific and social levels [1]. The hu-
man microbiome has been defined as “an ecological community of commensal, symbiotic
and pathogenic microorganisms that literally share our body space and have been all but
ignored as determinants of health and disease” [2]. For instance, extensive investigations
on the gut microbiome have demonstrated the association of numerous diseases and condi-
tions (gastrointestinal or otherwise) with altered levels of intestinal microbes and related
biomarkers. The results of these studies are considered an essential tool of personalized
medicine, offering interesting solutions to a variety of autoimmune and metabolic illnesses
and improving diagnostic and treatment strategies [3]. In a very recent review article,
Aggarwal et al. [4] describe the current understanding of the relationship between the
microbiome and disease as well as the therapeutic effects of microbiome modulation on the
host. Microbial cells are mostly located in the gut (around 60%), with a prominent role in
the microbiome gut–brain axis and the gastrointestinal tract, and to a lesser extent in the
oral and nasal cavities, skin, and genital surfaces (Figure 1). Alterations in the microbiome
are related to various diseases, including autoimmune and degenerative processes, as
well as clinical situations and conditions. Some examples are colorectal cancer (CRC),
celiac disease, cirrhosis, inflammatory bowel disease (IBD), anxiety and depression, obesity,
allergies, and ageing.
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Figure 1. Selected gastrointestinal, oral, and nasal microbiome biomarkers and related diseases. Fig-
ure prepared by the authors. 

A thorough understanding of the human microbiome requires identifying and mon-
itoring of small molecules and proteins produced by microorganisms and surrounding 
the microbiome environment that are responsible for catalytic functions and metabolic 
activity. These biomolecules govern interactions with host cells and are closely related to 
different diseases. The microbial composition is characterized by genomic and tran-
scriptomic sequencing, while metabolomics and other “omics” identify protein pools that 
can be subsequently detected and quantified using (bio)sensing tools. For example, the 
intestinal microbiome of insulin-resistant individuals is known to have a high capacity for 
the synthesis of branched-chain amino acids that are detected at high concentrations in 
the serum of patients [5]. Obviously, the difficulty for the diagnosis lies in obtaining the 
necessary “omic” information on the species to be determined, and to have both sensitive 
and accurate analytical methods, as well as adequate samples. With this in mind, research 
can be limited to simply determining the presence or the absence of specific species within 
or outside the microbiome locus, or to establishing the relationship of the various species 
to each other or to the host cells. 

In the overall effort for a better understanding of the human microbiome, sensors 
and biosensors play an important role, since their use can help the collection of a large 
number and complex variety of microbiome data for the assessment of the presence and 
evolution of a specific disease. However, due to the wide variety of diseases associated 
with microbial activity and diversity, and the effect of other active biomolecules not nec-
essarily derived from microorganisms, (bio)sensing tools with the best analytical charac-
teristics of sensitivity, selectivity, reproducibility, accuracy and multiplexing ability are 
needed. Indeed, related to multiplexing, better diagnosis requires multiple detection with 
complex clinical samples and with the ability to seek differences in the composition of a 
given location in the presence or absence of the disease. 

The possibility of using microbiota biomarkers to advance disease monitoring has 
raised great expectations, also in the field of bioelectroanalytical chemistry, which has 
demonstrated the ability to develop point-of-care (PoCs) detection tools for a variety of 
biomolecules. The inherent advantages of electrochemical transduction, such as high sen-
sitivity, rapidity of response, and possibility of miniaturization, together with the poten-
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A thorough understanding of the human microbiome requires identifying and mon-
itoring of small molecules and proteins produced by microorganisms and surrounding
the microbiome environment that are responsible for catalytic functions and metabolic
activity. These biomolecules govern interactions with host cells and are closely related
to different diseases. The microbial composition is characterized by genomic and tran-
scriptomic sequencing, while metabolomics and other “omics” identify protein pools that
can be subsequently detected and quantified using (bio)sensing tools. For example, the
intestinal microbiome of insulin-resistant individuals is known to have a high capacity for
the synthesis of branched-chain amino acids that are detected at high concentrations in
the serum of patients [5]. Obviously, the difficulty for the diagnosis lies in obtaining the
necessary “omic” information on the species to be determined, and to have both sensitive
and accurate analytical methods, as well as adequate samples. With this in mind, research
can be limited to simply determining the presence or the absence of specific species within
or outside the microbiome locus, or to establishing the relationship of the various species
to each other or to the host cells.

In the overall effort for a better understanding of the human microbiome, sensors
and biosensors play an important role, since their use can help the collection of a large
number and complex variety of microbiome data for the assessment of the presence and
evolution of a specific disease. However, due to the wide variety of diseases associated with
microbial activity and diversity, and the effect of other active biomolecules not necessarily
derived from microorganisms, (bio)sensing tools with the best analytical characteristics
of sensitivity, selectivity, reproducibility, accuracy and multiplexing ability are needed.
Indeed, related to multiplexing, better diagnosis requires multiple detection with complex
clinical samples and with the ability to seek differences in the composition of a given
location in the presence or absence of the disease.

The possibility of using microbiota biomarkers to advance disease monitoring has
raised great expectations, also in the field of bioelectroanalytical chemistry, which has
demonstrated the ability to develop point-of-care (PoCs) detection tools for a variety of
biomolecules. The inherent advantages of electrochemical transduction, such as high sensi-
tivity, rapidity of response, and possibility of miniaturization, together with the potential of
new nanomaterials to improve both the design of electrode platforms and the performance
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of the resulting electrochemical biosensors, make probable a huge development in the
coming years, providing a better understanding of human microbiome entities.

The potential of biosensors to bring the study of the microbiome into the realms of clin-
ical diagnostics and mass data collection was reviewed [3]. More recently, Yadav et al. [6]
reviewed advances in electrochemical sensors involving nanomaterials for clinically associ-
ated human and gut metabolites, including those from the microbiome. Merkoçi’s team
also discussed opportunities and challenges in developing new nanotechnology-based
diagnostic devices for microbiome research [7].

However, to our knowledge, there is no review article in which the opportunities
and potential for electrochemical biosensors to advance knowledge and detection of the
human microbiome are critically discussed. That is why this review article aims to provide
an overview of recent applications of electrochemical (bio)sensors for the monitoring of
microbial metabolites and the detection of disease biomarkers related to different types
of human microbiome, with a special focus on the gastrointestinal microbiome. To illus-
trate the critical discussion, examples of electrochemical devices applied to real samples
are considered.

