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Abstract: The enormous increase in heterogeneous wireless devices operating in real-time appli-
cations for Internet of Things (IoT) applications presents new challenges, including heterogeneity,
reliability, and scalability. To address these issues effectively, a novel architecture has been intro-
duced, combining Software-Defined Wireless Sensor Networks (SDWSN) with the IoT, known as the
SDWSN-IoT. However, wireless IoT devices deployed in such systems face limitations in the energy
supply, unpredicted network changes, and the quality of service requirements. Such challenges
necessitate the careful design of the underlying routing protocol, as failure to address them often
results in constantly disconnected networks with poor network performance. In this paper, we
present an intelligent, energy-efficient multi-objective routing protocol based on the Reinforcement
Learning (RL) algorithm with Dynamic Objective Selection (DOS-RL). The primary goal of apply-
ing the proposed DOS-RL routing scheme is to optimize energy consumption in IoT networks, a
paramount concern given the limited energy reserves of wireless IoT devices and the adaptability to
network changes to facilitate a seamless adaption to sudden network changes, mitigating disruptions
and optimizing the overall network performance. The algorithm considers correlated objectives with
informative-shaped rewards to accelerate the learning process. Through the diverse simulations, we
demonstrated improved energy efficiency and fast adaptation to unexpected network changes by
enhancing the packet delivery ratio and reducing data delivery latency when compared to traditional
routing protocols such as the Open Shortest Path First (OSPF) and the multi-objective Q-routing for
Software-Defined Networks (SDN-Q).

Keywords: SDWSN-IoT; multi-objective routing; reinforcement learning; energy-efficient routing

1. Introduction

The dramatic and exponential increase in the urban population has created a huge
demand for supplying high-quality communication services to its citizens[1]. Simulta-
neously, recent technological advancements have led to a significant increase in smart
electronic devices, such as sensors, actuators, smartphones, and smart appliances, thereby
creating new business opportunities for providing high-quality communication services.
Effective communication among this vast number of electronic devices is possible through
the Internet of Things (IoT), a ubiquitous network of interconnected objects that can in-
teract with the physical world and use existing Internet standards to provide services for
information transfers, analytics, and applications [2]. The design and deployment of such
sophisticated systems, which entail digitalizing all aspects of our lives, face enormous
challenges that require careful consideration, such as networking, security and privacy,
intelligent data analysis, and smart sensors [3]. Over the years, traditional wireless sensor
networks (WSNs) have evolved into becoming IoT devices capable of providing diverse
sensing services in IoT systems [4]. However, wireless IoT devices inherit the character-
istics of the traditional WSNs, which inhibit their application in IoT systems due to their
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energy-constrained behavior. To meet the application-specific requirements of the IoT in
real-time, the energy cost for transmission poses a challenge in IoT applications and should
be thoroughly considered [5].

IoT-based wireless sensors are deployed in computationally demanding and energy-
constrained environments, necessitating the exploration of solutions that enable the pro-
longed operation of wireless sensor nodes without requiring battery replacements or
location changes [6]. Among the various tasks performed by such nodes, data transmission
emerges as the most energy-intensive, followed by others such as route computation, idle
listening for potential incoming traffic, and data processing [7]. As a result, the develop-
ment of effective routing protocols that identify optimal routes for a successful data transfer
with acceptable energy consumption is critical for enhancing the overall performance of
IoT-oriented WSNs. Despite the significant number of existing routing protocols in the
literature, it is worth noting that current solutions are relatively limited in their ability
to address the energy efficiency challenges of IoT-oriented WSNs. However, the integra-
tion of emerging networking technologies, such as Software-Defined Networks (SDN),
into wireless sensor networks has shown promising results in the development of ef-
fective energy-efficient schemes. By removing energy-consuming tasks such as routing,
data processing, and network management from the physical wireless nodes, the SDN
has transformed them into data forwarding entities, significantly reducing their energy
consumption [8]. The SDN architecture, with its centralized management approach that sep-
arates control logic from network devices, eliminates distributed operations and provides a
holistic view of the network, better reflecting the actual network conditions. Leveraging
its ability to collect comprehensive network information and create a global network view,
the SDN architecture has facilitated the introduction of new optimization techniques, such
as artificial intelligence and machine learning (ML) algorithms capable of solving complex
problems [9].

In this study, we investigate the integration of Reinforcement Learning (RL), a ma-
chine learning algorithm, with SDN technology to propose a novel multi-objective energy-
efficient routing protocol for IoT-oriented WSNs. The resulting model, named SDWSN-IoT,
comprises a multi-layered architecture with multiple controllers working collaboratively to
ensure the flexible management and monitoring of network operations. Moreover, we ex-
tract network knowledge to facilitate the intelligent routing of collected data. The primary
contributions of this paper can be summarized as follows:

• Identify the limitations of current RL-based routing schemes.
• Propose an intelligent multi-objective routing protocol named DOS-RL for SDWSN-IoT.
• Present distinctive features of the proposed routing scheme.
• Implement and evaluate the performance of the proposed solution in comparison

to the OSPF and SDN-Q routing schemes in terms of energy efficiency and other
related parameters.

The rest of this chapter is organized as follows. Section 2 provides a comprehensive
review of recent studies on routing schemes for SDWSN, with a particular focus on RL-
based routing schemes and architectures in the context of an intelligent SDWSN. Drawing
from the insights gained in this review, we identify the limitations of existing studies and
propose our intelligent multi-objective energy- efficient routing scheme for the SDWSN.
Section 3 delves into the design and implementation details of our proposed scheme,
offering a thorough examination of its various components. Furthermore, it provides an in-
depth analysis of the unique characteristics that distinguish our routing scheme, including
the introduction of shaped rewards during learning and the Dynamic Objective Selection
algorithm. Section 4 showcases the experimental results and conducts a comprehensive
performance evaluation of our proposed framework. Lastly, in Section 5, we conclude the
paper and discuss potential future works.
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2. Background and Related Work

This section begins with a concise background and overview of recent studies focusing
on the optimization of energy consumption in the SDWSN. We conclude this section
by reviewing recent research efforts on machine learning-based energy-efficient routing
schemes applied in this domain.

