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Abstract: This study introduces an innovative approach to enhance fault detection in XLPE-covered
conductors used for power distribution systems. These covered conductors are widely utilized in
forested areas (natural parks) to decrease the buffer zone and increase the reliability of the distribution
network. Recognizing the imperative need for precise fault detection in this context, this research
employs an antenna-based method to detect a particular type of fault. The present research contains
the classification of fault type detection, which was previously accomplished using a very expensive
and challenging-to-install galvanic contact method, and only to a limited extent, which did not
provide information about the fault type. Additionally, differentiating between types of faults in
the contact method is much easier because information for each phase is available. The proposed
method uses antennas and a classifier to effectively differentiate between fault types, ranging from
single-phase to three-phase faults, as well as among different types of faults. This has never been
done before. To bolster the accuracy, a stacking ensemble method involving the logistic regression
is implemented. This approach not only advances precise fault detection but also encourages the
broader adoption of covered conductors. This promises benefits such as a reduced buffer zone,
improved distribution network reliability, and positive environmental outcomes through accident
prevention and safe covered conductor utilization. Additionally, it is suggested that the fault type
detection could lead to a decrease in false positives.

Keywords: partial discharge; covered conductors; radio antenna; frequency domain analysis;
fault diagnosis

1. Introduction

Partial discharges (PD) are a prevalent phenomenon that can occur in distribution
lines equipped with covered conductors (CC) [1]. These discharges can result in insulation
failure, leading to a range of problems such as equipment damage and safety hazards [2].
PDs manifest as low-energy, high-frequency pulses capable of eroding insulation and
causing its breakdown [3]. The causes behind PD activity are diverse, encompassing factors
like aging, contamination, mechanical stress, improper cable joining, and contact with
surrounding vegetation [4].

1.1. Covered Conductors and Their Challenges

Covered conductors offer an alternative to bare conductors by integrating insulated
cores, usually employing cross-linked polyethylene (XLPE) insulation. The installation of
these types of conductors is primarily motivated by the requirement for reduced spacing
between individual phases. This leads to narrower buffer zones, resulting in environmental
conservation [5] as well as financial savings [6]. These covered conductors are usually used
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in natural parks and heavily forested areas in order to reduce maintenance costs and the
size of the buffer zone.

Another significant factor is the potential occurrence of high-impedance faults and
subsequent PD activity when adjacent vegetation comes into contact with these covered
conductors. In contrast, if such an incident were to happen on a line equipped with bare
conductors, it would lead to a ground fault and, in the best-case scenario, a power outage.
Although the covered conductor would prevent the immediate ground fault, prolonged
contact (such as from a fallen tree on the power line as can be seen in Figure 1), would result
in PDs that could eventually lead to insulation breakdown of the covered conductor [7].

However, challenges arise when attempting to detect these conditions while covered
conductors are in contact with vegetation. This difficulty stems from a relatively low
amplitude of the generated pulses, making their detection a complex task.

Various methods (radiometric [8], galvanic contact [9], using SDR [10], acoustic [11],
and optical using a UVC-sensitive camera [12], high-frequency current transformer [13])
for identifying these pulses in covered conductors exist, and the market offers commercially
available solutions for this purpose. However, some of them are not usable for distribution line
monitoring (acoustic or optical); these methods are most useful in cases of direct maintenance
work when the line is checked by personnel. It is worth noting that many of these solutions
are notably expensive and often cannot accurately classify the type of fault. Moreover, it is
best to have online detection on the site itself to reduce the maintenance costs [13–15].

PD signals are made up of signals of various frequency components, including frequency
components in the GHz region. When PD signals travel for a few wavelengths, the cable
starts to act like an antenna and begins to show traveling wave radiation patterns [16,17]. In
addition, these patterns are specific and can also be used to localize fault [18].

Figure 1. Example of high-impedance fault caused by tree branches [3].

1.2. Motivation for the Study

Although the detection and analysis of PDs are areas undergoing constant develop-
ment and scientific research, there are still numerous opportunities for improvement [19,20].
The low energy of the pulses makes them challenging to detect, as there is a high likelihood
that some of the pulses will be obscured by the surrounding noise [21]. This challenge is
exacerbated by the increasing number of wireless devices and the growing demand for
connectivity. Another issue pertains to the cost of most commercially available solutions.
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Another significant issue is the fact that these lines are mostly used in forested and hilly
areas, which makes them difficult to access and maintain. The installation of any new
device can pose a challenge and often requires a power line shutdown. Wireless systems
can be designed in such a way that there is no need for a power line shutdown.

Additionally, many of these solutions lack the capability for fault type classification, a
feature crucial for determining the severity of a fault and scheduling maintenance to rectify
its source. The classification of fault types also remains an insufficiently explored area, with
only a limited number of articles addressing the problem. Even if article [22] attempts fault
type detection, it does not detect faults with a ground connection and relies on the relatively
expensive galvanic contact method [15], which captures signals from all three phases, and
makes it much easier to detect faults in different phases. However, this issue is not discussed
in the literature There are a few tangentially related studies focusing on cable joints [23],
workmanship defects [24], and bare conductors using simulated data [25]. None of them
use an antenna-based method [26], which offers many benefits for detecting the type of
fault in covered conductors in power lines. This is of interest in this study, as it involves
unique types of faults. What is more, we have two large datasets (one has already been
published [27], and the second one is planned to be published, but is partially present in
Kaggle competition (https://www.kaggle.com/c/vsb-power-line-fault-detection, accessed
on 4 October 2023); however, it was used in some previous works [22]) for the detection of
partial discharges in distribution transmission lines. Both of them lack annotation for fault
type and only have labels for fault occurrence.

