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Abstract: In industrial applications based on texture classification, efficient and fast classifiers are
extremely useful for quality control of industrial processes. The classifier of texture images has
to satisfy two requirements: It must be efficient and fast. In this work, a texture unit is coded in
parallel, and using observation windows larger than 3× 3, a new texture spectrum called Texture
Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) is proposed, calculated, and used as
a characteristic vector in a multi-class classifier, and then two image databases are classified. The first
database contains images from the company Interceramic®® and the images were acquired under
controlled conditions, and the second database contains tree stems and the images were acquired in
natural environments. Based on our experimental results, the TS_PETU satisfied both requirements
(efficiency and speed), was developed for binary images, and had high efficiency, and its compute
time could be reduced by applying parallel coding concepts. The classification efficiency increased
by using larger observational windows, and this one was selected based on the window size. Since
the TS_PETU had high efficiency for Interceramic®® tile classification, we consider that the proposed
technique has significant industrial applications.

Keywords: texture spectrum based on parallel encoded texture unit (TS_PETU); multi-class classifier;
image classification; high efficiency

1. Introduction

Currently, image recognition based on the textural characteristics of images has a large
number of applications in biomedicine [1,2], object detection [3,4], medical diagnostics [5–7],
and remote sensing [8,9], among others. Because of this, around the world there is a large
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number of research groups that carry out research on texture analysis, extraction, and/or
classification. The goal of these groups is to develop new applications whose objective is to
improve quality of life.

In texture analysis, there are three main problems: texture classification, where the
goal is to determine to which class a test texture belongs; texture segmentation, where the
goal is to partition an image into sections based on the textures that make it up; and texture
synthesis, where the goal is to generate a mathematical model in order to build the desired
texture. In particular, in texture classification, the extraction of textural features is very
important, according to the author of reference [10]. There are four methods to solve the
problem: geometry, mathematical models, signal processing, and statistics.

The statistical method for extracting textural characteristics basically consists of se-
lecting an observation window, the size of which is frequently W = 3× 3 pixels [11]. By
scrolling the window pixel by pixel over the entire image, patterns are detected and en-
coded to calculate the texture unit [12], which we will denote as k. The unit value k depends
on the encoding method, as indicated in reference [11], in which the authors describe, apply,
and compare 35 different texture extraction techniques. However, in all methods, the unit k
is considered a discrete variable and is used as an index in a discrete histogram h(k), whose
length is from 0 to K − 1. The histogram h(k) has RK dimensions, where the value of K
is the maximum texture unit value. Now, since the objective is to apply to the histogram
h(k) in image classification, it is interpreted as a texture spectrum and then is used as a
characteristic vector in supervised (multi-class and one-class) and unsupervised (clustering)
classifiers [10,13–17]. Such classification systems operate in real time and efficiently [18–20];
when the spectrum h(k) has low dimensional space, the histogram contains a sufficient
amount of texture information of the image under study, the classifier is optimized, and
the electronic device is task-specific.

In this work, by conducting a local analysis on a binary image s(m, n) through an
observation window W = I × J, an image s(m, n) is represented by a probability density
function pI×J(k), where m, n are the coordinates of the pixels of the digital image and k is
the unit of texture. The equalized histogram pI×J(k) is called Texture Spectrum Based on
the Parallel Encoded Texture Unit (TS_PETU) because the unit k is coded using parallel
coding concepts. Due to parallel coding, the TS_PETU histogram can be computed using
larger windows at W = 3× 3, and as a consequence, they contain a greater amount of
texture information and their dimensional space can be selected since the probability
function pI×J(k) has RI(2J−1)+1 dimensions. Based on the behavior of RI(2J−1)+1, two
regions are defined: low-dimensional space and high-dimensional space. In the first region,
the TS_PETU histogram has from R22 up to R10,231 dimensions and the window size is
within the range of W = 3× 3 to W = 10× 10. On the other hand, in the second region, the
TS_PETU histogram satisfies the condition RK > R10,231 dimension, and then the window
size must satisfy I × J > 10× 10.

By interpreting the TS_PETU histogram as a texture spectrum, it can be used as a
feature vector in a multi-class classifier and then two image databases can be classified.
The first database was acquired under controlled conditions by the Interceramic®® com-
pany, and the images in the second database were acquired in natural environments. With
the goal of verifying the classification efficiency of our proposal, three experiments were
developed. In the first experiment, using window sizes within the range of I × J = 3× 3
to I × J = 20× 20, texture information was measured for Interceramic®® tile images. Our
experimental results confirm that the amount of texture information contained in the
TS_PETU histogram increased due to the observation window size and its behavior was
exponential, and the theoretical results are in agreement with the experimental results. In
the second experiment, the TS_PETU histogram was calculated using observation windows
from I × J = 3× 3 to I × J = 20× 20. It was used as a feature vector in a multi-class
classifier and then the Interceramic®® images were classified. Our experimental results
confirm the high efficiency of the TS_PETU transform since the classification accuracy was
100%. This high efficiency is attributed to the precision with which the TS_PETU transform
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can work and because the images were acquired under controlled conditions. In the third
experiment, using windows within the interval of I × J = 3× 3 to I × J = 10× 10, the
TS_PETU histogram was calculated. Next, this was used as a characteristic vector in the
classifier for multiple classes, and subsequently, the images acquired in natural environ-
ments were classified. In our results, the classification efficiency was within the range of
E f I×J = 84.84% (I × J = 3× 3) to 100% 100% (I × J = 5× 5 or greater). The classification
errors are attributed to the fact that the images were acquired under uncontrolled condi-
tions. The increase in efficiency can be attributed to the increase in texture information due
to the size of the observation window.