2. Gastrointestinal Microbiome

The study of the gastrointestinal microbiome is currently an exciting area for managing
the health of the whole organism. The reason is because it modulates several physiological
functions, including the immune system [8] and, through the microbiome gut–brain axis,
also behaviour and mental state, causing or preventing anxiety and depression [9]. The
human gut is a dynamic environment, in which microorganisms constantly interact with
the host via their metabolic products. The decisive role in both processing signals from
the environment and distributing them to the organism has led to the gastrointestinal
microbiome being called the “fifth organ” [8]. The most recent studies on the involvement of
gut microbiota in the pathogenesis of many diseases as well as the different strategies used
to manipulate the gut microbiota in the prevention and treatment of disorders have been
reviewed [10]. The outcomes of this complex relationship are the main pathways used to
modulate the functionality of organs and systems such as the brain and the immune system,
which are involved in host health and disease, and also encompass a range of activities that
extend to nutrient or drug metabolism and the immune response to pathogens [11]. The
gastrointestinal microbiome modulates several physiological functions such as digestion,
energy metabolism, immune system development, and infection prevention [12–14].

Biomarkers of gastrointestinal functionality in animal nutrition and health were re-
viewed by Pietro et al. [15]. Metabolites produced by gut microbiota, such as trimethy-
lamine N-oxide (TMAO), trimethylamine (TMA), short-chain fatty acids (SCFAs), and
indole derivatives, contribute to various human diseases [6], such as metabolic and car-
diovascular diseases [16,17], cancer and inflammation [18], depression [19], and colorectal
cancer (CRC) [20].

Microbiome-derived metabolites, and in particular polyamines, are known to be in-
volved in carcinogenesis in both animal models and humans [21]. Gut microbiota degrades
nutrients rich in trimethylamine (TMA)-containing substances, such as choline, carnitine,
and lecithin, to produce TMAO, which has been associated with an increased risk of de-
veloping complex illnesses such as cardiovascular diseases (CVDs), CRC [22,23], chronic
kidney diseases [24], and diabetes. As a result, TMAO is considered a critical prognostic
and diagnostic biomarker and its analytical monitoring is critical in health management.

As can be seen in Table S1 of the Supplementary Material, which summarizes the
analytical characteristics of selected electrochemical (bio)sensors for biomarkers of the
human microbiome and related biomolecules applied to clinical samples, several electro-
chemical (bio)sensors have been reported for the determination of TMAO. A molecularly
imprinted polymer (MIP) prepared from polypyrrole (PPy) on hydrolyzed indium tin
oxide (ITO)-coated glasses was reported by Lakshmi et al. [25]. The MIP was made using a
chemical oxidation polymerization technique in the presence and absence of TMAO, and
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the detection response was provided by the peak current reduction of the target recorded
by differential pulse voltammetry (DPV). The method exhibited a good sensitivity, with
a LOD value of 1 µg mL−1 and a relatively narrow linear dynamic range between 1 and
15 µg mL−1, although it is claimed to be appropriate for the analysis of biological flu-
ids. The sensor was applied to the analysis of spiked urine with recovery percentages of
around 100%.

An enzyme electrochemical biosensor for TMAO was reported using an active chimeric
variant of TMAO reductase in combination with formate dehydrogenase (TorA-FDH) im-
mobilized on a glassy carbon electrode and coated with a dialysis membrane. The biosensor
operated at an applied potential of −0.8 V vs. Ag/AgCl under ambient air conditions in
the presence of methyl viologen as the redox mediator. A measuring range of 2–110 µM
with a detection limit of 2.96 nmol L−1 TMAO was obtained, and the biosensor was applied
to spiked serum samples [26]. More recently, the same group reported another enzyme
biosensor for TMAO involving three enzymes: TMAO reductase (TorA), glucose oxidase
(GOD) and catalase (Cat). An oxygen anti-interference membrane composed of GOD,
Cat and polyvinyl alcohol (PVA) hydrogel was prepared, and the TMAO biosensor was
constructed by purifying Escherichia coli TorA under anaerobic conditions and immobiliz-
ing it on the surface of a carbon electrode, which was subsequently coated with the O2
scavenging membrane. The detection potential was the same as that in the previous work,
and methylviologen was also employed as the redox mediator. The sensor signal was
linearly dependent on TMAO concentrations between 2 µM and 15 mM. Measurements of
TMAO concentration were performed in 10% human serum, where the lowest detectable
concentration was 10 µM TMAO [27]. Yi et al. [28] developed a unique TMAO detection
technique based on microbial electrochemical reduction of the biomarker with Shewanella
loihica PV4, which used TMAO as an electron acceptor for aerobic respiration. Direct
attachment of the cells onto carbon cloth electrodes allowed the measurement of cathodic
currents proportional to TMAO concentrations over a wide linear range up to 250 µM, with
low LOD (5.96 µM) and high sensitivity (23.92 µA mM−1). The developed method allowed
the determination to be completed in 600 s, providing an accuracy rate of 90% in serum.