Therefore, we want to verify whether it is possible, using only an antenna-based
radiometric method, to distinguish between types of faults and thereby increase the relia-
bility and applicability of the method. The aim of this research is to distinguish between
various types of faults that can occur on isolated distribution lines equipped with CCs
operating at a voltage level of 22 kV. The considered fault types include line-to-ground,
two lines-to-ground, three lines-to-ground, line-to-line, and interconnected faults involving
all lines. The knowledge about the fault type can be valuable for distribution line operators,
enabling them to assess the severity of the fault and plan maintenance for the compromised
line. Furthermore, it can help to identify the root cause of the fault. For instance, a fault
caused by a tree leaning onto the distribution line would likely exhibit the characteristics of
a high-impedance ground fault. However, a plausible explanation would involve a foreign
object interconnecting individual lines if the fault occurred only between lines.

The ultimate goal of our continuous research is to develop a cost-effective solution that
is easy to install and provides comprehensive information about faults on the distribution
line. Such a solution would enhance the reliability and safety of the distribution network,
consequently reducing the downtime required for maintenance due to insulation failures
and lower operating costs.

1.3. Research Objectives

In this section, we outline our primary research objectives, which center around the
utilization of radiometric antenna detection. Our aim is to assess the feasibility of detecting
and classifying various types of faults using this approach. The specific objectives are
as follows:

1. Determine the feasibility of detecting fault events, particularly those of low energy,
through radiometric antenna detection, as this has not been achieved before with
this method.

2. Explore the capabilities of the radiometric antenna–spectrometer system in classifying
different types of faults, including line-to-ground, two lines-to-ground, three lines-to-
ground, line-to-line, and interconnected faults.

3. Confirm that differentiating between types of faults can improve the reliability of fault
detection itself.

By addressing these research objectives, we aim to contribute to the advancement of
fault type detection and classification technologies for distribution lines with CC, with a

https://www.kaggle.com/c/vsb-power-line-fault-detection
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specific focus on utilizing radiometric antenna detection and the classification of different
types of faults. This would enable the cheaper detection and wider usage of distribution
lines with CC. This research will provide a valuable insight into the potential of this
approach and its practical implementation for enhancing distribution network operations
and reducing downtime associated with fault-related maintenance.

2. Materials and Methods

In this section, we will describe the approach we employed to conduct our experiments
and outline the resources we utilized to fulfill our research objectives.

2.1. Description of Experimental Setup

For the purpose of this measurement, a setup that replicated the real-life conditions
was utilized. The only difference was the varying distance of the individual lines from
the ground and the means of fault was a stainless steel rod, which as a measurement
with tree branches would be hard to replicate. The entire measurement setup comprised
an adjustable 3-phase auto-transformer connected to the low-voltage side of a 0.4/35 kV
dry insulated transformer. The high-voltage output of this transformer was subsequently
connected to the individual CC lines, as illustrated in Figure 2. The cross-section of the CC
used in this experiment was 35 mm2 and its core consisted of seven individual aluminum
wires. The length of individual lines was approximately 8.5 m.

Each line was affixed to a set of ceramic, pin-type insulators that are commonly
used in distribution networks with a nominal voltage of 22 kV. At both ends of the line,
stainless steel spheres were attached to ensure a geometrically graded electrical field,
thereby preventing the occurrence of PDs in unwanted areas. A similar approach was
adopted for the high-voltage terminals of the 35 kV transformer. To verify the correct
installation, the assessment was conducted using a UVC-sensitive camera.

Figure 2. One-pole schematic.

To facilitate the detection of PDs, an antenna was utilized. It was positioned perpen-
dicular to the CC lines, located a meter’s distance away from them. This antenna was
subsequently linked to an oscilloscope Siglent SDS-5034X (manufacturer Siglent, Helmond,
The Netherlands), serving as the data acquisition platform.

To simulate a fault, a stainless steel tube of ample length was employed to establish
contact between phases that were involved in the fault type under measurement. The
stainless steel tube had an outer diameter of 15 mm. To prevent the occurrence of partial
discharges at sharp edges due to high electrical field intensity, stainless steel spheres were
affixed to each end of the tube. This assembly was then positioned over the designated
number of phases and grounded, particularly when the fault under examination was
associated with ground potential (refer to Figure 3).

The CCs were positioned on insulators to elevate them to an adequate height, thereby
preventing PDs between the lines and the ground. The locations where the CCs were affixed
to the insulators underwent inspection using a UVC-sensitive camera. This inspection was
aimed at confirming the absence of discharges at the points of contact.
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Figure 3. High-impedance fault of the line to ground.

In Figure 4, the interconnection of all three phases can be observed, interconnected
by a stainless steel tube. This configuration demonstrates a scenario with a balanced
high-impedance fault occurring between the phases.

Figure 4. Balanced fault between all three phases.

2.2. Testing on Covered Conductors

In this section, we will outline the process of collecting experimental data. The testing
was conducted over a single day to minimize potential external influences, such as weather
and time of day. We tested five distinct types of faults, in addition to taking measure-
ments under normal operating conditions (referred to as background measurements). To
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ensure consistent and reliable results, we adhered to a systematic approach throughout the
testing process.

For each testing run, we captured the same set of five faults, followed by the change
to a different type of fault. Background measurements were taken between these changes
in fault types. This approach was chosen to ensure that any incidental background noise or
interference could be attributed to a specific type of fault, thereby reducing the possibility
of random noise affecting the measurements. The process is depicted in Figure 5.

Figure 5. Process of measurements.

Throughout the testing procedure, we recorded each sample for a duration of 20 msec,
utilizing a sampling frequency of 500 MHz. This high sampling frequency enabled us
to capture an entire cycle of the utility frequency, facilitating a precise analysis of the
fault conditions.

2.3. Dataset Description

The dataset consists of samples from six different classes, comprising five types of
faults and one background class. The background class (BGN) comprises 65 samples, while
each of the fault classes contains 30 samples. The fault classes are categorized as follows:

• Phase to phase (2 ll);
• Phase to ground (1 lg);
• Phase to phase with ground (2 llg);
• Three phases (3 ll);
• Three phases with ground (3 llg).