2.1. SDWSN-IoT

In recent years, the Internet of Things (IoT) has emerged as one of the most influential
technologies of the 21st century. The IoT encompasses a wide range of devices, from every-
day household objects to sophisticated industrial tools, that can exchange data with other
devices and systems via the internet [10]. The sharp increase of IoT devices, connected
through both wired and wireless networks, has experienced exponential growth and is
projected to surpass 22 billion by 2025 [11]. This extensive network holds the potential
to optimize the reliability, resilience, and efficiency of IoT systems that are applicable in
many areas, including agriculture, transportation, energy, homes, health, industry, and in-
frastructure [12–14]. However, the diverse nature of SDWSN-IoT devices still faces a
number of challenges, such as security, deployment flexibility, and the absence of efficient
energy consumption schemes [15]. To effectively tackle these challenges, the integration
of SDWSN-IoT emerges as a pivotal concept, facilitating the establishment of a robust
platform for resolving the aforementioned concerns.

The SDWSN-IoT framework operates by separating the control logic from the network
devices, leaving the sensing devices with only data-forwarding functionality. With the
introduction of SDWSN-IoT in networking, tasks that demand a large amount of computing
power, such as routing, data processing, and network management, are removed from
the physical sensor nodes and handled at the control plane by the SDN controller. As
depicted in Figure 1, a typical SDWSN-IoT framework comprises multiple layers, namely
the sensing, data, and control layers. Each layer consists of specific devices performing
assigned tasks. The lower layer, known as the sensing layer, is composed of deployed
IoT wireless sensor objects. These devices are responsible for collecting raw data from the
environment and delivering it to the data layer. The data layer comprises devices capable
of forwarding the collected data to the IoT cloud. With enhanced computational capacity,
memory, and an unlimited power supply, the controller in the control layer assumes
the crucial role of managing data flow across the forwarding devices in the data layer.
The seamless flow of the substantial amount of collected data relies on the data-forwarding
rules, which are installed on the forwarding sensor nodes by the SDN controller [16].
By using protocols such as Sensor OpenFlow [17], the controller efficiently manages the
dynamic flow of collected data in real-time by regularly computing optimal routing paths
based on the real-time network status. By decoupling the control layer from the data layer,
the SDWSN-IoT framework has enabled the programmable control and virtualization of
the network functionalities.

The SDWSN-IoT paradigm is undeniably a promising and pivotal technology in wire-
less IoT applications. However, effectively collecting and routing a substantial amount
of data through energy-constrained IoT sensor devices remains a significant challenge.
Therefore, the development of an energy-efficient routing scheme is crucial for enhancing
the overall performance of such networks. The design of such a routing scheme determines
the longevity of the network, directly influencing the duration of active data flows across
multiple paths. The integration of IoT applications and the SDWSN framework has facili-
tated the adoption of advanced and resource-intensive intelligent optimization techniques
that were previously unattainable [18]. These techniques include resource-demanding
intelligent machine-learning algorithms that require considerable energy, computational
power, and memory supply to operate effectively [19].
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Figure 1. The traditional SDWSN-IoT architecture.

In recent years, the incorporation of machine learning algorithms into the SDWSN
has drawn substantial attention from the community, as it introduces the concept of task
automation in SDWSN-IoT [20]. Task automation in the SDWSN includes a wide range of
solutions such as classification, the prediction of future network conditions, and the installa-
tion of optimization rules based on measured network conditions. The integration between
machine learning algorithms and SDWSN-IoT architecture is a promising approach to
optimizing the energy consumption of sensor nodes, mainly for the following reasons:

• Adaptive Optimization: Machine learning algorithms can analyze real-time network
conditions and historical data to make intelligent decisions for optimizing energy
consumption in IoT applications. By dynamically adapting to changing network
conditions, the algorithms can optimize the operation of sensor nodes, reducing
unnecessary energy consumption [21].

• Intelligent Routing: Machine learning algorithms can learn from past routing patterns
and make predictions about future network conditions. This enables them to intelli-
gently route data, considering factors such as energy constraints, network congestion,
and node availability. By choosing efficient routing paths, energy consumption can be
minimized while maintaining effective data transmission [22–24].

• Proactive Resource Allocation: Machine learning algorithms can analyze data patterns
and predict resource demands in advance. This allows for proactive resource alloca-
tion, ensuring that resources, such as energy, computational power, and memory, are
efficiently allocated to meet the demands of IoT applications. By optimizing resource
allocation, energy efficiency can be significantly improved [25].

• Anomaly Detection: Machine learning algorithms can detect anomalies and abnormal
behavior in the network. By identifying unusual patterns or events that may lead
to energy wastage or inefficiency, proactive measures can be taken to mitigate such
issues and optimize energy efficiency in IoT applications [26].

• Predictive Maintenance: Machine learning algorithms can analyze sensor data and
predict potential failures or maintenance requirements. By proactively addressing
maintenance needs, energy can be saved by preventing unexpected downtime and
optimizing the overall performance of IoT devices [27].

The following subsection introduces the commonly applied ML algorithm applied to
find optimal routes for the intelligent forwarding of collected data across the network in
IoT applications.



Sensors 2023, 23, 8435 5 of 22

2.2. Reinforcement Learning-Based SDWSN-IoT

Unlike traditional routing algorithms, machine learning algorithms provide a distinct
advantage as they are capable of surpassing the static nature of forwarding rules in flow
tables and adapting to the dynamic network environment, enabling the identification
of crucial flow items with remarkable accuracy. Machine learning algorithms offer a
remarkable advantage by enhancing network performance through automated tasks and
the ability to predict future network conditions. Addressing the need for minimized
network latency and energy efficiency within the constraints of application dependence in
a software-defined fog-IoT network, a study [28] introduced a dynamic task scheduling
and assignment approach based on deep reinforcement learning (DRL). This method
formulates the task assignment and scheduling problem as an energy-constrained Deep
Q-Learning process, yielding promising results. In the realm of large-scale IoT networks,
a study [29] investigated and proposed an SDN model with a Q-routing algorithm to
efficiently route large data while reducing energy consumption. The proposed scheme
showcased significant improvements in terms of the delivery latency, packet delivery ratio,
and energy consumption. To optimize the overall processing delay within an energy-
limited environment of a cloud-edge terminal collaboration network, which encompasses
mobile-edge computing and an SDN architecture, a study [30] introduced a reinforcement
learning-based joint communicational and computational resource allocation mechanism
(RJCC). This approach demonstrated an enhanced performance in terms of the average
energy consumption and average data delivery latency for communicating IoT devices.