Small molecules produced by microbial fermentation of carbohydrates and proteins
are related to insulin resistance, obesity, and immune diseases. Among these metabolites,
SCFAs and their anions and amino acid derivatives (e.g., indol) are of great interest, as they
act as signaling molecules in the host–microbiota interaction [29]. For instance, butyrate
and propionate anions of SCFA in feces show modification in their levels depending on the
clinical state (acute or in remission phases) of patients suffering from rheumatoid arthritis
(RA) [30]. Moreover, acetic, butyric, propionic, valeric, isobutyric, and isovaleric acids,
and their respective anions, are the main fermentation end-products of non-digestible
carbohydrates that serve as energy sources for gut epithelial cells. They modulate cytokine
production and induce expansion of regulatory T cells [31] and have been associated with
kidney diseases, hypertension, and inflammation [32]. Numerous efforts have been focused
on providing evidence for the role of SCFAs in the relationship between the intestinal
microbiome and host health [33]. Among others, the important implication of SCFAs in the
development of inflammatory bowel disease (IBD) has been demonstrated. IBD is a term
involving two conditions: Crohn´s disease and ulcerative colitis, both characterized by
chronic inflammation of the gastrointestinal tract, whose accurate detection and diagnosis
require extensive sample preparation and expensive equipment. Therefore, the develop-
ment of specific (bio)sensors for SCFAs and related molecules is highly desired. However,
so far, the number of methods with sufficient sensitivity and selectivity to tackle this task is
small, and the few reported strategies have not been practically applied to biological sam-
ples. For example, enzymatically modified microfabricated platinum electrodes were used
for the amperometric quantification of acetate and propionate, mediated by the oxidation
of hydrogen peroxide [34]. As Figure 2 shows, two different enzyme systems were used:
the amperometric detection of acetate was enabled by a combination of acetate kinase (AK),
pyruvate kinase (PK) and pyruvate oxidase, whereas propionate CoA-transferase (PCT)
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and short-chain acyl-CoA oxidase (SCAOx) were used as the catalytic strategy for propi-
onate quantification. The developed methods provided similar analytical characteristics,
with linear ranges ranging up to 1.4 or 1.5 mM for acetate and propionate, respectively.
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pyruvate kinase (PK), and pyruvate oxidase (POx), and (B) a propionate biosensor using propionate
CoA-transferase (PCT) and short-chain acyl-CoA oxidase (SCAOx). Adapted from [34] with permission.

An impedimetric sensor for the real-time detection of gut-microbiota-generated SCFAs
was reported by Yavarinasab et al. [35]. Figure 3 displays the electrochemical platform
consisting of interdigitated gold electrodes modified with ZnO and polyvinyl alcohol (PVA).
EIS measurements of the acids were performed in the liquid phase at room temperature
for in vitro detection of acetic acid, propionic acid, and butyric acid, which account for
more than 95% of SCFAs in the intestine at concentrations ranging from 0.5 to 10 mg mL−1.
The sensor detected the level of SCFAs in bacterial isolates (L. plantarum and E. coli) and
identified them with high accuracy using only 2.5 µL of sample. Other types of SCFA
biosensors based on living microorganisms have also been reported, with an interesting
approach of possible quantification using microbial fuel cells reported by Kaur et al. [36].
The proposed biosensor array was able to measure individual acetate, propionate, and
butyrate concentrations down to 5 mg L−1 and up to 40 mg L−1. However, the detection
range was rather limited for real applications in clinical samples.

Succinate is a microbiota-derived metabolite with a key role in governing intestinal
homeostasis and related to a microbiome signature [37]. It is involved in several metabolic
pathways, with enhanced levels derived from gut microbiome dysbiosis and increasing
intestinal permeability [38]. Succinate concentration is clearly elevated in inflammatory-
related health conditions, including obesity and type 2 diabetes (T2D) [39,40], and it was
validated as a surrogate biomarker of poor metabolic control in patients suffering these
illnesses [41]. High circulating levels of succinate in human obesity are linked to specific
gut microbiota because of an abundance of succinate-producing microorganisms and scarce
succinate-consuming microbes. Furthermore, alterations in circulating succinate are also
related to carbohydrate metabolism and energy production [38]. The role of succinate in
the regulation of intestinal inflammation has been reviewed by Connors et al. [42]. No
electrochemical sensors for the determination of succinate have been found in the reviewed
literature. However, the electrochemical oxidation of succinic acid in aqueous solutions
using boron-doped diamond electrodes was investigated [43], although the absence of
analytically useful responses precludes the preparation of a suitable sensor. Electrochemical
biosensors for the detection of this species have not been developed either.
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Monitoring microbiome-related biomarkers of gastrointestinal inflammation is crucial
to provide relevant information on the interactions of the gastrointestinal tract with the
environment and to know to what extent the functionality of the gastrointestinal barrier is
maintained. However, data on the detection of gut biomarkers for these disorders are scarce.
There is wide evidence that cytokines play a crucial role in the pathogenesis of IBD [44].
Relevant targets are pro-inflammatory cytokines such as IL-6, IL-12, IL-23, and IL-21, as
well as anti-inflammatory cytokines, such as IL-10 and TGF-β. Pro-inflammatory inter-
leukins and tumor growth factor (TNF-α) are known to contribute to increased intestinal
permeability leading to translocation of bacteria and toxins and ultimately inflammation.

Reflecting this key role of cytokines in relation to the intestinal microbiome and derived
inflammatory diseases, a large number of electrochemical (bio)sensors have been reported
in recent years for the single or multiple determination of interleukins, chemokines and
other cytokines in clinical samples [45,46]. However, methods devoted to interleukins
directly related to the gut microbiome and IBD disorder are very scarce. The incorporation
of nanomaterials in the construction of electrochemical biosensors allows the detection of
ILs with high sensitivity and wide dynamic ranges in comparison with other techniques,
as well as the possibility of application to body fluids others than serum, such as saliva or
sweat, where these biomarkers are present in much lower concentration [47]. A general
review of recent advances and possibilities with electrochemical biosensors for cytokine
profiling has been published [48]. In addition, recent progress in nanomaterial-based
electrochemical biosensors for the detection of interleukins has also been reviewed [49].
A recent example of electrochemical biosensors for ILs related to IBD is the impedimetric
immunosensor reported by Frias et al. [50] for IL-10, an interleukin secreted in patients at
the early stage of inflammation. The biosensor involves the fabrication of a microfluidic
lab-on-chip device using graphene-foam flexible electrodes functionalized with pyrene
carboxylic acid by π complexation, and the covalent immobilization of the anti-IL-10
antibodies. EIS measurements allowed IL-10 quantification in artificial saliva in the range
from 10 to 100 fg mL−1 with a LOD value of 7.89 fg mL−1.

Along with cytokines, C-reactive protein (CRP) is also a recommended biomarker
for early detection of IBD [51]. A multiplexed sensor for the continuous monitoring of
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IL-1β and CRP in human eccrine sweat was reported by Jagannath et al. [52]. A replaceable
sweat-sensing strip functionalized for the specific targets and mounted on a wearable
transducer consisting of a screen-printed two-electrode system was prepared. Impedimetric
measurements were carried out upon immobilization of the respective capture antibodies
using the cross-linker DTSSP (3,3′-dithiobis (sulfosuccinimidyl propionate). Dynamic
ranges from 0.2 to 200 pg mL−1 IL-1β and up to 10 ng mL−1 CRP with LOD values of
0.2 pg mL−1 and 1 pg mL−1, respectively, were attained. The sensor was applied to
the determination of both biomarkers in spiked sweat samples collected from healthy
individuals and to continuous on-body IL-1β measurements. Table S1 summarizes the
analytical characteristics claimed for other electrochemical biosensors for CRP [53,54].