Each sample in the dataset comprises 100,000 data points of the floating point data
type. These data points are numerical values ranging from −1 to 1, representing the
measurements of the electrical system under different fault conditions. The dataset can be
partitioned into two main subsets: fault samples (150 samples) and samples without faults
(background, 65 samples). Examples of fault patterns can be seen in Figure 6, and examples
of background noise in Figure 7. However, PDs are not always that easily visible in the raw
signal, as shown in Figure 8. Overview of classes can be seen in Table 1.

Table 1. Dataset summary.

Class Number of Samples

Background (BGN) 65
Phase to Phase (2ll) 30

Phase to Ground (1lg) 30
Phase to Phase with Ground (2llg) 30

Three Phases (3ll) 30
Last Three Phases with Ground (3llg) 30

Total 215
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Each sample has been stored in the MATLAB file format (.mat), which facilitates
convenient access to the data, and allows its manipulation. Each file has a size of 114 MB,
making it relatively large to be used directly as raw input for machine learning models.

This dataset is designed for supervised multiclass classification tasks. In a supervised
setting, the input data points and corresponding class labels are provided, enabling the
training of classification models. Multiclass classification involves assigning a single class
label to each input sample from a set of multiple classes. In this case, the classes correspond
to different fault types and the background class.

Figure 6. Sample of fault (3llg) with visible PDs.

Figure 7. Sample of background (BGN) without any visible PDs.

Figure 8. Sample of fault (3llg) without many visible PDs.
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2.3.1. Feature Extraction

Given the substantial size of each sample and the sparsity of the pertinent features,
we adopted a two-pronged approach to feature extraction and compared each approach.
Our first approach involved extracting two (smaller and extended) diverse sets of statistical
features from the signal characteristics (from a single sample). These features ranged from
fundamental statistics, such as mean and variance, to more complex spectral measures, like
power spectral density (PSD). For a comprehensive list of extracted statistical features, refer
to Table A1 in the appendix and the extended set of features in Table A2.

The richness and diversity of these extracted features contribute to providing XGBoost
with a substantial amount of information to work with. This, coupled with the algorithm’s
inherent ability to handle a large number of features, makes it well suited for scenarios
where dimensionality reduction may not be necessary. Additionally, the models are then
used in an ensemble, further alleviating the need for dimensionality reduction. Moreover,
some works show that reducing or selecting features for XGBoost do not help or even harm
the results [28,29].

In addition to statistical features, we employed the MiniRocket algorithm [30], a
variant of the ROCKET algorithm [31], which allows us to directly work with raw time-
series data. Given the immense size of individual samples (117 MB), we applied max
pooling to downsample the signals. The choice of max pooling was motivated by its
ability to preserve the distinctive peaks within the data, which are indicative of the fault
types. This approach facilitated the effective use of the MiniRocket algorithm, which
excels at processing raw time-series data in a very small amount of time while maintaining
strong performance.

2.3.2. XGBoost Algorithm

For the classification task, the choice of algorithm was influenced by the need for both
robust performance and computational efficiency. The XGBoost algorithm [32], a prominent
gradient boosting framework, was selected due to its proven track record of achieving high
accuracy in complex classification tasks. Its ensemble-based architecture, which combines
the predictive power of multiple decision trees, has been well established for its ability to
capture intricate relationships within data.

2.3.3. MiniRocket Algorithm

Furthermore, the MiniRocket algorithm [30] was introduced into our classification
pipeline to address the unique challenges posed by the dataset. MiniRocket’s accelerated
feature extraction capabilities, coupled with its aptitude for handling large datasets and
maintaining classification accuracy, made it an ideal complement to XGBoost. However,
given the considerable sample size, a challenge emerged in terms of computational effi-
ciency. To overcome this, we applied max pooling to downsample the signal. Max pooling
was selected as the downsampling method to retain the crucial peaks that characterize PD
events within the time series.

We employed a classification pipeline in which we used the scikit-learn library [33],
using the MiniRocket transformer from the sktime library [34], followed by normalization
(StandardScaler). Afterward, we used logistic regression with cross-validation (Logisti-
cRegressionCV), as it demonstrated better performance in our preliminary evaluations
compared to the recommended ridge classifier, despite having a slower training time.

Eventually, the choice of XGBoost and Rocket algorithms was driven by the specific
characteristics of our dataset. The ability of the XGBoost algorithm to learn complex
relationships from extracted statistical features complements the capacity of the Rocket
algorithm to process raw time series data efficiently. Together, these approaches enhance
our ability to perform accurate fault classification in the presence of sparse yet informative
PD features within the large-scale electrical system dataset.
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2.4. Stacking Ensemble

The fundamental concept underlying stacking involves training a meta-model that
learns to blend the outputs of individual base models [35]. This meta-model, often termed
the “stacking model”, takes predictions from the base models as input and acquires the
ability to assign distinct weights to these predictions based on their performance and char-
acteristics. By enabling the meta-model to ascertain the optimal approach for combining
predictions, stacking frequently yields improved predictive performance compared to
utilizing each base model independently [36].

This assertion is supported by our prior research, which also employed the ensemble
technique with simpler models [37,38]. Furthermore, our preliminary assessments revealed
that our two methods accurately identify different samples, thus exhibiting complementary
behavior. Through the process of stacking, we aim to amalgamate these models, harnessing
their collective intelligence to enhance our overall predictive capacity.

We developed a stacking ensemble comprising five distinct machine learning models
with varying performance characteristics. Specifically, one of these models was an XGBoost
algorithm implemented on an extended feature set, as referenced in Table 2. Additionally,
another XGBoost model was employed, this time utilizing a smaller set of features, as
indicated in Table 3.

Furthermore, we trained three MiniRocket models, each on a different window size
for max pooling, employing max pooling with varying window sizes (1000, 500, and 250).
It is worth noting that the max pooling process was applied to the absolute values of the
data, while retaining the original sign within the resulting downsampled samples.

Table 2. Extended extracted features.