Based on the analysis performed on the binary image and our experimental results, the
following relevant points were inferred for the TS_PETU transform: (1) The transformation
has potential industrial applications, (2) its dimensional space and texture information can
be selected based on the observation window size, (3) its classification efficiency improves
when the observation window is larger, (4) the transformation has potential real-time
application due to the parallel encoding of the texture unit, and (5) vision systems can be
implemented for quality control.

2. Texture Spectrum Based on Parallel Encoded Texture Unit
2.1. Proposal Methodology

Figure 1 shows the proposed procedure schematically. The methodology consists
of two phases: calculation of the texture spectrum and its application. In the first phase,
called texture spectrum calculation, the digital image s(m, n) is interpreted as a binary
matrix S = {smn}, where the white pixels are ones and the black pixels are zeros. Once the
observation window size I× J is selected, we describe the procedure to calculate the texture
unit k, the encoding of which is done in parallel. Subsequently, the unit k is used as an index
in the histogram hI×J(k) and is also used to calculate the dimensional space RK. Finally,
an algorithm is proposed to calculate the histogram hI×J(k), and with it, a probability
density function is defined, pI×J(k). This function is named Texture Spectrum based on
the Parallel Encoded Texture Unit (TS_PETU). In the second phase, called application,
the TS_PETU histogram is used to measure texture information and applied in image
recognition. Both the texture measurement and classification efficiency are experimentally
validated using two image databases. The first is of industrial origin and the acquisition
conditions are controlled, whereas in the second database, the images were acquired in
natural environments.

2.2. Parallel Encoded Texture Unit

With the goal of obtaining a reduced dimensional space in the texture spectrum, in
this section, the texture unit is coded in parallel. The procedure is described below.

Let s(m, n) (m = 1, 2, . . . , M; n = 1, 2, . . . , N) be a binary image with M × N pixels,
which is interpreted as a binary matrix {smn} with M rows and N columns, and let W an
observation window be of the size W = I × J. Then, for each position on the matrix {smn},

the window W detects a binary pattern denoted by P =


a11 a12 · · · a1J
a21 a22 · · · a2J
...

...
. . .

...
aI1 aI2 · · · aI J

, whose

number of rows is I and number of columns is J, and the number of patterns P in the matrix
{smn} is denoted by Pp = (M− I + 1)(N − J + 1). This can be seen in Figure 2a, where a
white pixel is 1, a black pixel is 0, and the window size is I × J = 3× 3.
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Figure 1. Proposed methodology for calculating the TS_PETU histogram and its application in 
measuring texture information and image classification: the texture unit is in blue. Figure 1. Proposed methodology for calculating the TS_PETU histogram and its application in

measuring texture information and image classification: the texture unit is in blue.
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Figure 2. (a) Binary image 𝑠(𝑚, 𝑛) represented by the binary matrix ሼ𝑠௠௡ሽ: M = 8, N = 8, and the 
binary pattern was detected by the observational window 𝑊 = 3 × 3; (b) three texture unit exam-
ples calculated using the parallel codification. 

Figure 2. (a) Binary image s(m, n) represented by the binary matrix {smn}: M = 8, N = 8, and the
binary pattern was detected by the observational window W = 3× 3; (b) three texture unit examples
calculated using the parallel codification.

Let P be a binary pattern detected through window W. If each row is considered
a binary number, then each binary number can be independently codified as a decimal
number through a BCD conversion such that the ith decimal number is calculated by means
of

ci =
J−1

∑
j=0

bj2j = b020 + b121 + b222 + · · ·+ bJ−12J−1 (1)

where ci (i = 1, 2, . . . , I) is the ith decimal number, bj (j = 0, 1, . . . , J − 1) is the jth bit
number, 2 is the base, and j indicates the jth element. Thus, the texture unit is defined by
summing all decimal numbers, which are calculated from the pattern

k =
I

∑
i=1

ci = c1 + c2 + · · ·+ cI (2)
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where k is our texture unit definition calculated through a parallel codification. Figure 2b
shows three texture units calculated using the parallel codification I × J = 3× 3. Based on
Figure 2, the texture unit k is calculated by carrying out the following simple procedure:
(a) An observational window is defined and its size is W = I × J; (b) the window W detects
a binary pattern for each position on the binary image s(m, n); (c) the binary pattern is
interpreted as a binary state P, whose number of rows is I and number of columns is J;
(d) a decimal number is calculated from each row and there are I numbers; and (e) the
texture unit k is estimated by calculating the sum of all decimal numbers.