Myeloperoxidase (MPO) is a specific marker of neutrophil activity [55]. The number of
neutrophils in mammals has been positively correlated with tissue MPO levels, in turn re-
lated to intestinal inflammation [56] and intestinal permeability [57]. In humans, fecal MPO
levels have been related to IBD disease activity [58]. A strategy for the electrochemical de-
tection of MPO, with a microfluidic device, involved the use of streptavidin-functionalized
magnetic microbeads (Strep-MBs) and biotinylated antibodies (Figure 4) [59]. Quantifica-
tion of the biomarker through the measurement of its peroxidase activity allowed a LOD of
0.004 ng mL−1 MPO to be obtained. The developed method was successfully applied to
human plasma from healthy individuals and patients with coronary ischemia.
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used as blocker; (3) anti-MPO-HRP. Adapted from [59] with permission.

More recently, a trimetallic CuPdPt nanowire network dropped onto a glassy carbon
electrode was proposed as an electrochemical platform for immobilization of anti-MPO
antibodies and the amperometric detection of MPO activity through the measurement of
the H2O2 reduction current, which was proportional to the MPO concentration over the
100 fg mL−1 to 50 ng mL−1 range. The high sensitivity made it possible to apply the method
to the analysis of human serum with good results [60]. Additionally, an electrochemical
approach to measure MPO based on an immunoassay scheme involving immobilization of
MPO-capture antibody on a polystyrene dipstick was implemented. After immobilization
of the target, the ability of MPO to participate in enzymatic pseudohalogenation and
catalase-like reactions involving, respectively, MPO/SCN−/H2O2 and MPO/H2O2, was
harnessed, and amperometric detection was performed by monitoring the response of
H2O2 at −0.2 V vs. Ag/AgCl with a nitrogen-doped carbon-nanotube (N-CNTs) electrode.
The method allowed detection of 60 µg L−1, which was suitable for the detection of MPO
in human saliva [61].

Related to MPO, other intestinal enzymes such as diamine oxidase (DAO) and intesti-
nal alkaline phosphatase (iALP) have great interest. On the one hand, mucosal damage in
the small intestine and enhancement of intestinal permeability inversely correlates with
DAO activity as a catalyst of diamine oxidation. This is particularly relevant in humans
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affected by Crohn’s disease, where mucosal DAO activity is nearly 50% lower than in
healthy counterparts [62]. Moreover, this enzyme has an essential role in the degradation
of exogenous histamine in the intestine, a good correlation existing between histamine
intolerance and low concentration and/or activity of DAO [63]. Furthermore, iALP is
involved in several physiological roles in the gastrointestinal tract, such as dephospho-
rylation of bacterial lipopolysaccharides (LPS) and regulation of lipid absorption, thus
playing a protective role against both LPS-induced inflammation and Type 2 diabetes in
humans [64]. No reports of electrochemical (bio)sensors for DAO have been found in the re-
vised literature. However, due to its more widespread interest, there are numerous reported
amperometric, impedimetric, and potentiometric biosensors applied to the determination
of alkaline phosphatase in different types of samples. An overview of the application
of electrochemical (and optical) biosensors for alkaline phosphatase in cell cultures has
been published [65]. An illustrative example is an impedimetric immunosensor for serum
alkaline phosphatase detection based on electrochemically engineered Au-nano-dendroids
and graphene oxide nanocomposite [66]. It involved label-free impedance measurements
on a modified SPCE with immobilized anti-ALP antibodies (Figure 5A) and provided
a linear dynamic range between 100 and 1000 U L−1. The immunosensor was applied
to clinical serum samples. Figure 5B shows another electrochemical biosensor that used
aminoferrocene (AFC) labelled on ssDNA by conjugating it with phosphate groups as an
electroactive probe for ALP activity detection. The thiolated ssDNA at 3′terminals was
self-assembled on the surface of an Au electrode via S-Au bonding, and, after incubation
with ALP, the removal of phosphate groups from the 5’ terminus of ssDNA was catalyzed,
and the AFC probe cannot be labelled on ssDNA. This strategy provided a linear range
between 20 and 100 mU mL−1 [67].

Among microbiome-produced metabolites, indole and its derivatives are relevant
biomarkers for various types of inflammation, including that associated with ageing and
central nervous system inflammation [68]. These biomolecules appear in the gastroin-
testinal microbiome as microbial metabolic products of tryptophan. Lactobacillus reuteri
produces indole-3-aldehyde (I3A), whereas pathogenic E. coli strains secrete various indole
derivatives, including I3A and indole-3-acetic (I3AA). In addition to these, other metabo-
lites of indole structure associated with gut bacteria have been found to be involved in
various non-infectious diseases [69]. It is important to point out that, due to the interest
in the determination of these species in other fields, such as agrochemicals, the number
of (bio)sensors reported in the literature for these derivatives is high. However, very
few electrochemical biosensors have been applied to clinical samples. A recent example
is the simple amperometric sensor for the determination of indole in plasma prepared
with an SPCE modified with carbon nanotubes and chitosan (MWCNTs/CS/SPCE). This
modified surface improved the electron transfer oxidation reaction of indole, providing
a linear range by DPV of 5–100 µg L−1 indole and a LOD value of 0.5 µg L−1 [70]. The
modified electrode was employed to determine plasma indole in healthy pregnant women
and gestational diabetes mellitus (GDM) patients, with results (5.3 (4.1–7.0) µg L−1 and
7.2 (4.5–9.4) µg L−1, respectively) consistent with those obtained by a chromatographic
method. The elevated indole levels in GDM patients suggested that indole might play a
relevant role in diabetes mellitus. A voltametric sensor was developed by Moncer et al. [71]
for the detection of 5-hydroxyindole-3-acetic acid (5-HIAA), a carcinoid cancer biomarker,
in human serum, urine, and plasma, using a glassy carbon electrode modified with a molec-
ularly imprinted polypyrrole. By recording the DPV current responses, a highly selective
and sensitive method towards the target molecule was developed with a LOD value of
5 × 10−12 mol L−1 and a wide linear range between 5 × 10−11 and 5 × 10−5 mol L−1.
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Among the high variety of proteins that are associated with the gastrointestinal mi-
crobiome and related diseases, those for which electrochemical (bio)sensors are available
should be mentioned. For instance, intestinal fatty acids binding protein (iFABP) plays a
relevant role as a biomarker of intestinal inflammation related to changes in the microbiome.
Determining the levels of this protein in serum or plasma provides information about in-
testinal barrier dysfunction. In addition, its detection in urine or blood has been reported as
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a promising non-invasive method for identifying patients with acute mesenteric ischemia
(AMI), provoked by an inadequate blood supply to the intestine [72]. An electrochemical
biosensor for iFABP was fabricated using gold interdigitated electrodes functionalized
with the specific capture antibody, sandwiching the protein with a gold-nanoparticle-
modified detection antibody. A label-free impedimetric assay was implemented, providing
a dynamic range encompassing the concentration of iFABP in urine below the critical
concentration of 2.7 ng mL−1 and a LOD of 0.68 ng mL−1.