Feature Description / Parameters

(Features from Table 3)

Frequency Domain Features

Max Frequency Frequency corresponding to the maximum power in power spectrum
Mean Power Mean power in the power spectrum

Standard Deviation Power Standard deviation of power in the power spectrum
Peak-to-Peak Difference between maximum and minimum data values

Interquartile Range Interquartile range of the data
Spectral Centroid Weighted average of frequencies in the power spectrum
Spectral Spread Spread of frequencies in the power spectrum

Spectral Skewness Skewness of the power spectrum
Spectral Kurtosis Kurtosis of the power spectrum
Spectral Entropy Entropy of the power spectrum

Temporal Features

Zero Crossing Rate Number of times signal crosses zero
RMS Energy Root mean square energy of the data
Crest Factor Ratio of peak value to RMS energy
Form Factor Ratio of RMS energy to mean absolute value

Spectral Roll-off Frequency below which a certain percentage of the total power lies
Harmonic-to-Noise Ratio (HNR) Ratio of harmonic energy to noise energy

Fundamental Frequency Frequency with maximum power in power spectrum
Ratio of Harmonic Energies Ratio of harmonic energy to total energy

Peak-to-Average Ratio (PAR) Ratio of peak value to mean absolute value
Dominant Frequency Frequency with maximum power in power spectrum

Mean Frequency Weighted average frequency in the power spectrum
Signal Entropy Entropy of the power spectrum

Normalized L2 Norm L2 norm normalized by data length
Signal-to-Noise Ratio (SNR) Ratio of mean to standard deviation
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Table 3. Extracted features.

Feature Description/Parameters

Peak Features Adjusted peak detection:
Distance = 5000

Mean Peak Prominence Mean of the peak prominences of detected peaks
Num Peaks Number of detected peaks

Mean Peak Height Mean height of detected peaks
Standard Deviation Peak Height Standard deviation of peak heights

Peak Height Range Range between the maximum and minimum peak heights
Peak Height Ratio Ratio of maximum peak height to minimum peak height

Peak Features Adjusted peak detection:
Distance = 50,000

Mean Peak Prominence 2 Mean of the peak prominences of detected peaks (adjusted)
Num Peaks 2 Number of detected peaks (adjusted)

Mean Peak Height 2 Mean height of detected peaks (adjusted)
Standard Deviation Peak Height 2 Standard deviation of peak heights (adjusted)

Peak Height Range 2 Range between the maximum and minimum peak heights (adjusted)
Peak Height Ratio 2 Ratio of maximum peak height to minimum peak height (adjusted)

Statistical Features

Skewness Skewness of the data distribution
Kurtosis Kurtosis of the data distribution
Variance Variance of the data

Mean Mean of the data
Standard Deviation Standard deviation of the data

Median Median of the data
Maximum Maximum value in the data
Minimum Minimum value in the data

Root Mean Square (RMS) Square root of the mean of squared data values
Sum of PSD Sum of power spectral density using Welch’s method

Subsequently, we employed logistic regression with cross-validation (LogisticRegres-
sionCV) as a meta-learner to fit and combine the individual models. An example of
inference and the whole algorithm can be seen in Figure 9.

Combining XGBoost with the ROCKET algorithm creates a potent ensemble method.
XGBoost is adept at handling various data types and mitigating overfitting. Meanwhile,
ROCKET employs a time-series transformation approach to extract intricate patterns from
the data. Merging these capabilities through stacking improves predictive accuracy, stability,
and reliability. This ensemble method surpasses individual algorithms by capitalizing
on their complementary strengths. Additionally, integrating this method into practical
applications is as straightforward as employing any other machine learning algorithm, since
it is a fusion of existing algorithms. Standard libraries for these algorithms are available in
many languages and can be easily implemented.

Figure 9. Example of inference and classification of the ensemble.
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2.5. Training Process of Proposed Ensemble

The training process was performed on a training set with a size of 0.8% (172 samples),
and we stratified the sets to ensure that all classes were represented. Each base model
was trained separately on the entire training set. We trained an XGBoost on the extended
feature set, an XGBoost on a smaller set of features, and three MiniRocket classifiers were
trained on differently downsampled data (with varying window sizes for max pooling).

The output (probabilities of classification from the classifiers) of these five base models
were then used as input for the meta-learner, which was a logistic regression with cross-
validation. This was also trained on the entire training set. For the XGBoost and MiniRocket
algorithms, we used the default settings. The whole process can be seen in Figure 10, where
the flow of training inputs is depicted.

Figure 10. Training process for stacking ensemble.

3. Results and Discussion

In this section, we will present the results of our proposed ensemble, which combines
different types of classification and their components. We will engage in a comprehensive
discussion of our findings. Next, we will compare our results to those of other algorithms.
Finally, we will present the extended results of our proposed ensemble, including training
and inference time, window size for downsampling, and the importance of features in the
XGBoost algorithm. Our experimentation encompassed the following classification tasks:

1. Fault type classification alongside background assessment.
2. Determination of the presence of PDs within samples.
3. Fault type classification without the inclusion of background samples.
4. Importance of features from the XGBoost algorithm.
5. Comparison between other state-of-the-art algorithms.

3.1. Results for Our Proposed Ensemble and Its Parts

In this section, we present the results of our proposed ensemble and its parts and show
that the proposed ensemble outperforms its parts and shows high performance.

We employed 100 rounds of random cross-validation, utilizing a test size of 0.2%
(resulting in 43 samples for testing), while also ensuring stratified classes. This approach
was chosen to avoid overemphasizing any particular fault type.

3.1.1. Evaluation Fault Type Classification alongside Background Assessment

This section presents an in-depth analysis of the performance of our ensemble ap-
proach for fault classification. We conducted a comprehensive evaluation of the accuracy
of individual ensemble components, followed by an assessment of the overall accuracy
achieved by the entire ensemble.
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3.1.2. Accuracy Assessment of Ensemble Components

The ensemble encompasses diverse models, including an XGBoost classifier employing
a feature-rich set, as well as variants of the MiniRocket model distinguished by differing
window sizes. Furthermore, we incorporated an XGBoost model utilizing a reduced feature
set, tailored to enhance the efficiency. Table 4 shows the cases of the accuracy scores
achieved by these individual ensemble components.