Furthermore, several studies have explored the application of machine learning algo-
rithms in finding optimal data transfer routes within SDN-based network architectures
for the SDWSN. For instance, a study [31] introduced an intelligent architecture for self-
learning control strategies in software-defined networks by proposing a routing scheme
based on deep reinforcement learning (DRL). This scheme, known as NetworkAI, utilizes
deep reinforcement learning techniques and leverages network monitoring technologies
like inband network telemetry to dynamically generate control policies, leading to near-
optimal decision-making. Similarly, in [32], the authors presented a scheme to optimize
the routing path in the SDWSN using the Reinforcement Learning (RL) algorithm. Their
approach incorporates energy efficiency and network Quality-of-Service (QoS) parameters
into the reward function. The proposed routing scheme compares various SDN-based
techniques, including the traditional SDN, energy-aware SDN (EASDN), QR-SDN, TIDE,
as well as non-SDN-based techniques such as Q-learning and RL-based routing (RLBR).
The results indicate that the RL-based SDWSN outperforms other approaches in terms of
the network lifetime and packet delivery ratio.

This paper introduces a routing scheme that aims to enhance the capabilities of
SDWSN-IoT by integrating cognitive machine learning techniques, leveraging the inherent
features of SDWSN-IoT such as network programmability and comprehensive topology
monitoring. The proposed framework facilitates dynamic learning and the adaptation to
network changes, enabling the proactive installation and continuous updating of routes
based on rapidly changing link states, thereby ensuring that swift and efficient routes are
found for data forwarding.

3. Methodology

The integration of intelligent machine learning-based algorithms harnesses the ad-
vantages offered by SDWSN-IoT architecture and is considered a promising solution for
optimizing the network performance. By intelligently acquiring and utilizing real-time
network data, these algorithms can determine optimal routes for the efficient transfer of
network traffic while conserving network resources [33]. This section provides a compre-
hensive introduction to the unique characteristics and emerging technical issues that have
guided the design of our proposed energy-efficient routing scheme for the SDWSN-IoT
network architecture.
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We begin by identifying a critical concern that is often overlooked when designing
multi-objective energy-efficient RL-based routing protocols and present a proposed solu-
tion. The key issues identified include the slow learning process, conflicts among multiple
objectives, and the uncertainty of learned values, which can result in additional over-
head during the learning process. Further details on the proposed routing scheme are
provided below.

3.1. Preliminary

Reinforcement learning algorithms involve a learning agent interacting with its envi-
ronment to find and select actions based on the current state and feedback signals received
to optimize a predefined objective. These algorithms rely on reward functions, which pro-
vide feedback signals to guide the learning process by evaluating the effects of taken actions.
However, designing an appropriate reward function is not trivial, as it can be challenging
to guide the learning agent without getting trapped in local optima [34]. Consequently,
even seemingly solvable reinforcement learning scenarios may produce unexpected results.
The goal of reinforcement learning is either to maximize the expected return of a reward
signal or to minimize costs for optimization problems, indicating how well the learning
agent performs [35]. The RL reward signals can be classified into two categories: sparse
and dense rewards. Sparse rewards provide feedback only at the end of a learning episode,
indicating whether the agent succeeded or failed in its task. On the other hand, dense
rewards give feedback at every stage of the decision-making process, making them more
effective for learning compared to their sparse counterparts. However, learning based on
sparse rewards can be time-consuming as the agent needs to explore more to collect re-
wards and learn the optimal policy. Traditional multi-objective RL optimization approaches
frequently combine dense rewards linearly and reduce them to a single scalar objective
using methods like the weighted sum [36]. While this approach aims to guide the learning
agent in progressing toward its goal, it often necessitates intensive weight tuning to set a
priori preferences among objectives.

In this study, we utilize ’reward shaping,’ incorporating heuristic knowledge from
the system designer to provide learning agents with additional reward signals. These
extra rewards enable the agent to differentiate between good and bad actions early in the
learning process, encouraging exploration in areas of the state space that hold promising
solutions. Such prior knowledge can be integrated into the reward function or initial agent
values. Despite often deploying reinforcement learning agents without prior information,
previous research [37] has demonstrated the benefits of providing heuristic knowledge in
guiding exploration. Our study shows that designing meaningful reward shapings leads to
faster and improved solutions.

3.2. Correlated Multi-Objective Energy-Efficient Routing Scheme for SDWSN-IoT

While most decision problems actually have multiple objectives, most algorithms
dealing with agents that need to interact with sequential decision problems focus on
optimizing a single objective. Dealing with multi-objective problems (MOP) requires the
simultaneous optimization of multiple feedback signals or objectives. Most research on
multi-objective optimization is focused on solving problems with conflicting objectives,
and rightly so, as these are hard problems with many possible Pareto optimal trade-off
solutions. To nonetheless deal with the multiple objectives of the real world, a common
approach to creating decision-theoretic agents is to combine all the important aspects
together into a single, scalar, additive reward function. The scalarization functions involve
assigning an individual weight to m objectives, allowing the reward function designer to
have control over the trade-off of the objectives. This trade-off is parametrized by wo ∈ [0, 1]
for objective o, in a linear combination ∑m

o=1 wo ·Q0(s, a) whereby ∑m
o=1 wo = 1.

This iterative process, which is done repeatedly until the behavior is acceptable,
lacks explainability of the decision-making process and is often subjected to a retraining
process when preferences between objectives change. Furthermore, assigning weights to
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objectives is a challenging task that often demands extensive weight tuning and a thorough
comprehension of each objective’s preference. Failure to properly set these weights often
results in biased or suboptimal solutions, highlighting the complexity involved in achieving
an effective objective weighting strategy. For example, when trying to train an agent in a
network environment, the reward function designer may wish to double the weight of one
objective. Even when the objectives are linearly weighted in the reward function, doubling
the weight of one objective for a specific aspect of performance might not guarantee a
better performance of that objective due to the potential non-linear relationship between
the reward weights and the actual objective outcomes.