To calculate the minimum value for the texture unit k, all elements are zeros for

the pattern P =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

. Then, by applying the procedure described and

considering Equation (1), decimal numbers are

c1 = 0 =
J−1
∑

j=0
bj2j = 0×20 + 0× 21 + 0× 22 + · · ·+ 0× 2J−1

c2 = 0 =
J−1
∑

j=0
bj2j = 0×20 + 0× 21 + 0× 22 + · · ·+ 0× 2J−1

c3 = 0 =
J−1
∑

j=0
bj2j = 0×20 + 0× 21 + 0× 22 + · · ·+ 0× 2J−1

...

cI = 0 =
J−1
∑

j=0
bj2j = 0×20 + 0× 21 + 0× 22 + · · ·+ 0× 2J−1

. (3)

Based on Equations (2) and (3), the minimum value for the texture unit is

k = 0 = c1 + c2 + c3 + · · ·+ cI = 0 + 0 + 0 + · · ·+ 0 (4)

On the other hand, to estimate the maximum value, all element are ones for the pattern

P =


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

. By carrying out the previous procedure and using Equation (1),

the decimal numbers are

c1 = 1×20 + 1× 21 + 1× 22 + · · ·+ 1× 2J−1

c2 = 1×20 + 1× 21 + 1× 22 + · · ·+ 1× 2J−1

c3 = 1×20 + 1× 21 + 1× 22 + · · ·+ 1× 2J−1

...
cI = 1×20 + 1× 21 + 1× 22 + · · ·+ 1× 2J−1

. (5)

From Equation (5), the following is obtained:

c1 = 2J

c2 = 2J

c3 = 2J

...
cI = 2J

, (6)
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The texture unit is

k = c1 + c2 + c3 + · · ·+ cI = 2J + 2J + 2J + · · ·+ 2J , (7)

and then the maximum value of the texture unit is defined by

K = k = I
(

2J − 1
)
+ 1 (8)

Based on Equations (4) and (8), the texture unit k can take a discrete value into the
interval of 0 to K− 1 = I

(
2J − 1

)
, where K is the maximum value. This interval considers

all possible states for the pattern P.

2.3. Dimensional Space RK

When an image s(m, n) is transformed in a texture spectrum h(k) where k is the texture
unit, m, n are the coordinates for the digital image, and the unit k is used as an index, the
spectrum has a length of 0 to K − 1 and the discrete histogram h(k) has a dimensional
space denoted by RK. In the RK space, all possible binary states for the pattern P are
considered. There are RK dimensions, and the maximum dimension is the maximum value
of the texture unit definition. Clearly, the dimensional space is a function of the observation
window size W, whose size is I × J, and therefore Equation (8) can be written as

K(I, J) = I
(

2J − 1
)
+ 1 (9)

Moving forward in this work, K(I, J) will be used or only K. The behavior is linear
for the term I but the behavior is exponential for the term J. Therefore, the behavior of I
reduces exponentially in space from R2i×J

[12,14] to RI(2J−1)+1. In Figure 3, the behavior of
RI(2J−1)+1 vs. W = I × J is observable.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Behavior of 𝑅௄ vs. 𝑊 = 𝐼 × 𝐽, where 𝐼 = 𝐽. 

By analyzing Figure 3, we can define two regions: low-dimensional space and high-
dimensional space. The threshold between both regions is indicated by the blue line. In 
the low-dimensional space region, the observation window must be within the interval  3 × 3 ൑ 𝐼 × 𝐽 ൑ 10 × 10 (10)

and as a consequence, 𝑅ଶଶ ൑ 𝑅௄ ൑ 𝑅ଵ଴ଶଷଵ (11)

On the other hand, in the region of high-dimensional space, the observation window 
satisfies the condition  𝐼 × 𝐽 > 10 × 10 (12)

and then 𝑅௄ > 𝑅ଵ଴,ଶଷଶ (13)

is satisfied. 
Computationally speaking, the texture spectrum ℎ(𝑘) can operate in the region of 

low- or high-dimensional space. This offers versatility in its application. 

2.4. Algorithm 
In texture classification, a digital image 𝑠(𝑚, 𝑛) is transformed into a discrete histo-

gram ℎ(𝑘), where the texture unit k is used as the index and the length of the discrete 
histogram must be within the interval of 0 to 𝐾 − 1. The histogram ℎ(𝑘) is interpreted as 
a texture spectrum and shows the frequency of occurrence of the units calculated from the 
image 𝑠(𝑚, 𝑛).  

To avoid mathematical complexity, an algorithm to transform the image into a tex-
ture spectrum is described below: 𝑠(𝑚, 𝑛) → ℎ(𝑘): (1) the binary image 𝑠(𝑚, 𝑛) is inter-
preted as a binary array ሼ𝑠௠௡ሽ, where the white pixels are 1 s and the black pixels are 0 s; 
(2) the observation window size 𝑊 = 𝐼 × 𝐽 is selected; (3) by moving the observation win-
dow pixel by pixel over the entire matrix ሼ𝑠௠௡ሽ, a binary pattern 𝑃 is detected for each 
position on the image under study; (4) the texture unit 𝑘 is calculated for each pattern 𝑃 

Figure 3. Behavior of RK vs. W = I × J, where I = J.