Table 4. Accuracy of ensemble components in distinguishing all captured types.

Ensemble Component Accuracy Min Accuracy Max Accuracy

XGBoost (All Features) 0.78 0.69 0.88
MiniRocket (Window Size 1000) 0.74 0.62 0.84
MiniRocket (Window Size 500) 0.79 0.65 0.91
MiniRocket (Window Size 250) 0.77 0.65 0.88
XGBoost (Reduced Features) 0.72 0.63 0.83

Stacking Ensemble 0.84 0.72 0.98

The comprehensive ensemble strategy, integrating predictions from diverse compo-
nents, achieved a total accuracy of 0.8310. This remarkable result underlines the efficacy of
our ensemble approach in fault classification tasks. Additionally, we can see a very high
precision in the detection of no-fault (BGN) situations, as can be seen in the mean confusion
matrix plot presented in Figure 11, in which the precision is nearly 99.8%.

Figure 11. Confusion matrix for stacking ensemble for detecting fault types and background.

Moreover, as can be seen in Table 4, the minimum and maximum accuracy is best
for stacking the ensemble, thus ensuring the best possible results when used instead of
a single model. In addition, in Table 5, a comprehensive list of performance metrics for
the proposed ensemble can be observed. These metrics include true positives (TP), true
negatives (TN), false negatives (FN), accuracy, precision, and recall for the specified class.
Notably, the false positive rate for the background class is very low. This is a crucial
metric, as a high false positive rate would make the proposed method challenging to use,
leading to unnecessary power line inspections. It is also worth noting that faults in real
environments occur infrequently. Even though the false positive rate is rather low, the
best case would be near zero to have a deployable algorithm. This can be enabled with
more data, special techniques, and training methods [39,40], or enabling human validation
(human-in-the-loop).
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Table 5. Performance of ensemble in distinguishing all captured types.

Type TP FP FN TN Total Acc. Prec. Recall

bgn 12.0 3.1 1.0 26.9 43.0 0.9 0.8 0.9
1lg 4.8 0.7 1.2 36.3 43.0 1.0 0.9 0.8
2ll 3.2 1.1 2.8 35.9 43.0 0.9 0.7 0.5

2llg 5.4 0.3 0.6 36.7 43.0 1.0 1.0 0.9
3ll 5.4 1.2 0.6 35.8 43.0 1.0 0.8 0.9

3llg 5.0 0.8 1.0 36.2 43.0 1.0 0.9 0.8

3.1.3. Test of Statistical Significance

For testing statistical significance, we used the Mann–Whitney U test, a non-parametric
test designed to ascertain if there are notable disparities between two groups of inde-
pendent data samples. When extended to multiple sets of data, as is the case here, the
test can reveal whether the distributions of scores within these sets exhibit statistically
significant variations.

Table A1 presents the statistical significance values between different machine learning
methods, with each method being represented by a numeric index. The methods are
identified as follows: XGBoost with an extended feature set, MiniRocket with 1000 features,
MiniRocket with 500 features, MiniRocket with 250 features, XGBoost with a reduced
feature set, and a Stacking ensemble method. The table values denote the p-values of
statistical significance between the methods. The diagonal values are all 1000, indicating
that a method is perfectly correlated with itself.

Table A2 displays a comparison of the methods, but instead of using numerical indexes,
the methods are labeled with their respective names. The symbols “-” and ”NS” indicate
no statistical significance, while “*”, “**”, and “***” indicate increasing levels of significance
(*—p < 0.05, **—p < 0.01, ***—p < 0.001).

In Table A2, the diagonal cells show “-”, indicating that a method is being compared
to itself, and hence, there is no meaningful comparison.

These results show that there is no statistical significance in using XGBoost or MiniRocket
in terms of accuracy, meaning that they are comparable. On the other hand, the stacking
ensemble is more statistically significant in terms of accuracy than the others.

3.1.4. Differences between Fault and Non-Fault Instances

Table 6 presents the accuracy of ensemble components in distinguishing between
fault and non-fault samples. This table displays the accuracy levels attained by individual
ensemble components when tasked with discerning between instances with faults and those
without faults. The predictive accuracy of each ensemble component is assessed, serving as
an indicator of its effectiveness in addressing the underlying classification challenge. The
confusion matrix with TP, FP, TN, and FN can be seen in Figure 12.

The best-performing ensemble component was once again the stacking ensemble.
Interestingly, the disparity in performance between the parts-based and whole-stacking
ensembles was not significantly pronounced, with the best-performing ensemble outper-
forming the others by only 2%. These results indicate that our proposed method is proficient
in detecting PDs or determining their absence.

Table 6. Accuracy of ensemble components between fault and non-fault types.

Ensemble Component Accuracy

XGBoost (All Features) 0.90
MiniRocket (Window Size 1000) 0.86
MiniRocket (Window Size 500) 0.89
MiniRocket (Window Size 250) 0.89
XGBoost (Reduced Features) 0.90

Stacking Ensemble 0.92
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Figure 12. Confusion matrix for stacking ensemble for detecting fault (PDs) or without fault.

Interestingly, the precision of detection is slightly lower (98%) when compared to
the classification of types (99.8%) for all types of detection. This suggests that classifying
different classes of faults could potentially aid in the overall detection of faults.

We theorize that relying solely on identifying faults or non-fault instances may increase
the false positive rate. Additionally, utilizing fault types may improve the precision of
this process. It is also possible that an unbalanced dataset, with more samples containing
faults compared to fewer samples without faults, could be a contributing factor to why this
experiment performed less favorably in these aspects compared to the classification based
on fault types.