Applying typical RL frameworks to determine optimal routing paths for multi-objective
optimization, while using a vector of conflicting objectives as a reward function, presents
challenges in managing trade-offs among the objectives, which can lead to suboptimal
routing paths. For instance, in the context of routing paths for multi-objective optimization,
conflicting objectives may include minimizing delay and maximizing throughput. Improv-
ing delay might involve choosing longer paths with less congestion, while maximizing
throughput may require selecting shorter paths that could be more congested. Achieving a
balance between such competing objectives is challenging since enhancing one objective
often comes at the expense of sacrificing performance in another. The study focuses on
identifying multi-objective solutions with correlated objectives, where the limited Pareto
front makes it challenging to discern clear trade-offs. The reward function designer pri-
oritizes the fast discovery of a near-optimal policy and its closeness to optimality over
distinguishing very similar optimal trade-offs. To optimize the performance, a reinforce-
ment learning agent leverages both signals in combination rather than relying solely on
one. To address this, the study transforms a single-objective MDP into a Correlated Multi-
Objective Markov Decision Process (CMOMDP) by incorporating multiple potential- based
shaped reward functions.

In this study, we have chosen to implement the CMOMDP approach due to its ability to
address multiple correlated optimization objectives, providing comprehensive information
about the system. The primary objective of achieving energy efficiency is the optimization of
the average energy consumption of nodes. We define energy efficiency of the network as the
ability of the network to perform its intended functions and tasks (e.g., data transmission
and processing) while minimizing the use of energy resources. This objective has been
expanded to include several other correlated objectives that necessitate simultaneous
consideration, such as load balancing and reliability. Optimizing load balancing is crucial
because balancing data traffic loads across the network can help prevent some nodes from
depleting their energy quickly, prolonging the network’s overall operation. Reliability,
on the other hand, pertains to the ability of the communication link to consistently deliver
data packets without errors or failures. To optimize the reliability objective, we focus on
selecting links with good quality since a higher link quality usually leads to increased
reliability. When the link quality is strong and stable, the chances of data packets being
transmitted accurately and successfully are higher. Given these insights, optimizing both
load balancing and the link quality is pivotal in enhancing the energy efficiency and overall
functionality of SDWSNs-IoT.

Therefore, optimizing any of the objectives mentioned above is expected to have a
positive impact on the network’s energy efficiency. As such, our proposed scheme revolves
around the concept of dynamic objective selection, which takes into consideration that
certain objectives may hold greater relevance or reliability in specific states compared to
others, tailoring the decision-making process accordingly. Further details on the proposed
dynamic objective selection scheme are provided in the next subsection below.

3.2.1. Dynamic Objective Selection RL with Shaped Rewards

Dynamic Objective Selection (DOS)-RL is an approach that combines the principles of
Q-learning, a model-free reinforcement learning technique, with the concept of dynamic
objective selection. In DOS-RL, the traditional Q-learning algorithm is extended to dynami-
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cally select objectives during the learning process based on the current state of the system.
The DOS-RL learning agent dynamically selects an objective to optimize from a predefined
set of objectives based on its confidence in the estimated Q-values. This means that only the
estimated Q-values of the most confident objective are considered when taking an action,
allowing the agent to adaptively choose the objective it believes is the most promising at
that given time. The Q-learning technique operates by iteratively estimating the action-
value (Q-value). Q-learning is easy to implement and applicable to solving many problems
since the estimation of the Q-value is independent of the policy that the learning agents
follow. In Q-learning, the agent learns sequentially through a series of stages known as
epochs. For example, in epoch n, the agent is in state sn, performs action an, and receives
an immediate reward rn as it transitions to the next state sn+1. The action-value is updated
at discrete time t according to the equation below:

Q(st, at)← (1− α) ·Q(st, at) + α · [Rt+1 + γ ·max
∀a∈A
{Q(st+1, a)}], (1)

whereby α is the learning rate to determine how fast the agent learns. The discount
factor γ determines how much the learning agents take into consideration rewards in the
distant future, relative to those in the immediate future, and R is the reward received for
performing an action a at time t while in the state st resulting in the new state st+1.

As previously mentioned, the Dynamic Objective Selection (DOS) scheme operates by
the parallel estimation of the action-value for each objective o, based on the measured cur-
rent state s and a potential future state s′. The action selection decision in DOS Q-learning
is based on the objective that the learning agent determines to have the highest level of
certainty in its estimated Q-values. This dynamic approach highlights the adaptive na-
ture of objective selection, as the agent prioritizes objectives based on its confidence in
the estimated Q-values. The foundation of this idea can be traced back to the work by
Brys et al. [38], where they introduced the Adaptive Objective Selection (AOS) method for
handling correlated objectives in multi-objective RL for pathfinding problems. To quantify
the confidence in Q-values, they assumed a normal distribution and utilize the mean of
the estimated Q-values to track the variance of the distribution using the TD-error δo for
objective o as follows:

VAR(s, a, o)← (1− ψ) ·VAR(s, a, o) + ψ · δ2
o . (2)

Algorithm 1 presents the pseudocode for the DOS approach. When the agent intends
to select an action, it first determines which objective it has the most confidence in, based
on a confidence metric Ck. It then makes an action selection decision, using the ε-greedy
strategy, based solely on the estimates for that particular objective. The variance reflects the
dispersion of the action-value distribution for each objective. The confident estimation of
an objective will produce uniform values, which leads to a small variance σ. In contrast,
a larger variance indicates that the policy is more unstable for objective k. We define the
confidence metric Ck in Equation (3) to mathematically formulate these rules as follows:

Ck =
K(µk + eσ2

k )

∑(µk + eσ2
k )

. (3)

Notably, the DOS is scale-invariant due to the nature of the statistical tests proposed,
meaning it does not depend on any differences in scaling between the objectives. Further-
more, the DOS operates automatically without any parameter introductions, making it a
fully self-contained mechanism.
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Algorithm 1 Dynamic Objective Selection (DOS)

for each objective o do
Ck ← confidence((s, a1, o), . . . , (s, an, o))

end for
obest ← arg min

k
Ck

actionSelection(Q(s, a1, obest), . . . , Q(s, an, obest))

3.2.2. Components and Architecture of the Proposed DOS-RL for the SDWSN-IoT Scheme

Prior to introducing the architecture of the proposed multi-objective energy efficiency
routing scheme, it is essential to understand the components contributing to its function-
ality. The following subsection provides a comprehensive description of the proposed
scheme, as depicted in Figure 2. Given the substantial deployment of a vast number
of sensor nodes in IoT networks, an effective solution is needed to address scalability
and management challenges. To tackle this, we implement an SDN architecture as the
underlying framework for the multi-objective energy efficiency routing scheme. This hi-
erarchical structure ensures optimized decision-making and coordinated communication,
thereby facilitating the achievement of energy-efficient routing in a resource-constrained
IoT network environment.