Sensors 2023, 23, 8368 8 of 21

By analyzing Figure 3, we can define two regions: low-dimensional space and high-
dimensional space. The threshold between both regions is indicated by the blue line. In the
low-dimensional space region, the observation window must be within the interval

3× 3 ≤ I × J ≤ 10× 10 (10)

and as a consequence,
R22 ≤ RK ≤ R10,231 (11)

On the other hand, in the region of high-dimensional space, the observation window
satisfies the condition

I × J > 10× 10 (12)

and then
RK > R10,232 (13)

is satisfied.
Computationally speaking, the texture spectrum h(k) can operate in the region of low-

or high-dimensional space. This offers versatility in its application.

2.4. Algorithm

In texture classification, a digital image s(m, n) is transformed into a discrete histogram
h(k), where the texture unit k is used as the index and the length of the discrete histogram
must be within the interval of 0 to K − 1. The histogram h(k) is interpreted as a texture
spectrum and shows the frequency of occurrence of the units calculated from the image
s(m, n).

To avoid mathematical complexity, an algorithm to transform the image into a texture
spectrum is described below: s(m, n)→ h(k) : (1) the binary image s(m, n) is interpreted
as a binary array {smn}, where the white pixels are 1 s and the black pixels are 0 s; (2) the
observation window size W = I × J is selected; (3) by moving the observation window
pixel by pixel over the entire matrix {smn}, a binary pattern P is detected for each position
on the image under study; (4) the texture unit k is calculated for each pattern P and then
the unit k is used as an index in the discrete histogram h(k) (k = 0, 1, 2, . . . , K− 1), whose
length is between 0 and K− 1; and (5) the histogram h(k) is divided by the total texture
units Pp, obtaining the function of probability densities:

pI×J(k) =
h(k)
Pp

=
h(k)

(M− I + 1)(N − J + 1)
(14)

The function pI×J(k) is called Texture Spectrum based on the Parallel Encoded Texture
Unit (TS_PETU) because the unit k is encoded in parallel, the index I × J indicates the
observation window size, and the equalized histogram TS_PETU shows the frequency of
occurrence of the texture units calculated from the digital image {smn}. The Algorithm 1:
TS_PETU to calculate the TS_PETU histogram is shown below.

By applying the described algorithm and the Algorithm 1: TS_PETU, and using
different observation window sizes, the histogram TS_PETU was calculated for a binary
digital image; see Figure 4.

Figure 4a shows the binary image s(m, n) of a tree stem, and its size is M × N =
4169 × 3120 pixels. Figure 4b,c show the texture spectra calculated with observation
windows of 5× 5 and 6× 6 pixels, respectively. Both TS_PETU histograms have low-
dimensional space since R156 and R379 are the respective numbers of dimensions and
Conditions (10) and (11) are met. On the other hand, Figure 4d,e show the spectra calculated
with windows with 14× 14 and 15× 15 pixels, respectively. Both TS_PETU histograms
have high-dimensional space because the number of dimensions is R229,363 and R491,506,
respectively, and as a consequence, Conditions (12) and (13) are satisfied.
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Algorithm 1: TS_PETU

Beginning
Input:
s(m, n)← user Binary image to transform
I and J← user Observation window size selection
Calculus:
M and N ← s(m, n) Binary image size

for m : M Displacement over image lines
for m : N Displacement over image columns

Texture unit calculation:
P← s(m, n) Extraction of binary pattern P from image

s(m, n)
c1, c2, . . . , cI ← P Calculation of decimal values by conversion

BCD
k = c1 + c2+, . . . ,+cI Texture unit calculation k

Texture unit mapping k to the discrete histogram hI×J(k)
hI×J(k)← k Unit k is assigned to the histogram hI×J(k)
end

end
Calculation of probability density function pI×J(k) or histogram TS_PETU

pI×J(k)← hI×J(k) Histogram calculation TS_PETU, pI×J(k)
End
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Figure 4. (a) Binary image of tree stem used to calculate its texture spectra pI×J(k); (b) p5×5(k)
calculated with W = 5× 5; (c) p6×6(k) calculated with W = 6× 6; (d) p14×14(k) calculated with
W = 14× 14; (e) p15×15(k) calculated with W = 15× 15.



Sensors 2023, 23, 8368 10 of 21

Based on the results shown in Figure 4, the binary image s(m, n) was transformed into
the TS_PETU texture spectrum, which can operate with low- and high-dimensional space.
Its region of operation depends on the selected observation window size.

2.5. Texture Information (Entropy)

Knowing that the transformed TS_PETU generates the odds function pI×J(k), and
knowing that in the information theory the amount of information is measured based on a
function of probability densities, then by applying the information theory, the amount of
texture information extracted from the image can be measured.

Since the texture unit k is a discrete random variable, let us assume that its initial
indeterminacy is equal to kα (α = 0, 1, 2, . . . , K− 1), where there are K possible states due to
dimensional space RK, and if we consider that all states are equiprobable, the information
provided by the texture unit is [21]

I(kα) = log2

(
1
kα

)
= −log2(kα) (15)

such that the information provided by all the texture units is estimated with

I(k0, k1, k2, . . . , kK−1) = I(k0) + I(k1) + I(k2) + · · ·+ I(kK−1) (16)

Combining Equations (15) and (16), the texture information is expressed by

I(k0, k1, k2, . . . , kK−1) = −log2(k0)− log2(k1)− log2(k2)− · · · − log2(kK−1) (17)

Since the texture unit has probability pk(k), the amount of texture information is
obtained by means of the weighted sum

H = −p0(k)log2(p0(k))− p1(k)log2(p1(k))− p2(k)log2(p−(k))− · · · − pK−1(k)log2(pK−1(k)) (18)

Finally, the amount of average texture information is the weighted average value of
the amount of texture information of the various states of the unit k, and this is determined
with Probability Function (14).