3.1.5. Differences between Types of Fault Only

We attempted to exclusively distinguish between various types of faults. This effort
was aimed at revealing both the similarities among different fault types and cases where
classes could be misidentified. Figure 13 illustrates that there are relatively few cases of
misclassification. Among these, the most commonly misclassified classes are 3 ll, which is
occasionally mistaken for 2 ll, and 1 lg. Interestingly, there does not appear to be a clear
pattern explaining why certain types are misclassified as others. However, it is worth
noting that there are no cases of misclassification between grounded and non-grounded
connections when the number of phases is the same (e.g., 2 ll vs. 2 llg or 3 ll vs. 3 llg).

We found that there are no classes similar enough to pose a challenge in distinguishing
them. While we initially speculated about this possibility, it is intriguing to note that each
type of fault exhibits distinct characteristics. This underscores the feasibility of fault-type
classification and emphasizes the need for further research to enhance the reliability and
utilization of covered conductors in distribution power lines.

The most accurate variant can be observed in Table 7, which is the stacking ensemble.
Interestingly, MiniRocket with a window size of 250 comes in as the second best, which is
intriguing considering its underperformance in previous results. This observation might
indicate that the components of our ensemble are quite diverse. This diversity could be the
reason behind the overall improvement in the classification results.
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Figure 13. Confusion matrix for stacking ensemble for detecting fault types only.

Table 7. Accuracy of ensemble components between types of fault.

Ensemble Component Accuracy

XGBoost (All Features) 0.78
MiniRocket (Window Size 1000) 0.83
MiniRocket (Window Size 500) 0.84
MiniRocket (Window Size 250) 0.85
XGBoost (Reduced Features) 0.74

Stacking Ensemble 0.88

3.2. Comparison to Other Algorithms

The classification results are presented in Table 8. Various classifiers, including deep
learning models like TapNet, InceptionTime, and LSTMFCN, as well as traditional methods,
such as logistic regression and support vector machine, were employed using different
libraries. Notably, our proposed ensemble of Rocket and XGBoost algorithms demonstrated
superior performance, outperforming all other classifiers with an accuracy of 0.842. It is
worth mentioning that TapNet, a deep learning model, could not be evaluated on an
NVIDIA T4 GPU due to its memory limitations.

This shows that a combination of two different but successful algorithms can improve
performance. Interestingly, deep learning, which is supposed to be applied for time series
classification, performed very poorly and required large hardware resources. It is probable
that increasing the training dataset would improve these results, but the very large memory
consumption would largely limit these algorithms.

Our results indicate that our proposed model outperforms other algorithms. Ad-
ditionally, utilizing heterogeneous models as base learners with distinct input features
(downsampled raw input and extracted features) yields superior results compared to
other algorithms.
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Table 8. Classification results with different classifiers (* TapNet was unable to fit a memory of
NVIDIA T4 GPU).

Classifier Type Library Accuracy

TapNet Deep Learning Sktime N/A *
InceptionTime Deep Learning Sktime 0.140
Logistic Regression with CV Traditional Scipy 0.248
LSTMFCN Deep Learning Sktime 0.349
Support Vector Machine Traditional Scipy 0.302
Multi-Layer Perceptron Neural network Scipy 0.302
Convolutional Neural Network Deep Learning Sktime 0.302
Time Series Forest Traditional Time Series Sktime 0.370
WEASEL Dictionary Based Sktime 0.533
Catch22 Feature-based Sktime 0.634
Random Forest Traditional Scipy 0.601
Supervised Time Series Forest Interval Based Sktime 0.772
XGBoost Traditional Xgboost 0.781
Rocket Kernel Based Sktime 0.785

Ensemble Custom - 0.842

3.3. Analysis of Proposed Ensemble for Detecting Type of Fault

In this section, we present other interesting results for our proposed ensemble.

3.3.1. Training and Inference Time

Table 9 provides insights into the inference and average training times for various
classifiers. Notably, the ensemble classifier exhibits a relatively large average training time,
primarily due to training five different classifiers as part of the ensemble strategy. However,
its inference time remained quite acceptable and competitive. These results were acquired
on an Intel(R) Xeon(R) CPU E5-2630, where 30 trials were run for each benchmark.

Table 9. Inference and average training times for different classifiers.

Classifier Avg Train Time (s) Inference Time (s)

XGBoost 0.19 0.00
Logistic Regression with CV 0.39 0.00

Support Vector Machine 0.00 0.00
Multi-Layer Perceptron 0.05 0.00

Random Forest 0.43 0.10
Convolutional Neural Network 5.72 0.16

Time Series Forest 3.45 0.86
MiniRocket 204.63 0.45

InceptionTime 209.63 1.08
Ensemble 640.45 1.38
LSTMFCN 86.80 1.51

Supervised Time Series Forest 5.69 2.01
WEASEL 120.48 3.76
Catch22 38.85 9.70

Interestingly, algorithms used for time series classification, such as WEASEL and
MiniRocket, tend to be slow in terms of training time. It is important to note that our
MiniRocket algorithm did not use the Ridge classifier, as was originally proposed [31], but
instead, it employed linear regression with cross-validation. Although this approach is
slower, it yields superior results.

If the speed is of greater importance than the accuracy, XGBoost stands out as an
excellent choice with minimal training and near-instantaneous inference times. It offers
a balance between the training speed and the inference efficiency, making it a preferred
option for real-time applications where rapid predictions are crucial. Additionally, it should
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be noted that the ensemble form is not the best possible one yet and there are many potential
improvements, like bagging, using subsets of the dataset, and pruning the ensemble. These
methods could greatly enhance the training process.

3.3.2. Influence of Window Size for Rocket Algorithm

Table 10 presents the performance of the Rocket algorithm with various window sizes
for max pooling the data. It is evident that the accuracy tends to fluctuate with changes
in the window size, as can be seen in Figure 14. Notably, smaller window sizes, such as
125 and 250, yield a higher accuracy, suggesting that they effectively highlight finer-grained
features relevant for classifying partial discharges.