Other protein of interest is the one known as PAP (protein associated with pancreatitis),
whose expression is proportional to the microbial response to infection and can be used
as a non-invasive biomarker of the course of IBD in combination with other markers of
inflammation measured in plasma such as CRP. In addition, fecal calprotectin (CALP)
is a very sensitive marker for inflammation in the gastrointestinal tract, also allowing
the differentiation of IBD from irritable bowel syndrome (IBS) and other diseases with
different inflammatory patterns such as Crohn’s disease and ulcerative colitis [73]. A non-
enzyme sandwich-like immunosensor has been reported for the determination of CALP
involving immobilization of the capture antibodies on glassy carbon electrodes modified
with polydopamine-decorated carbon nanotubes functionalized with gold nanoparticles
(Au@MWCNTs) [74] (Figure 6). A strategy for signal amplification was employed in-
volving the use of high-electrocatalytic PtNi nanospheres on ultrathin Cu-Fe(III) meso-
tetra(4-carboxyphenyl)porphine chloride (PtNi@TCPP(Fe)) nanosheets as carrier tags for
immobilization of CALP antibodies. The reduction current of H2O2 at this platform pro-
vided a calibration plot over the 200 fg mL−1 to 50 ng mL−1 antigen linear range, which is
useful for the analysis of human serum.
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In recent years, several studies have highlighted the role of the microbiome in the
pathogenesis of autoimmune diseases [75]. Alterations in the intestinal flora and modifi-
cation of the microbiome in the intestinal tract have been claimed as important factors in
the pathogenesis of rheumatoid arthritis (RA) and multiple sclerosis (MS), among other
diseases. There is increasing evidence that various microbial metabolites generated from
carbohydrates, proteins, and bile acids profoundly regulate the immune system via host
receptors and other target molecules. Importantly, microbial metabolites act bidirectionally
to promote both tolerance and immunity to effectively fight infections without developing
inflammatory diseases [76]. Although gastrointestinal commensal bacteria have been found
to be implicated in the development of these diseases, the mechanisms underlying the
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relationship of human systemic autoimmunity with the microbiome have not yet been
identified. Among the few biomarkers specifically derived from commensal bacteria,
microbiome-associated lipopeptides are markers of neurodegeneration and related diseases
such as MS [77]. For instance, a gastrointestinal- and oral-bacteria-derived lipodipeptide,
Lipid 654, which functions as a Toll-like receptor 2 ligand, was found to be expressed at
significantly lower levels in the serum of patients with MS than in healthy individuals [78].

The composition and status of the microbiome also have a crucial role in the initiation
and progression of RA, an autoimmune disorder with increased morbidity and mortality
characterized by chronic inflammation of the synovial joints leading to significant pain,
swelling, and disability. Gut dysbiosis has been reported in RA and other inflammatory
rheumatic diseases, including juvenile inflammatory arthritis and ankylosing spondyli-
tis [79,80]. It has been shown that stools from patients with over-abundant Prevotella
microorganisms relative to healthy controls were all seropositive for rheumatoid factor
(RF) and anticitrullinated peptide autoantibodies (ACPAs) [81], both considered as spe-
cific biomarkers for this disease [82]. Examples of electrochemical biosensors for these
biomarkers are given in the next section.

3. Oral Microbiome

The oral cavity has the second-largest and second-most diverse microbiota after the
gut, harboring over 700 species of bacteria [83]. Therefore, the densely populated microbial
communities make the oral microbiome an ideal source for the discovery of biomarkers. A
proteomic analysis of saliva from healthy individuals was reported by Sivadasan et al. [84],
resulting in the identification of 1256 human proteins of microbial origin. Thus, in recent
years, saliva has played a central role in the diagnosis of oral and systemic diseases. There
is evidence that changes in environmental conditions favor oral diseases and increase the
potential for pathogenicity. Regarding this, the relationship between periodontal disease
and systemic conditions including cancer, rheumatoid diseases, and diabetes mellitus has
been reported in several articles [85–88].

Alteration of microenvironments in the oral cavity of normal individuals may change
the microbial composition of their saliva [89], inducing pro-inflammatory responses in oral
epithelial cells by activating several chemokines [90], producing short-chain organic acids
and chronic inflammation caused by bacterial infection responsible for tumorigenesis [91],
or resulting in the secretion of matrix metalloproteinases MMP-9 and MMP-13 (collage-
nase3), which contribute to oral squamous cell carcinoma (OSCC) metastasis [92] or other
cancer biomarkers such as myeloid-related protein 14 (MRP14), CD59, and Mac-2-binding
protein (M2BP). Several electrochemical biosensors have been reported for the detection
of oral microbiome metabolites, although only a few of them have been applied to saliva.
Electrochemical biosensors for the detection of matrix metalloproteinases MMPs were
reviewed by Zhou [93]. An interesting example is the immunoplatform constructed for
the determination of MMP-9, involving the immobilization of a capture antibody (cAb)
on carboxylated magnetic microbeads (cMBs) and the implementation of a sandwich-type
immunoassay using poly-HRP for signal amplification [94]. The resulting magnetically
assisted immunosensor provided a linear range between 0.03 and 2 ng mL−1 and a LOD
value of 13 pg mL−1MMP-9. Another MBs-based sandwich immunoassay for the ampero-
metric determination of MMP-9 was developed where the cAb-MBs immunoconjugates
were sandwiched with a biotinylated detector antibody (biotin-dAb) further labelled with
a commercial streptavidin-horseradish peroxidase (Strep-HRP) polymer. The developed
immunoplatform achieved a LOD value of 2.4 pg mL−1 MMP-9, and the method was
applied to the determination of endogenous MMP-9 in both cancer cell lysates and serum
samples of patients diagnosed with different subtypes of breast cancer [95].