Figure 2. Architecture of the proposed DOS-RL routing scheme for SDWSN-IoT.

The proposed architecture consists of four layers: the sensing layer, the data layer,
the control layer, and the application layer. The sensing layer comprises various IoT sensing
devices that are extensively deployed to gather sensing data. Meanwhile, the data layer is
composed of wireless sensor nodes capable of performing a multi-hop transmission. These
nodes facilitate the transfer of a substantial volume of data collected by the sensing nodes
(SNs) in the sensing layer and relay it to the base station (BS). The proposed architecture
incorporates the IEEE 802.15.4 [39] protocol without any modifications to the existing
hardware platform, ensuring a seamless integration with the network sensor devices.
The control layer of the system is composed of four key modules: the Topology discovery,
Network status, Flow installation, and Device management module.The four modules are
implemented by the network controller (NC) to constantly monitor the status of relay
nodes (RNs) on the data layer. By implementing the SDN architecture, resource-intensive
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tasks such as routing, data aggregation, and network management are removed from the
RNs leaving them with only data forwarding functionalities. By default, the RNs have
the capability to sense and collect data from the SNs, and subsequently, forward it to the
BS. We suggest that the RNs with residual energy less than a certain threshold should not
be part of routing. Furthermore, we adopt a strategy of deploying multiple distributed
controllers instead of relying on a single controller framework to enhance control overhead
and accelerate the network configuration speed.

The application layer of the proposed framework incorporates an intelligent agent
that leverages intelligent techniques to transform raw network information into actionable
knowledge. The primary objective of our proposed routing scheme is to automate traffic
routing based on network information, aiming to achieve multi-objective energy-efficient
routing. To accomplish this, our scheme employs the RL to determine the optimal routes for
all source-destination pairs, taking into account several correlated link-state metrics related
to the energy efficiency of the RNs such as residual energy, estimated link quality, and queue
congestion. By leveraging a centralized network view, our routing scheme dynamically
adapts to traffic changes and adjusts its routing strategies accordingly. Shaped rewards are
employed in the RL to guide the selection of appropriate behaviors for adaptive routing,
enabling the effective handling of changes in network conditions. The computed routes
are stored in the route repository, accessible to the flow installation module of network
controllers (NCs). This proactive approach allows the module to populate the flow tables
of the RNs in advance for all anticipated traffic matches. A sample route entry would be
represented as follows: (source = n1, destination = n30, next hop = 14, route lifetime = 3 s).
The inclusion of route lifetime information ensures that a node does not use the same
route indefinitely but periodically uses newly updated route information. By default, NCs
are programmed to send topology update messages (TUs) to the RNs at regular intervals.
However, in certain scenarios, such as unexpected packet loss, TUs may be sent as urgent
route update messages from the RNs.

3.2.3. The DOS-RL Routing Scheme

The realistic conditions of an SDWSN-IoT network are subjected to dynamic changes
in resources such as battery capacity, CPU capacity, memory, and bandwidth, as well as link
quality changes during network operation. RL-based routing schemes have demonstrated
considerable advantages in designing network operation policies that can handle such
changes. However, such routing protocols often fail to respond quickly enough to such
changes. To address this issue, we propose the DOS-RL routing scheme which allows the
RL agent to learn from multiple correlated objectives simultaneously and to adaptively
choose the objective it believes is the most promising from the current state. Therefore,
we have turned the problem of energy efficiency into an RL process by modeling it into a
four-tuple(S, A, P, R), defining the states (S), actions (A), policy (P), and reward functions
(R) of the DOS-RL scheme.

1. The Reward Function (R): In reinforcement learning, the agent evaluates the effective-
ness of its actions and improves its policy by relying on rewards collected from the
environment. The rewards obtained are typically dependent on the actions taken,
with varying actions resulting in differing rewards. To implement the proposed
DOS-RL scheme, we define three reward functions, each corresponding to one of
the correlated objectives: the selection of routing paths with sufficient energy for
data forwarding (o1), load balancing (o2), and the selection of paths with a good
link quality for a reliable data transfer (o3). Route selection based on any of these
objectives is expected to improve the energy efficiency of the IoT network system.
Details on each objective of the DOS-RL scheme and its related reward functions are
provided below:
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(a) Energy-consumption: To achieve objective o1, we consider the energy-consumption
parameter, which is a critical factor in determining the overall energy efficiency
of an SDWSN: for instance, in a scenario where node i forwards a packet to
node j. The reward received by node i for selecting node j as its relay node in
terms of energy consumption is estimated by the reward function R_Ei,j for
the state-action pair, (si, sj) as:

R_Ei,j = Remaining_Energy(sj)− Remaining_Energy(si) (4)

where Remaining_Energy(sj) represents the remaining energy of node i in
state si as a percentage; meanwhile, Remaining_Energy(si) represents the re-
maining energy of node j in state sj as a percentage. The formula calculates the
difference in remaining energy between node i and j after the data transmis-
sion. A higher value of R_Ei,j indicates that node i has consumed less energy
in forwarding the packet to node j, which is desirable to achieve the energy
efficiency objective (o1).

(b) Load balance: To optimize energy efficiency and network performance in the
SDWSN, the careful selection of relay nodes and balanced workload distribu-
tion are crucial. Otherwise, some nodes along overused paths may become
overloaded, leading to bottlenecks and delays, which can result in a degraded
network performance. For objective o2, we utilize the parameter-available
buffer length to estimate the degree of queue congestion in relay nodes. The re-
ward R_Qi,j for load balancing as observed by node i when selecting node j is
computed as follows:

R_Qi,j =
Available_Bu f f er_Length(sj)

Max_Bu f f er_Length
− Load(si)

Max_Load
(5)

where Available_Bu f f er_Length(sj) represents the available buffer length
of node j in state sj, Max_Bu f f er_Length represents the maximum buffer
length of a node, Load(si) represents the current load of node i in state si,
and Max_Load represents the maximum load capacity of a node. This formula
considers both the available buffer length of node j and the current load of
node i. The second term subtracts the load of node i from the load balancing
reward value, allowing for a more comprehensive estimation that takes into
account both node i and node j in the load balancing process. A higher value
of R_Qi,j indicates a better load balancing situation for the given state-action
pair (si, sj).