H = −
K−1

∑
α=0

pI×J(k)log2
(

pI×J(k)
)
=

K−1

∑
α=0

pI×J(k)log2

(
1

pI×J(k)

)
, (19)

Note that, in the limit of the summation, we have the parameter K. Considering the
dimensional space of the TS_PETU transform (Equation (8)) in Expression (19), the amount
of texture information is calculated through

H = −
I(2J−1)

∑
α=0

pI×J(k)log2
(

pI×J(k)
)

(20)

That is, the amount of texture information H is a function of the observation window
size w = I × J. To illustrate what has been mentioned, let us consider that all texture units
are equiprobable, and as a consequence, Expression (20) can be rewritten as follows:

H = −
I(2J−1)

∑
α=0

1
I(2J − 1) + 1

log2

(
1

I(2J − 1) + 1

)
, (21)

whose behavior is shown in Figure 5.
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That is, the amount of texture information 𝐻 is a function of the observation window 
size 𝑤 = 𝐼 × 𝐽. To illustrate what has been mentioned, let us consider that all texture units 
are equiprobable, and as a consequence, Expression (20) can be rewritten as follows: 
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whose behavior is shown in Figure 5. 

 
Figure 5. Amount of texture information behavior (Shannon’s entropy) H vs. window size I × J,
with an interval of I × J = 3× 3 to I × J = 20× 20.

Observing Figure 5, the y-axis corresponds to the amount of texture information,
which can also be identified as the Shannon entropy; the x-axis corresponds to the size of
the observation window; and the behavior of H vs. I × J has exponential growth. We can
conclude that the amount of texture information extracted from image S is a function of
the window size; the larger the window, the more information is extracted. That is, the
TS_PETU transform is more efficient in image classification when the window W = I × J it
is bigger.

2.6. Application

Various classifiers have been reported in the literature to which texture spectra are ap-
plied as a multidimensional characteristic vector [13–20]. In particular, in references [12,14],
a multi-class classifier based on image statistics is described, applied, and optimized. Due
to its experimentally demonstrated efficiency, in this section, the TS-PETU texture spectrum
is applied as the characteristic vector. In Figure 6, the classifier for multiple classes is
schematically shown.
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As shown in Figure 6, the classifier consists of two stages: learning and recognition.
In the learning stage, the digital images are classified by a human expert, each image
is considered a class, and in the database there are C classes. To characterize each class
based on its local textural characteristics, for each class Sc(m, n) (c = 1, 2, . . . , C), a series
of subimages is drawn at random Sc,s(m, n) (s = 1, 2, . . . , S) and then for each subimage
Sc,s(m, n), the texture spectrum is calculated pc,s

I×J(k). Finally, the characteristic vector of
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class c is denoted by pc
I×J(k) and is determined with the average of the texture spectra

pc,s
I×J(k), pc

I×J(k) = 1
S ∑S

s=1 pc,s
I×J(k) [12,14]. In the recognition stage, from a test image

St(m, n), a series of subimages is randomly extracted St,p(m, n) (p = 1, 2, . . . , P). For each
subimage St,p(m, n), the texture spectrum is calculated pt,p

I×J(k), and then the characteristic

vector of the test image pt
I×J(k) is obtained with the average of the texture spectrum pt,p

I×J(k),

pt
I×J(k) =

1
P ∑P

p=1 pt,p
I×J(k). Finally, the test image St(m, n) is classified using the minimum

distance between the prototype vector pc
I×J(k) and the test image vector pt

I×J(k) [12].

3. Experimental Work

In this experimental work, two digital image databases were used and three series
of experiments were developed. One database was provided by Interceramic®®, and the
second database was acquired in natural environments. In the first experiment, each im-
age from the Interceramic®® database was binarized using a global threshold technique.
Subsequently, each binary image had its local texture characteristics extracted by means of
the TS_PETU transform, and then the texture information was measured. With the results,
the H vs. I × J behavior graph was created. In the second experiment, the digital images
from the Interceramic®® database were classified, the TS_PETU histogram was used as a
characteristic vector in the classifier described in Section 2.6, and with the results, the follow-
ing behavior graphs were constructed: classification efficiency

(
E f I×J

)
vs. window size

(W = I × J), sorting efficiency
(

E f I×J

)
vs. dimensional space

(
RK), and sorting efficiency(

E f I×J

)
vs. texture information (H). In the third series of experiments, the TS_PETU

histogram was used again as a feature vector in the classifier described in Section 2.6, and
then a database of natural images of tree stems was classified. With the results of this
series of experiments, the following behavior graphs were again generated: classification
efficiency

(
E f I×J

)
vs. window size (W = I × J), sorting efficiency

(
E f I×J

)
vs. dimen-

sional space
(

RK), and sorting efficiency
(

E f I×J

)
vs. texture information (H). Finally,

the numerical experiments were implemented by applying the MatLab 2016b software
and a GHIA computer with the following characteristics: Intel(R) Core (TM) i7-4790 CPU
3.60 GHz processor and 8GB RAM.