Quantification of proteins derived from the oral microbiome in saliva makes it possible
to detect autoimmune diseases that in some cases are in turn also related to the presence of
cancer. For example, it is known that salivary levels of inflammatory cytokines involved
in the immune response are significantly higher in RA and OSCC or tongue squamous
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cell carcinoma (TSCC) [96]. This is the case for the interleukins IL-8 or IL-1α and vascular
endothelial growth factor A (VEGF-A) [97].

An overview of electrochemical sensors targeting salivary biomarkers was published
by Mani et al. [98]. Several electrochemical biosensors have been developed for the detection
of ILs [99] and specifically for IL-8, as a biomarker of oral cancer and other types of cancer.
The normal concentration of IL-8 in human saliva is in the 200–300 pg mL−1 range, whereas
patients suffering from oral cavity and oropharyngeal squamous cell carcinoma have IL-8
concentrations higher than 720 pg mL−1 [100,101]. This difference makes saliva, a harmless
extraction sample, a very suitable medium for monitoring this type of disease. Figure 7
shows some representative examples of recent electrochemical biosensors for IL-8.
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Figure 7. Schematic illustrations of some electrochemical immunosensors for the determination
of IL-8: (A) a sandwich-type immunoassay using a polyenzyme label on diaphorase (DI-3) and
neutravidin; (B) the synthesis of β-Ag2-MoO4 NPs and immunoelectrode fabrication; (C) fabrication
of an AuNPs-rGO based immunosensor; (D) steps for preparation of an impedimetric immunosensor.
Reprinted from (A) [101], (B) [102]; (C) [103] and (D) [104] with permission.

Bathia et al. prepared an immunosensor for salivary IL-8 involving a polyenzyme
label based on biotinylated diaphorase and neutravidin. Figure 7A shows as the label was
conjugated after covalent immobilization of anti-IL-8 on silane copolymer-modified ITO
electrodes and implementation of a sandwich-type immunoassay with the antigen and a
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biotinylated detection antibody. The use of electrochemical–enzymatic redox cycling, with
Os(bpy)2Cl2 as the electron mediator and NADH, provided high signal amplification as
well as low nonspecific responses using chronocoulometry as the electrochemical technique,
thus achieving a LOD value of 1 pg mL−1 IL-8 [101]. A label-free immunosensing approach
was proposed using synthesized silver molybdate nanoparticles (β-Ag2MoO4 NPs) as
the coating of ITO electrodes for covalent immobilization of anti-IL-8 (Figure 7B). The
resulting immunoplatform reached a detection limit of 90 pg mL−1 and was applied to
spiked saliva [102]. Verma et al. [103] developed an electrochemical immunosensor for
non-invasive detection of oral cancer using ITO electrodes modified with gold nanopart-cle-
reduced graphene oxide (AuNPs-rGO) as a platform for the label-free determination of IL-8
(Figure 7C). After immobilization of the specific capture anti-IL-8 antibody, the resulting
immunosensor showed a linear dynamic range of 500 fg mL−1–4 ng mL−1, a LOD value
of 72.73 ± 0.18 pg mL−1, and very fast detection (9 min). The immunosensor was applied
to spiked human saliva. Among the various electrochemical biosensors reported by Prof.
Sezgintürk’s group for the determination of IL-8 [104–106], Figure 7D displays a scheme of
the biosensor prepared using an ITO electrode modified with 6-phosphonohexanoic acid
(PHA) for the immobilization of anti-IL-8 and impedimetric detection [105]. The interest
in using phosphonic acids in the preparation of electrochemical biosensors derives from
their ability to spontaneously produce self-assembled monolayers (SAMs) on different
electrode surfaces, including metal oxides. In addition, the SAMs of phosphonates provide
a suitable matrix for immobilization of biomolecules [107]. The method developed with the
IL-8-anti-IL-8-PHA-ITO immunosensor, using EIS measurements with ferro-ferricyanide as
the electrochemical probe, exhibited a linear range between 0.02 pg mL−1 and 3 pg mL−1

and a low detection limit of 6 fg mL−1. The authors claimed satisfactory results in the
analysis of real saliva and human serum.

Electrochemical biosensors for the determination of microbiome-related salivary cy-
tokines other than IL-8 have also been reported. For example, Aydin and Sezgintürk
proposed the use of 8-PHA-ITO electrodes for the preparation of an immunosensor for
IL-1β applied to saliva and serum [108]. More recently, our group reported the application
of electro-click methodology for the construction of a novel electrochemical immunosen-
sor for IL-1β. The strategy involved the binding of ethynylated IgG to azide-MWCNT
modified electrodes by an electrochemically synthesized Cu(I)-catalyzed cycloaddition re-
action. Once the capture antibody was immobilized on IgG-MWCNTs, a sandwich-type im-
munosensor using biotinylated anti-IL-1β labelled with alkaline phosphatase-streptavidin
(ALP-strept) as the detection antibody was implemented. DPV measurements with the
1-naphthylphosphate/1-naphthol system provided a LOD value of 5.2 pg mL−1, the im-
munosensor being applied to the determination in human saliva [109].