(c) Link quality: A wireless link can be measured by retrieving useful information
from either the sender or receiver side. To achieve o3, we use simple measure-
ments to estimate the link quality based on the parameter packet reception
ratio (PRR), measured as the ratio of the total number of packets successfully
received to the total number of packets transmitted through a specific wireless
link between two nodes. Unlike other sophisticated techniques, this approach
involves a low computation and communication overhead. Instead of us-
ing an instant value of the PRR, we calculate an average-over-time using an
Exponentially-Weighted Moving Average (EWMA) filter. Suppose node i is
forwarding data packets to node j, the reward R_LQi,j received by node j based
on PRR using EWMA is estimated as follows:

R_LQi,j = PRR_esti,j(k− 1) · αEWMA + PRR_samplei,j(k) · (1− αEWMA), (6)

whereby PRR_esti,j(k− 1) is the previously estimated average, PRR_samplei,j(k)
is the most recent measured value of the packet reception ratio calculated,
and αEWMA is the filter parameter.
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2. The State Space (S): We define the state space as a graph corresponding to the global
topology created by the RNs on the data plane, as seen by the intelligent RL controller.
Each state in the state space corresponds to an RN, and a state transition refers to a link
connecting two RNs. The intelligent RL controller uses the partial maps created by the
topology discovery module to create a global topology. Therefore, the cardinality of the
set of states depends on the number of nodes that can actively participate in routing.

3. The Action Space (A): The action space, denoted as A, includes all possible actions
that an agent can undertake from a given state of the RL environment. It defines the
choices available to the agent at each time step, presenting the range of options to the
agent. In our specific problem, the discrete action space comprises a finite number of
actions that the RL agent can select when in a particular state si ∈ S. The cardinality of
A at state i is determined by the number of nodes eligible to participate in the routing
process from that specific state.

4. The Optimal Policy (P): The policy determines how the learning agent should behave
when it is at a given state with the purpose of maximizing the reward value in the
learning process. Our proposed scheme estimates the Q-function of every objective o
simultaneously and decides, before every action selection decision, which objective
estimate obest an agent will consider in its decision-making process. We use the con-
cept of confidence on computed Q-values by representing each action as a distribution
and using a normal distribution of Q-values and the mean values to keep track of the
variance as shown in Equation (2). The agent approximates the optimal Q-function
by visiting all pairs of action-states and stores the updated Q-values in the Q-table.
In our proposed scheme, the approximated Q-value Q(st, at) represents the expected
cumulative reward when the RL agent is in the state st and takes action at, transition-
ing to a new state st+1 while maximizing the cumulative rewards for an objective
on, where n ∈ N and N denote the set of all objectives. The Q-learning equation to
update Q-values is designed as shown below in Equation (7):

Qn(st, at)← (1− α) ·Qn(st, at) + α · [Rn
t+1 + γ ·max

∀a∈A
{Qn(st+1, a)}]. (7)

To steer the exploration behavior of the learning agent by incorporating some heuristic
knowledge on the problem domain, we introduce an extra reward Ft+1 onto the reward
received from the environment Rt+1. The newly added shaping reward function F is
included when updating the Q-learning rule as follows:

Qn(st, at)← (1− α) ·Qn(st, at) + α · [Rn
t+1 + Ft+1 + γ ·max

∀a∈A
Qn(st+1, a)]. (8)

To avoid changes on the optimal policy, F is implemented as the difference of some
potential value, Ft+1 = γφ(t + 1) − φ(t) over the state space, where φ is a poten-
tial function that provides some hints on states. In our study, we define φ as the
Normalized Euclidean Distance between the current state(s) and the goal state(G)
expressed as:

φ = 1− distance(St, G)

max∀x∈S(distance(x, G))
, (9)

where distance(St, G) is the Euclidean distance between the current state St and the
goal state G, and max∀x∈S(distance(x, G)) represents the maximum distance between
any state x in the state space S and the goal state G. The potential function guides the
agent towards the goal state by giving bigger rewards to states that are closer to the
goal and smaller rewards for states that are farther away.

5. In DOS Q-routing: To find the best action-value of the Q-function, the learning
agents use an action selection mechanism to trade-off between the exploitation and
exploration of available action space. To achieve this, our proposed scheme uses the
ε-greedy exploration and exploitation method, whereby ε ∈ [0, 1], allowing the agent
to exploit with probability pr = ε and explore with probability pr = 1 − ε. The agent
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action selection is determined by a randomly generated number x ∈ [0, 1], of which
if x < ε, the agent exploits it by taking an action that returns the most expected
optimal value; otherwise, it explores it by selecting a random action based on the
most confident objective obest as observed from the current state by the learning agent
as shown below:

actionSelection =

{
maxa∈A{Q(s, a, obest)}, if x < ε

randomAction(Q(s, a, obest), . . . , Q(s, an, obest)), otherwise
. (10)

3.2.4. DOS-RL Routing Algorithm

The proposed energy-efficient routing scheme employs the DOS-RL scheme with
shaped rewards to acquire knowledge about the network environment. Algorithm 2
outlines the procedure employed in the proposed approach. The algorithm aims to find
optimized routing paths for all source-destination pairs between the current state and the
goal state for all valid link states.

Algorithm 2 The DOS-RL with Shaped Rewards Routing Scheme

1: Input:
2: Learning rate: α
3: Exploration and exploitation parameter: ε
4: Number of learning episodes: n
5: Potential function for each state: φ
6: All link pairs (src, dst): VLinksPair
7: Link-states, Set of learning objectives: N
8: Initialize Q: Q(S, A) = 0, ∀s ∈ S, ∀a ∈ A
9: procedure Sj(G)← STP(VLINKSPAIR) . Set of loop-free paths from the initial state to

the end state G
10: for each objective o in N, compute Q-values for all (src, dst) in Sj(G) do
11: for episode← 1 to n do
12: Start in state st = src ∈ S;
13: while st+1 is not dst do
14: Select At for st using the ε-greedy method according to Equation (10)
15: R

′
t ← Rt + Ft+1 . Get the shaped reward R

′
t and observe new state st+1

16: Update Qn(st, at) . Update according to Equation (8)
17: st ← st+1 . Set the current state st as the new state st+1
18: end while
19: end for
20: Take Q-table and find the path between src and dst with the maximum Q-values
21: end for
22: Store the set of computed paths in the route repository
23: end procedure

Stages followed by this algorithm can be summarized as follows:

1. Initialization and Setup: The intelligent controller is initialized and assigned an IP
address. Partial topologies received from the controllers are used to create a global
topology containing the eligible RNs. Set the learning rate α, discount factor γ, and
exploration rate ε, and define the potential function φ to provide hints on states for
shaping rewards (Lines 2 to 7).