On the other hand, larger window sizes, like 5000, correspond to smaller input sizes
and result in a lower accuracy, indicating that they may compress the signal too much,
potentially losing critical information related to partial discharges.

Interestingly, a window size of 500 emerges as the most effective choice, indicating
that it strikes a balance between capturing important peak features and avoiding over-
compression, leading to the highest average accuracy in this particular evaluation.

Figure 14. Accuracy of MiniRocket algorithm over the window size of the downsampled signal.

Table 10. Performance of Rocket algorithm with different window sizes for max pooling the data.
The values represent the average accuracy over 30 random cross-validations.

Window Size Size of Sample Accuracy

125 800,000 0.744
250 400,000 0.767
500 200,000 0.802
800 125,000 0.779

1000 100,000 0.762
1250 80,000 0.712
1600 62,500 0.727
2000 50,000 0.715
5000 20,000 0.535
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3.3.3. Importance of Features in XGboost Component of the Ensemble

We conducted an investigation into the importance of features within the XGBoost
algorithm, leveraging its inherent interpretability. The analysis of feature importance
serves a dual purpose: it enhances comprehension of the factors that steer predictions
and provides avenues for refining models and exploring data. By pinpointing the most
influential features, practitioners can make informed decisions regarding feature selection,
engineering, and potential model enhancements.

In Tables 11 and 12, we present the top 10 features recognized by the XGBoost algo-
rithm as exerting the greatest influence on prediction outcomes within the context of a
reduced feature set. The associated values for each feature denote their respective impor-
tance scores, indicating their contributions to the decision-making process of the model. A
higher score signifies a more pronounced impact on predictions.

Table 11. Top 10 features for the reduced feature set.

Feature Importance Value

Peak Height Range 0.136
Maximum 0.111

Mean Peak Prominence 2 0.098
Number of Peaks 2 0.083

Standard Deviation Peak Height 2 0.078
Standard Deviation Peak Height 0.070

Mean Peak Height 2 0.069
Minimum 0.048

Peak Height Ratio 2 0.043
Peak Height Ratio 0.039

Table 12. Importance values of extended set features.

Feature Importance Value

Crest Factor 0.126
Mean Peak Prominence 2 0.065

Peak-to-Peak 0.061
Number of Peaks 2 0.057
Peak Height Range 0.057

Maximum Frequency 0.055
Standard Deviation Peak Height 0.046

Variance 0.046
Maximum Value 0.042
Spectral Centroid 0.041

The data presented in Table 11 illustrate that the most crucial features within the
reduced set are closely associated with peaks and their variations. This observation aligns
with the fact that the signal representation of PDs is manifested as peaks in the time–
amplitude domain.

The results presented in Table 12 highlight the significance of various features derived
from the extended set. Among these features, the crest factor stands out as the most
important element, with an importance value of 0.126. The crest factor, as defined here,
captures the relationship between the peak amplitude and the RMS value of the waveform.
Its high importance value suggests that this metric plays a crucial role in identifying cases
of prominent peaks in the waveform. Since higher crest factors indicate more pronounced
peaks, their relevance to the detection of PDs and their types aligns with expectations.

Continuing down the list, the subsequent features exhibit descending importance
values. The mean peak prominence 2, peak-to-peak value, number of peaks 2, and peak
height range all contribute significantly to the overall assessment of the waveform. These
characteristics inherently encapsulate information about the peaks and variations present,
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further aiding in the identification of potential PDs. Additionally, the inclusion of features
from the spectral domain, such as maximum frequency and spectral centroid, indicates the
value of frequency-based information in this context. These spectral features, while not as
dominant as the crest factor, still offer meaningful insights that enhance the overall analysis.

The importance of all features can be observed in Table A3 for the reduced set of
features and in Table 12 for the extended set of features. Features that do not influence the
results can be observed in these tables and can be subsequently removed from the training
process. We chose to retain them in order to demonstrate that the XGBoost algorithm is
capable of learning significant features. This also contributes to the explainability of the
feature set.

4. Conclusions

In this study, we present a novel method for detecting fault types in covered conductors
used in medium-power transmission lines. We simulated five possible fault types along
with the presence of noise. Our proposed stacking ensemble approach achieved a mean
accuracy of 0.84%, demonstrating high precision in fault detection.

4.1. Remarks

We have demonstrated that our proposed method can effectively distinguish between
different types of faults while maintaining a low false positive rate. This is crucial for
real-world deployment. It signifies that fault detection using antennas is not only feasible
but can also be further developed for practical implementation after additional research.

We employed a heterogeneous stacking ensemble method, which we believe is inno-
vative in the field of partial discharges. This method utilizes two different types of inputs.
Our proposed ensemble outperformed both state-of-the-art and classical machine learning
algorithms. Additionally, we investigated the optimal window size for downsampling. We
showed that using an ensemble had statistical significance instead of using the components
of an ensemble alone.

Furthermore, we identified crucial features that are utilized by the XGBoost algorithm,
adding a layer of explainability to our approach. While the training time is relatively high
due to the training of six different classifiers, the inference time is comparable to other
methods, indicating its high usability.

4.2. Limitations and Future Work

The limitations of our study were primarily linked to the size of the acquired dataset.
Despite this constraint, we maintain that the amount of data was adequate for the scope of
this work. In future research, a more substantial dataset would be preferable. Additionally,
an intriguing avenue for exploration would be to broaden the components of the stacking
ensemble or investigate alternative classification methods, including more complex deep
learning models or diverse stacking schemes. Moreover, employing feature engineering
could offer valuable insights and would be an interesting aspect to consider. A limitation
regarding implementation in real environments would most certainly be the selection of
hardware components that would have the required accuracy and computing power while
being cost-effective and having low consumption. Another issue could be caused by the
power source for the measuring station, since the aim is to avoid the usage of high-voltage
transformers which would require the shutdown of the power line. The solution for this
could be the usage of a photovoltaic panel in combination with a battery. There is also
a requirement for GSM network availability, since the information has to be sent to a
distribution network operator.