The ability of electrochemical biosensors to be used for multiplexed determination
has been exploited for the analysis of cytokines in raw saliva. An illustrative example is
the magnetically assisted bioplatform developed for the determination of IL-8 protein and
its associated messenger RNA IL-8 mRNA. The strategy involved the use of carboxylated
MBs, specific antibodies against IL-8, a specific hairpin DNA sequence for IL-8 mRNA,
and dual screen-printed carbon electrodes (SPdCEs) [110]. Amperometric detection us-
ing the H2O2/HRP system mediated by hydroquinone (HQ) provided detection limits
of 72.4 pg mL−1 IL-8 and 0.21 nmol L−1IL-8 mRNA. A dual electrochemical immunosen-
sor was also prepared for the simultaneous determination of IL-1β and tumor necrosis
factor alpha (TNF-α) in saliva and serum using SPdCEs modified with functionalized
double-walled carbon nanotubes (DWCNTs) [111]. The capture antibodies were immo-
bilized on HOOC-Phe-DWCNTs/SPdCEs by means of the polymeric coating Mix&Go™,
and sandwich type immunoassays were implemented with amperometric signal ampli-
fication through the use of poly-HRP streptavidin conjugates and the H2O2/HRP/HQ
enzymatic/redox system. The developed method allowed ranges of linearity extending
between 0.5 and 100 pg mL−1 and from 1 to 200 pg mL−1 for IL-1β and TNF-α, respectively.
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There is evidence that the oral microbiome plays a role in the etiology and progres-
sion of various autoimmune diseases, including RA and systemic lupus erythematosus
(SLE) [112]. It has been demonstrated that several organisms in the oral microbiome
causing periodontal infection are linked to the RA disease. The common pathogen
Porphyromonas gingivalis (P. gingivalis) expresses a bacterial protein arginine deiminase
that can citrullinate host peptides, these inducing the formation of anticitrullinated protein
antibodies (ACPAs) [112]. This microorganism also carries heat shock proteins (HSPs) that
may trigger auto-immune responses in subjects with RA. Among the different types of
ACPAs that are used for the diagnosis of RA, anti-cyclic citrullinated peptide (anti-CCP)
and anti-citrullinated enolase peptide (anti-CEP) can be detected in patients with both RA
and periodontal disease [113].

The number of electrochemical biosensors devoted to ACPAs detection is relatively
low. Furthermore, no publications on salivary applications in the context of RA have
been found, although they do exist for human serum analysis, where the cut-off value for
positivity is anti-CCP > 25 U mL−1. In this context, an electrochemical immunosensor was
prepared using screen-printed electrodes modified with poly(aniline) (PANI) and MoS2.
A citrulline-containing cyclic filaggrin peptide (21-mer) to explicitly recognize anti-CCP
antibody was covalently attached to this surface, and a sandwich-type immunoassay was
established with anti-CCP trapped in an interfacial polymerized PANI-AuNPs for signal
amplification [114]. Using SWV, the achieved LOD value was 0.16 IU mL−1 anti-CCP.

A dual electrochemical biosensor involving carboxylated- or neutravidin-functionalized
MBs and dual screen-printed carbon electrodes was developed for the simultaneous de-
termination of anti-CCP and rheumatoid factor (RF), an autoantibody widely used as
RA biomarker. Sandwich-type biosensors were constructed by involving Fc fragments of
IgG Fc(IgG) and biotinylated CCP to form CCP-biotin-Neutr-MBs for the specific immo-
bilization of RF and anti-CCP, respectively, followed by conjugation with the respective
HRP-IgM and HRP-IgG. Amperometric detection using the H2O2/hydroquinone (HQ)
system provided LOD values for RF and anti-CCP of 0.8 and 2.5 IU mL−1, respectively.
The simultaneous determination can be completed in about two hours using a simple
protocol and a sample volume (25 µL) four times smaller than that required by the ELISA
method [115].

4. Nasal Microbiome

Nasal mucus and secretions constitute a first line of defense of the respiratory tract
and are responsible for eliminating air pollutants and preventing microbes from entering
the body [116]. At the same time, the nasal cavity is a major reservoir for pathogens
that can spread from there to other sections of the respiratory tract and become involved
in diseases such as asthma, allergic rhinitis, chronic rhinosinusitis (CRS) or pneumonia,
among others. A healthy nasal microbiome is characterized by highly regulated microbial
interactions, where a variety of immune and structural cells produce different biomarkers
and reflect biological events. Some examples are monokine induced by interferon γ (MIG),
IP-10, monocyte chemoattractant protein (MCP-1), eotaxin, and epidermal growth factor
(EGF), in addition to several interleukins, such as IL-15, IL-8, IL-1α and IL-1β, involved in
modification of proinflammatory responses [117].

An example of application of electrochemical biosensing to the analysis of nasal
fluid is the method developed by Hassan-Nixon et al. [118] involving a label-free impedi-
metric immunosensor for the determination of the IL-8 present in the nasal epithelial
lining fluid (NELF). Polyclonal anti-IL-8 antibodies were immobilized on a gold electrode
modified with cysteamine and the anti-fouling zwitteronic hydrogel polycarboxybetaine
methacrylate (pCBMA) prepared by photopolymerization in the presence of ethyleneglycol
dimethylacrylate (EGDMA). Impedimetric responses using Fe[(CN)6]3−/4− as redox probe
provided a logarithmic calibration with a linear range between 500 fg mL−1 and 50 ng mL−1

and a LOD value of 90 fg mL−1. The high sensitivity of the developed immunosensor was
attributed to a superior binding affinity of the antibody due to the stabilizing effect of the
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ammonium and acetate ions present in the polycarboxybetaine moiety of pCBMA and to
the super-hydrophilicity of the polymer, which resulted in the removal of water molecules
from the hydrophobic regions of the antibody thereby increasing the protein–substrate
binding affinity. The NELF samples, collected by means of a nasosorption device [119]
gently introduced into the nostril lumen, were directly analyzed without the need for
treatment obtaining satisfactory results.

Metabolomics has provided novel insights into the biomarkers and mechanisms of
CRS [120], a chronic disease characterized by sinonasal mucosal inflammation in which
commensal microbes, pathogens and their products play leading roles [121]. Two types
of CRS can be distinguished: eosinophilic CRS with polyps, where interleukins IL-5 and
IL-33 are mainly associated to inflammation, and non-eosinophilic CRS (without polyps),
characterized by the presence of interferon gamma (IFN-γ), and the interleukins IL-17A,
IL-1β and IL-8. Moreover, some of these, in particular those related to inflammation, may
also be found in nasal lavages from patients of obstructive sleep apnea (OSA) [122].