3.1. Experiment 1: Measurement of Texture Information Based on TS_PETU

As a first step, the Interceramic®® image database was taken and the digital images
were binarized by applying a global threshold technique. The RGB images are observable
in Figure 7, and each image has a size of M× N = 300× 300. Using a window size within
the interval of I × J = 3× 3 to I × J = 20× 20, local texture features were extracted from
the binary image, and then the amount of texture information H in the histogram pI×J(k)
was calculated. Next, using the measurements of H and the window size, the behavior
graph of H vs. W = I × J was created (see Figure 8).

As can be observed in Figure 8, the texture information H grows when the observation
window size W = I × J is bigger. The behavior graph of H vs. I × J has an exponential
form, and its behavior is similar for all images. The minimum texture information value
correspondents to “Calabria Ambroto Gray” and its value is H3×3 = 2.86. The maximum
texture information value corresponds to “Dover Rochester Grey Mate” and the value is
H20×20 = 16.26. Then, by comparing Figure 5 (theoretical results) with Figure 8 (experi-
mental results), it can be seen that the theory and the experiments are in accordance. We
can then infer that the image classification efficiency with the TS_PETU transform is better
when the observation window is larger. This is corroborated with two series of image
classification experiments, whose results are shown in the following sections.
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Figure 8. Experimental texture information measured from Interceramic®®’s database.

During the computing process, the execution time and the number of operations were
measured in the calculation of the histogram pI×J(k). Table 1 was generated with the
measurements. By analyzing Table 1, it can be seen that the execution time increases due
to the increase in the size of the observation window. The increase in time is attributed
to the fact that the number of computational operations also grows with the window
size. In our experiments, the minimum execution time measured was 0.3770 s for window
I× J = 3× 3 and the number of computational operations was 1,509,668. On the other hand,
the maximum execution time was 0.6390 s, the window size was I × J = 20× 20 pixels,
and the number of operations was 63,089,839.
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Table 1. Average execution time and number of operations required to calculate the histogram
pI×J(k) for tile images from Interceramic®®, M× N = 300× 300 pixels.

Window Size I×J Pixels Number of Operations Runtime, Seconds

3× 3 1,509,668 0.3770
4× 4 2,734,479 0.3770
5× 5 4,293,184 0.3770
6× 6 6,178,775 0.3770
7× 7 8,384,292 0.3770
8× 8 10,902,823 0.3780
9× 9 13,727,504 0.3800

10× 10 16,851,519 0.3810
11× 11 20,268,100 0.3860
12× 12 23,970,527 0.3880
13× 13 27,952,128 0.3890
14× 14 32,206,279 0.3900
15× 15 36,726,404 0.3980
16× 16 41,505,975 0.4060
17× 17 46,538,512 0.4310
18× 18 51,817,583 0.4370
19× 19 57,336,804 0.4670
20× 20 63,089,839 0.6390

3.2. Experiment 2: Classification of Database Images from Interceramic®®

In this section, the digital image database provided by Interceramic®® was classified.
The tiles were manufactured in their industrial plant and were analyzed and named
by a human expert (see Figure 7). In addition, the ceramic tiles were photographed at
Interceramic®® under controlled lighting conditions, rotation, and scale. The size of the
images is 300 × 300 pixels. On the other hand, by calculating the TS_PETU histogram
with window sizes within the interval of I × J = 3× 3 to I × J = 20× 20 and using the
TS_PETU histogram as a characteristic vector in the multi-class classifier (see Section 2.6),
the Interceramic®® database was identified. In the classifier, the images used in the learning
stage were the same images as those used in the recognition stage. In addition, the subimage
size was similar for both stages. In Table 2, the parameters for the classifier are shown.

Table 2. Parameters used in the classifier for multiple classes.

Learning Stage Recognition Stage

Number of classes, C C = 12 Test images number,
T T = 12

Image size, Sc(m, n) M× N = 300× 300 Test image size,
St(m, n) M× N = 300× 300

Number of
subimages, Sc,s(m, n) S = 100 Number of

subimages, St,p(m, n) P = 100

Subimage size,
Sc,s(m, n) 150× 150 Subimage size,

St,p(m, n) 150× 150

The results obtained in the classifier are expressed through a confusion matrix Mc,
the main diagonal of which is the correct identification [12], the elements outside the
main diagonal are classification errors, the rows correspond to the test images, and the
columns correspond to the prototype images (master images). Table 3 shows an example of
confusion matrix Mc, which was obtained in our experimental work. In this example, the
TS_PETU histogram was calculated using a I × J = 5× 5 pixel observation window.
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Table 3. Confusion matrix Mc obtained using a 5 × 5 window size.
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From the confusion matrix of the example (Table 3), the classification efficiency for the
texture spectrum p5×5(k) is calculated by

E f I×J =
∑ diag(Mc)

C
× 100, (22)

where E f I×J is the classification efficiency in terms of percentage, the term I × J is the
observation window size, ∑ diag(Mc) is the sum of all of the elements of the main diagonal
(marked in blue) in the matrix Mc, and C is the total number of classes. Considering the
values of the confusion matrix (Table 3) and the parameters of Table 2, the efficiency E f 5×5
is

E f 5×5 =
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

12
× 100 = 100% (23)

Based on Equation (23), the classification efficiency of the texture spectrum p5×5(k) is
equal to E f 5×5 = 100%. The experimental results are shown in Figure 9.