2. Loop-Free Route Calculation: Loop-free routes are computed using the Spanning Tree
Protocol (STP) algorithm for all given source-sink pairs. This step ensures that the
Q-learning algorithm focuses only on exploring states that lead to the end goal. Here,
a source node is defined as any RN that receives data from the SN(s) at the sensing
layer (Line 8).
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3. Q-Routing Exploration: The set of computed loop-free routes serves as input for the
SDN intelligent controller, which uses the Q-routing algorithm to find the best path
for routing. The Q-learning process runs for a specified number of episodes or until
the final state is reached. For each state St, compute Q-values for every action at for
each objective o simultaneously, based on the current Q-table values (Lines 9 to 13).

4. Q-Learning Process: During the learning process, the RL agent dynamically chooses
the learning objective from the current state, takes the next action, and moves to the
next state. Regarding the randomly generated number x ranging between 0 and 1,
according to the exploration and exploitation ε-greedy method, if x < ε, then exploit
with the probability pr = ε by selecting the action with the highest Q-value for the
most confident objective obest. Otherwise, explore with the probability pr = 1− ε by
randomly selecting an action for the most confident objective obest (Lines 14 to 19).

5. Optimal Route Determination: The RL agent uses the generated Q-table to determine the
most rewarding route between the source and sink nodes. This is based on the state-
action combinations that received the highest Q-values after completing a transition.
Finally, all found optimum routes are stored and sent to respective controllers. These
routes are installed or updated in the routing table of the RNs for immediate use in
the network.

3.2.5. Algorithm Time Complexity Analysis

When dealing with RL-based routing protocols, making the time-complexity of that
algorithm is crucial for reasons such as: making the performance analysis and determining
if the algorithm is suitable for the intended application; resource allocation; and assessing
how well the algorithm scales with the increasing problem size, real-time, and dynamic
environment requirements. Study [40] suggests that the time complexities of RL algorithms
require updating the Q-table of each state ∀si

t ∈ Si for each state in the state space S. This
means, in a worst-case scenario, the time complexity of the RL-based algorithm is when
the learning agent visits all the states in the state and action spaces. This suggests that
the time complexity of RL algorithms depends on the size of the state space. The state
space size is O(N2), where N could be the number of nodes in the network, the amount
of traffic between a source node and a destination node (traffic matrices), or static vectors.
The size of the action space is limited to the k potential paths associated with each state.
The complexity for RL is, then, O(kN2), where k is a constant.

4. Performance Evaluation

This section presents an evaluation of the proposed DOS-RL routing scheme. The chap-
ter is organized into multiple sections and subsections, which outline the simulation tools
and frameworks used to measure the scheme’s performance. Furthermore, it include details
about the test environment, performance metrics, learning parameter settings, and the
observed results, which will be presented and discussed.

4.1. Simulation Environment

To evaluate the effectiveness of our proposed scheme, we conducted simulations
using ns-3 [41], an open-source system-level network simulation tool capable of creating
an environment for the easy transfer of states and actions between AI frameworks and the
ns-3 simulation environment. To achieve this, we employ the ns3-ai [42] module, which
enables seamless integration between ns-3 and open-source AI frameworks like TensorFlow
and PyTorch by utilizing shared memory. The ns3-ai module consists of two components:
the ns-3 interface, implemented in C++, and the AI interface developed in Python. These
components work together to ensure the fast and efficient exchange of large data volumes
from a C++ program to a Python program. By utilizing shared memory, the ns3-ai module
facilitates communication between multiple processes. Unlike the ns3-gym framework [43],
which relies on pipes or sockets, the use of shared memory allows for the creation of a
highly efficient core module for data transfer.
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To implement our proposed scheme, we have designed a system architecture that
combines the ns3-ai and the SDWSN architecture, as shown in Figure 2. The proposed
architecture, depicted in Figure 3, consists of two main components: the ns-3 simulator
and the AI framework. The ns-3 simulator serves as the data generator by providing
environments to create simulation scenarios. It generates relevant information, which
is then fed into the AI framework for training the model to make real-time decisions.
The AI framework processes the data received from the ns-3 simulator and trains the
model to make intelligent decisions. The shared memory pool facilitates the seamless
data exchange between the ns-3 and the AI framework, allowing both sides to access
and manipulate the data. Control signals, managed by four modules operating at the
control layer, ensure smooth communication and coordination between the ns-3 and the AI
framework. This integration enables efficient decision-making and the evaluation of our
proposed routing scheme.

Figure 3. DOS-RL SDWSN Architecture.

4.2. Simulation Settings

In subsequent sections, we detail our experimental setup and the default simulation
parameters. Our primary focus is to evaluate the performance of the DOS-RL routing
algorithm using three widely-accepted network performance metrics. Additionally, we
compare its performance against two state-of-the-art routing protocols: OSPF and SDN-Q.
For our evaluations, we establish a network with a varying number of wireless sensor
nodes randomly distributed within a fixed-size simulation area. Each sensor node has the
capability to choose multiple relay nodes for data forwarding. We installed traffic source
applications on a varied number of nodes, ranging from 2, 4, 6, 8, to 10. This diverse setup
allows for a comprehensive analysis of the DOS-RL routing algorithm’s performance across
various network scenarios.

To determine the optimal paths from each source node to the target node, we employ
the Q-learning algorithm to evaluate the set of all available loop-free paths. These paths
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are identified by the STP algorithm for a specified pair of source-destination nodes. Our
experimentation begins by comparing the performance of different RL-based routing
schemes. This includes the DOS-RL without shaped rewards, DOS-RL with shaped rewards
(DOS-RL Shaped), and the traditional RL which utilizes a linear combination of multi-
objectives based on the weighted sum approach (RL). The objective of our experiments is to
observe and compare their performance on a pathfinding problem in a five by five dynamic
Gridworld environment.