4.3. Summary

In conclusion, this paper introduces a comprehensive and innovative approach to en-
hance the detection of fault types, which was previously carried out only as fault detection,
in covered conductors within distribution power lines. This study employs an antenna-
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based method to detect faults and a unique fault-type classification technique utilizing a
stacking ensemble that combines XGBoost and ROCKET algorithms. This shows a possible
way to address the demand for accurate fault type detection in XLPE-covered conductors.
The proposed classifiers exhibit remarkable accuracy in distinguishing between differ-
ent fault types. The integration of the heterogeneous stacking ensemble method further
bolsters accuracy, potentially leading to the wider adoption of covered conductors. This
advancement has the capacity to reduce buffer zones, enhance power delivery reliability,
and contribute to positive environmental outcomes by preventing accidents and promoting
the secure and extensive utilization of covered conductors in distribution power lines.
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Abbreviations
The following abbreviations are used in this manuscript:

CC Covered conductors
PD Partial discharges
SNR Signal-to-noise ratio
HNR Harmonic-to-noise ratio
PSD Power spectral density
UVC Short-wave UV
XLPE Cross-linked polyethylene
BGN Samples containing background
2ll Phase to phase
1lg Phase to ground
2llg Phase to phase with ground
3ll Three phases
3llg Three phases with ground
TP True positive
FP False positive
TN True negative
FN False negative

Appendix A

Table A1. Statistical significance: p-values of fault type and background classification.

XGBoost MiniRocket 1000 MiniRocket 500 MiniRocket 250 XGBoost Reduced Stacking

XGBoost 1.000000 1.106405 × 10−3 0.193134 0.796693 7.765196 × 10−6 1.081966 × 10−5

MiniRocket 1000 0.001106 1.000000 0.000047 0.001811 1.113019 × 10−1 1.902296 × 10−11

MiniRocket 500 0.193134 4.681914 × 10−5 1.000000 0.103009 1.413209 × 10−6 3.760277 × 10−3

MiniRocket 250 0.796693 1.810803 × 10−3 0.103009 1.000000 1.853162 × 10−5 1.221413 × 10−6

XGBoost Reduced 7.765196 × 10−6 1.113019 × 10−1 1.000000 × 10−10 1.900000 × 10−5 1.000000 2.785192 × 10−12

Stacking 1.081966 × 10−5 1.902296 × 10−11 3.760277 × 10−3 1.221413 × 10−6 2.785192 × 10−12 1.000000
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Table A2. Sign plot for statistical significance of fault type and background classification.

XGBoost MiniRocket 1000 MiniRocket 500 MiniRocket 250 XGBoost Reduced Stacking

XGBoost - ** NS NS *** ***
MiniRocket 1000 ** - *** ** NS ***
MiniRocket 500 NS *** - NS *** **
MiniRocket 250 NS ** NS - ** ***

XGBoost Reduced *** NS *** ** - ***
Stacking *** *** ** *** *** -

Table A3. Importance of extracted features for XGboost model with reduced features set.

Feature Importance

Peak Features Adjusted peak detection:
Distance = 5000

Mean Peak Prominence 0.097632
Num Peaks 0.031346

Mean Peak Height 0.015803
Standard Deviation Peak Height 0.069656

Peak Height Range 0.136260
Peak Height Ratio 0.039222

Peak Features Adjusted peak detection:
Distance = 50,000

Mean Peak Prominence 2 0.097632
Num Peaks 2 0.083282

Mean Peak Height 2 0.068708
Standard Deviation Peak Height 2 0.078199

Peak Height Range 2 0.004834
Peak Height Ratio 2 0.042518

Statistical Features

Skewness 0.027511
Kurtosis 0.027172
Variance 0.029464

Mean 0.020554
Standard Deviation 0.000000

Median 0.000000
Maximum 0.111720
Minimum 0.047870

Root Mean Square (RMS) 0.004374
Sum of PSD 0.027478

Table A4. Importance of extracted features for XGboost model with extended feature set.

Feature Importance

Peak Features Adjusted peak detection:
Distance = 5000

Mean Peak Prominence 0.018827
Number of Peaks 0.016362

Mean Peak Height 0.011084
Standard Deviation of Peak Height 0.045729

Peak Height Range 0.056671
Peak Height Ratio 0.015543
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Table A4. Cont.

Feature Importance

Peak Features Adjusted peak detection:
Distance = 50,000

Mean Peak Prominence 2 0.065121
Number of Peaks 2 0.057345

Mean Peak Height 2 0.040397
Standard Deviation of Peak Height 2 0.038609

Peak Height Range 2 0.000707
Peak Height Ratio 2 0.023249

Statistical Features

Skewness 0.010877
Kurtosis 0.011849
Variance 0.045627

Mean 0.010598
Standard Deviation 0.000000

Median 0.000000
Maximum 0.041645
Minimum 0.016252
Variance 0.000000

RMS (Root Mean Square) 0.020945

Spectral and Additional Features

Sum of Power Spectral Density 0.011494
Maximum Frequency 0.055299

Power Mean 0.000000
Power Standard Deviation 0.022223

Peak-to-Peak 0.061269
Interquartile Range 0.001098
Spectral Centroid 0.041281
Spectral Spread 0.012221

Spectral Skewness 0.023546
Spectral Kurtosis 0.002866
Spectral Centroid 0.000000
Spectral Entropy 0.012583

Zero-Crossing Rate (ZCR) 0.010718
RMS Energy 0.000000
Crest Factor 0.126061
Form Factor 0.021400

Spectral Roll-Off 0.011754
Harmonics-to-Noise Ratio (HNR) 0.017958

Fundamental Frequency 0.000000
Ratio of Harmonic Energy 0.011589

PAR (Peak-to-Average Ratio) 0.001609
Dominant Frequency 0.000000

Mean Frequency 0.000000
Signal Entropy 0.000000

Normalized L2 Norm 0.000000
SNR (Signal-to-Noise Ratio) 0.007596
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