In Figure 9, the classification efficiency for the ceramic tile images is 100%. This high
efficiency can be attributed to the following points:

1. The images of the ceramic tiles were acquired under controlled conditions, such as:
lighting, scale, rotation, and translation. This increased the possibility of success in
the identification of images, and as a consequence, also reduced possible classification
errors.

2. The TS_PETU texture extraction technique correctly characterized the digital image
through its local texture characteristics—that is, the TS_PETU transform extracted
sufficient texture information to achieve high image classification efficiency.

3. The statistical classifier for multiple classes was optimized to achieve high image
identification efficiency. Optimization was achieved based on the size of the subimages
and the number of subimages S and P.
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The TS_PETU transform must be calculated with a window size within the interval of
I × J = 3× 3 to I × J = 19× 19, since if the window has a size of I × J = 20× 20 or bigger,
there is an overflow of physical memories. However, with these results, it is confirmed that
the TS_PETU transformed has potential application in digital images and surface quality
control and can be operated in low- or high-dimensional space.

3.3. Experiment 3: Classification of Natural Images

In this section, using the TS_PETU histogram as a characteristic vector in the classifier
described in Section 2.6 and with window sizes of I × J = 3× 3 to I × J = 10× 10, a
database of 64 natural images was classified. The images were of trees, they were RGB,
they were acquired using an LG-Q50 camera, and the rotation, scale, and translation were
controlled but the lighting was natural. The size of each image is 3120 × 4260 pixels and
the images can be observed in Figure 10.

On the other hand, the characteristics of the classifier were based on the data in Table 4,
where the number of classes is C = 68, the number of subimages is S = 100, and the
subimage size is 1560× 2130.

Again, the results obtained in the classification of natural images are expressed through
the confusion matrix Mc. As previously mentioned, the main diagonal is the correct
identification, the elements outside of the main diagonal are classification errors, the rows
correspond to the test images, and the columns correspond to the master images. Finally,
the classification efficiency E f I×J was calculated with Equation (22). The experimental
results are observable in Figure 11, where the behavior graphs of E f I×J vs. W = I × J,
E f I×J vs. RK, and E f I×J vs. H are shown.
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Table 4. Parameters used in the classifier for multiple classes.

Learning Stage Recognition Stage

Number of classes, C C = 68 Number of test
images, T T = 68

Image size, Sc(m, n) M× N = 3120× 4260 Test image size,
St(m, n) M× N = 3120× 4260

Number of
subimages, S S = 100 Number of

subimages, St,p(m, n) S = 100

Subimage size,
Sc,s(m, n) 1560× 2130 Subimage size,

St,p(m, n) 1560× 2130

As can be observed in Figure 11, the efficiency E f I×J increases with window size
growth W, dimensional space RK, and texture information H. According to these results,
the spectrum TS_PETU has an efficiency of E f I×J = 100% when W = I × J = 5× 5 or
bigger, there is a dimension of R156 or more, and the texture information is H = 6.25 or
more. This high efficiency can be attributed to points 2 and 3, which were mentioned in
Section 3.2. On the other hand, the lowest efficiency was measured in E f I×J = 84.84%,
where W = I × J = 3 × 3, there is a dimension of R22, and the texture information
is H = 3.92. The classification error is attributed to the lighting conditions not being
controlled during the image acquisition process. However, from these results, the following
can be concluded: The TS_PETU transform has high efficiency in image recognition if it is
carried out in a region of low-dimensional space, (see Equations (10)–(13) and Figure 3).
In addition, our proposal has potential application in the recognition of images in natural
environments since its efficiency is very high when the window W is of a larger size.
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4. Discussion

In this work, a new texture extraction technique is proposed, which is called Texture
Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) because the texture unit is
calculated based on a parallel coding. The TS_PETU technique transforms a binary image
into a probability density function (equalized histogram) in terms of texture units. The
equalized histogram can be calculated using windows greater than 3× 3 and the histogram
is in dimensional space. Its efficiency in the extraction of texture information and image
classification was verified by conducting three series of experiments: In the first series, it is
corroborated that the amount of texture information depends on the window size W; in the
second series, its efficiency is confirmed when the images are acquired under controlled
conditions; and in the third series, its efficiency is verified when the images are acquired
under non-controlled lighting conditions. Based on the results obtained, the following
points can be inferred:

1. Texture Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) represents
a binary image s(m, n) as a probability density function in terms of texture units
pI×J(k), whose characteristics are low-dimensional space and high efficiency of image
classification.

2. The TS_PETU histogram shows the frequency of occurrence of the texture units
calculated from the binary image under study.