A large body of epidemiologic evidence has been published linking OSA with im-
portant cardiovascular conditions, including hypertension, metabolic syndrome, coronary
artery disease, arrhythmia, and heart failure [123]. Given the potentially serious conse-
quences of untreated severe OSA, timely recognition, risk stratification, and appropriate
treatment are crucial. It is well known that OSA may lead to an inflammatory response,
and significant OSA is characterized by a distinct biomarker profile including significantly
higher IL-6 levels after sleep in patients with moderate/severe OSA in comparison with
individuals with mild or no disease [124]. Monitoring of IL-6 secretion in harvested cells
and in vivo with a voltammetric immunosensor was reported [125]. A label-free configura-
tion involving immobilization of anti-IL-6 capture antibodies on gold nanowires modified
with graphene oxide (GO) and 4-aminophenyl phosphorylcholine to minimize nonspecific
adsorption was implemented, and a sandwich-type assay was established by means of
anti-IL-6 detection antibodies conjugated to GO and integrated with Nile blue as the redox
probe. The electrochemical responses using SWV provided a linear range of 1–300 pg mL−1

with the lowest detectable concentration at 1 pg mL−1. The resulting method was applied
to cell and in vivo analysis by monitoring IL-6 secretion in mouse brain.

Sinus mucosal cells also produce a large number of proteins and peptides with an-
timicrobial functions, including enzymes (e.g., lysozymes), defensins such as human beta-
defensin-2 (hBD-2), and members of palate lung and nasal epithelium clone (PLUNC)
family, whose levels are decreased in patients with nasal polyps, subsequently affecting the
microbial colonization of the nose and sinuses in these individuals. Nasal epithelial cells
were shown to express significantly higher levels of the pro-remodeling factors vascular
endothelial growth factor (VEGF) and TGF-β cytokine compared to healthy individuals.
Furthermore, local expression of the chemokines CCL-11 (eotaxin-1) and CCL-26 (eotaxin-3)
is increased in asthma and allergic rhinitis. In these patients, nasal mucosa shows seasonal
changes, including increased neutrophil levels expressing integrin proteins such as CD11b
and glycoproteins such as CD66b and CD63.

A variety of electrochemical biosensors have been developed for the determination of
VEGF. Among them, the multiplexed configuration prepared by Shen et al. [126] for the
simultaneous quantification of VEGF, TGF-β and IFN-γ can be highlighted. As Figure 8
shows, a gold electrode modified with graphene oxide and streptavidin was used for the
immobilization of the biotinylated aptamers respectively conjugated with anthraquinone
(AQ), ferrocene (Fc), and methylene blue (MB). Binding of specific targets induced unfolding
of aptamer hairpin structure, leaving the redox markers far from the electrode and reducing
the electron-transfer efficiency. Thus, the redox peak currents from the electroactive labels
decreased with increasing target levels in the 5–300 pg mL−1 VEGF, 5–200 pg mL−1 TGF-β,
and 5–300 pg mL−1 IFN-γ ranges. This multiplexed aptasensor was applied to the analysis of
sweat and serum samples. The analytical characteristics of other methods for these analytes
involving electrochemical biosensors are summarized in Table S1 [127,128].
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5. Concluding Remarks and Future Perspectives

In this review article, recent applications of electrochemical (bio)sensors for monitoring
microbial metabolites and detecting biomarkers of diseases related to different types of
human microbiome are discussed. (Bio)sensing devices have been reported for important
metabolites such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SFCAs),
myeloperoxidase (MPO), alkaline phosphatase (ALP), metalloproteinases such as MMP-9,
and cytokines such as IL-8 or VEFG (vascular endothelial growth factor), among others.
The developed analytical methodologies show, in general, excellent sensitivity and rapidity
of implementation, and are competitive with other commonly used methods, mainly
ELISA. In addition, a remarkable advantage of electrochemical biosensors is their ability
to be employed in multiplexed analyses, as has been demonstrated in cases such as the
simultaneous determination of autoantibody biomarkers of rheumatoid arthritis (RF and
anti-CCP) or cytokines related to inflammation (IL-1β and TNF-α). Except for a few
sensors, applied to the detection of electroactive biomolecules, such as TMAO, SCFAs,
indole, and 5-hydroxyindole-3-acetic acid (5-HIAA), practically all the electroanalytical
methods developed are based on biosensors involving antibodies or, to a lesser extent,
DNA strands or aptamers. Regarding the electrochemical techniques, the significant
increase in applications of electrochemical impedance spectroscopy is noteworthy. The
use of this technique makes it possible to prepare biodetection platforms with no need
for enzyme labels, thus saving time and reagents. Special attention is deserved by the
use of nanomaterials such as gold nanoparticles, carbon nanotubes and graphene oxide,
which allow the preparation of biosensors with improved immobilization strategies and/or
electron transfer rates with the electrode surface.

However, it is essential to highlight the need for future advances in the application of
the developed methods to real samples. This makes it necessary to establish biosensing
strategies and transduction schemes that are not only highly sensitive and selective, but
also robust enough to be applied to a wide variety of samples in which biomarkers of
microbial metabolism and others related can be found. It should be taken into account that
such biological samples (feces, nasal fluids, tissues, mucosal and gingival fluid, among
others) are much more complex and diverse than human serum or plasma, samples where
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electrochemical biosensors are usually validated. Therefore, adequate procedures and
means to collect representative samples are also required, as well as to promote the fabrica-
tion of portable and implantable bioelectronic devices for biomarker detection, especially
in the fields of oral and nasal microbiomes. Although the interest in saliva monitoring has
increased enormously in recent years, relatively few studies have been focused on devel-
oping in-mouth biosensing platforms for salivary proteins related to the oral microbiome.
Once the diagnostic power of saliva has been demonstrated, advances in the preparation of
biocompatible materials and the use of non-fouling materials/surfaces will presumably
allow rapid progress in this area of research.

The tremendous advances that electrochemical biosensors have experienced and
demonstrated in recent years, as can be deduced from the examples discussed in this
review article and from the recent literature, have mainly benefited the fields of oncology
and immune diseases. This allows predicting that this type of biosensor will be similarly
successful in contributing to advances in diseases and/or disorders related to the human
microbiome. It is a matter of transferring all that has been learned and demonstrated in the
field of cancer and immune diseases to the no less fascinating and complex world of the
human microbiome.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23020837/s1, Table S1: Selected electrochemical (bio)sensors
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