3. Because the texture unit is calculated by applying parallel coding concepts, the
TS_PETU histogram has low-dimensional space and it is possible to use large win-
dows.

4. The amount of texture information contained in the TS_PETU histogram is based on
the observation window size W = I × J.

5. It is experimentally corroborated that the TS_PETU transform has high efficiency in
image classification.

6. Classification efficiency is improved using windows W with larger sizes; see Sec-
tions 3.1–3.3.

7. The TS_PETU histogram can work in low- and high-dimensional space regions, and
in both regions there can be high image classification efficiency.
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8. The efficiency of the TS_PETU transform increases when the conditions are controlled
during the image acquisition process.

9. The TS_PETU histogram can be calculated using parallel compute.
10. The classification efficiency with the TS_PETU transform can be reduced due to noise

produced by the illumination source and the electronic systems used during image
acquisition and processing due to numerical computational errors and retroflections
generated on the surface of the material under study [22].

11. The TS_PETU transform has significant practical application, and some benefits for
the user are high efficiency, short execution times, low-dimensional space, selectivity
through the observation window, implementation with parallel computing, and easy
implementation with electronic cards.

Comparing TS_PETU with the techniques reported in reference [11], our proposal can
be estimated with observation windows greater than 3× 3 and its low-dimensional space
can be conserved, the amount of texture information increases with the window size, and
as a consequence, the classification efficiency is improved. Now, comparing the TS_PETU
with the original versions of the LBP and CCR transforms, which are based on BCD coding,
our proposal offers some advantages, as can be seen in Table 5.

Table 5. Comparative table between TS_PETU and the original versions of the CCR and LBP.

Interceramic®®Image Database

TS_PETU CCR LBP

Window Size Efficiency (%) Window Size Efficiency (%) Window Size Efficiency (%)

3× 3 100 3× 3 94.23 3× 3 100
4× 4 100 4× 4 99.23 4× 4 Not applicable [23,24]
5× 5 100 5× 5 Overflow 5× 5 Overflow
6× 6 100 6× 6 6× 6
7× 7 100 7× 7 7× 7
8× 8 100 8× 8 8× 8
9× 9 100 9× 9 9× 9

10× 10 100 10× 10 10× 10
11× 11 100 11× 11 11× 11
12× 12 100 12× 12 12× 12
13× 13 100 13× 13 13× 13
14× 14 100 14× 14 14× 14
15× 15 100 15× 15 15× 15
16× 16 100 16× 16 16× 16
17× 17 100 17× 17 17× 17
18× 18 100 18× 18 18× 18
19× 19 100 19× 19 19× 19
20× 20 Overflow 20× 20 20× 20

Natural image database

TS_PETU CCR LBP

Window size Efficiency (%) Window size Efficiency (%) Window size Efficiency (%)

3× 3 84.848 3× 3 78.083 3× 3 98.40
4× 4 98.484 4× 4 87.030 4× 4 Not applicable [23,24]
5× 5 100 5× 5 Overflow 5× 5 Overflow
6× 6 100 6× 6 6× 6
7× 7 100 7× 7 7× 7
8× 8 100 8× 8 8× 8
9× 9 100 9× 9 9× 9

10× 10 100 10× 10 10× 10

When the images are acquired under controlled conditions, the three transforms
have high efficiency greater than 90%. However, in our experiments, when the images
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are acquired in natural environments, the CCR transform has an efficiency of less than
80%, the LBP has an efficiency of 98.40, and the TS_PETU has an efficiency of up to 100
if the observation window is equal to or greater than I × J = 5 × 5. Two important
points to highlight are that (1) the CCR and LBP cannot work with windows larger than
I × J = 5× 5 because the dimensional space is very large and an overflow is generated
in the computer, whereas the TS_PETU can operate with windows within the interval
of I × J = 3× 3 to I × J = 19× 19 and the computational overflow is generated for the
window I × J = 20× 20, and (2) the decrease in efficiency is attributed to the fact that the
conditions were not controlled during the acquisition of the images.

Due to the definition of the texture unit and the efficiency obtained experimentally,
our future research lines are (1) to apply parallel compute to reduce execution times, (2) to
develop artificial vision applications, (3) to describe the mathematical foundation of the
TS_PETU transform, and (4) to optimize image classification with the TS_PETU transform
and perform a sensitivity analysis.

5. Conclusions

In this work, a new texture extraction technique is proposed and applied that is called
Texture Spectrum based on the Parallel Encoded Texture Unit (TS_PETU) because the unit
k is calculated based on parallel coding. The TS_PETU transformation is based on a local
analysis of the binary image s(m, n), and this represents the image as a probability density
function pI×J(k) in terms of texture units. The main characteristics of the function pI×J(k)
are: (1) It can be calculated with windows greater than W = I × J = 3× 3, (2) it has very
low dimensional space RI(2J−1)+1, (3) the amount of texture information H is based on the
window size I × J, and (4) it has high efficiency in image classification since it can reach
up to 100%. Experimentally, the four characteristics were verified, confirming that the
TS_PETU transform has high efficiency in image recognition.

The TS_PETU transform can be implemented in real time due to the parallel coding
of the texture unit. In addition, it has potential industrial application when the surface or
texture characteristics are important.
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