Key performance indicators for evaluating these algorithms include their convergence
speed by observing the average rewards collected; average energy consumed, which reveals
how efficient the agent is in conserving energy while completing the task; the average
episode length which shows the average number of steps taken by the agents to complete
episodes; and finally, the average frequency of hitting obstacles which indicates how well
the agents avoid obstacles in the environment. During experiments, the reward function
of the RL includes three objectives: reducing the number of steps taken to reach the goal
state, avoiding obstacles, and optimizing charging points (optimizing energy consumption).
The DOS-RL with shaped rewards incorporates the additional shaping reward function
based on the Manhattan distance to the goal state in order to guide the learning process
and speed up the learning process. The experiment design integrates varied states such as
states with obstacles, states with relatively higher energy consumption, recharging states,
and normal states. The learning agent starts with a five-energy unit reservoir and loses
energy by 0.1 units at each regular state transition. Encountering any of the dynamically
selected obstacles (of a maximum of three after every 100 episodes) results in a penalty of
20 units. Conversely, navigating through a recharge point yields a reward of five units.
An agent that runs out of energy while navigating incurs a penalty of 20 units.

The agent’s navigation starts at the state (0,0) with the ultimate objective of reaching
the goal state (4,4) through the shortest and most energy-efficient path. This controlled
setting allows us to examine the performance of these algorithms in a well-defined scenario.
The values of all important parameter settings used during the experiment are summarized
in Table 1.

Table 1. The summary of key parameters.

Parameters Value Description

α 0.1 Learning rate
δ 0.99 The discount factor
ε 0.3 Exploration rate
ϕ 0.01 Minimum exploration rate
β 0.995 Exploration decay rate

To evaluate the convergence speed of the algorithms, Figure 4a plots the learning
curve for the average rewards collected and the average energy consumed per number
of episodes in Figure 4b. In Figure 4c,d, we can see plots for the average episode length
and the average frequency of hitting obstacles per number of episodes during the entire
simulation time. In Figure 4a, we can see how the poor performance of the RL algorithm
is affected by its frequency of hitting obstacles during the first 100 episodes. The DOS-RL
with shaped rewards outperforms the rest of the algorithm by proving its efficiency in
conserving energy (Figure 4b) by nearly 20% with the highest average collected at a cost
of a slightly longer episode length compared to the RL algorithm. In summary, unlike the
traditional RL, the DOS algorithms seem to perform much better by allowing the agent to
explore different strategies that cater to different objectives. This allows the algorithms to
find a balance between objectives more effectively.

4.3. Simulation Parameters Setup

The simulation settings (see Table 2) for the experiments performed were made to eval-
uate and compare the performance of our proposed routing scheme. We ran the Q-learning
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algorithm (see Algorithm 2) to compute optimal paths for given source-destination pairs
under varied network conditions, such as the number of traffic sources and the number of
RNs in the network of the size of a 1500 by 1500 m area. To get an accurate estimate of the
simulation results, we run each simulation scenario 10 times to obtain the averaged results.
To simplify the experiments, we also make the following assumption for the RNs in the
network: all the nodes have the same flow table size, same buffer size, start with the same
initial energy, and have the same transmission/reception power and communication range.

(a) Rewards per episode (b) Energy consumed per episode

(c) Episode length per episode (d) Frequency of hitting obstacles per episode

Figure 4. Performance comparison of different RL versions on a Dynamic GridWorld environment.

Table 2. Simulation Parameters.

Parameters Value/Description

Traffic type UDP
Learning rate α 0.3
Number of RNs 30, 45, and 60
Discount factor δ 0.85
Packet size (Bits) 512

Simulation Time (s) 200
Number of source nodes 2, 4, 6, 8, and 10

Deployment of sensor nodes Random
Packet generation rate (pkts/sec) 10
The initial energy of sensor nodes 5 Joules

4.4. Performance Evaluation

In order to assess the performance of the routing methods, we have selected three net-
work metrics: the (1) packet delivery ratio (PDR), (2) end-to-end delay (E2E), and (3) energy
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efficiency (EE). These metrics hold significant importance when evaluating the network,
particularly in terms of the impact caused by path selection on the energy consumption of
the wireless nodes. We define these metrics as follows:

1. PDR: This refers to the ratio of successfully delivered packets to the total number of
packets sent within the network. It is a measure of the effectiveness of the routing
protocols and communication infrastructure in ensuring that packets reach their
intended destinations without loss or errors. A higher PDR indicates a more reliable
and efficient network, whereas a lower PDR suggests potential issues such as packet
loss, congestion, or faulty routing. Monitoring and optimizing the PDR is crucial in
evaluating and improving the overall performance and reliability of the WSNs.

2. E2E: This is the time it takes for a packet to travel from the source node to the desti-
nation node. It includes processing, queuing, transmission, and propagation delays.
A lower delay is better for faster and more efficient communication. Minimizing the
end-to-end delay is crucial in the WSNs to ensure timely and reliable data delivery.

3. EE: This refers to the ability of the network to perform its intended tasks and com-
munication while utilizing minimal energy resources. We defined this metric as
the ratio of the PDR to the average energy consumed by the RNs. It is a critical
consideration in the WSNs due to the limited and often non-rechargeable energy
sources available to the sensor nodes. By enhancing energy efficiency, the WSNs can
achieve a longer network lifetime, extended monitoring capabilities, and reduced
maintenance requirements.

In the following subsections, we will compare and discuss the performance of the
proposed scheme alongside its counterparts: the traditional OSPF and SDN-Q based on the
network metrics.

4.4.1. Packet Delivery Ratio of Routing Protocols

In our evaluation, we examine the performance of three routing protocol schemes in a
network environment comprising 30 randomly distributed Relay Nodes (RNs). We investi-
gate how the Packet Delivery Ratio (PDR) of these schemes is affected when varying the
number of traffic sources and the relay node density. Figure 5a illustrates the results, which
clearly indicate that our proposed scheme outperforms the OSPF routing protocol by a
significant margin. Specifically, our scheme achieves a PDR improvement of approximately
10% to 20% for conditions with both low and high traffic rates. Unlike the OSPF, which
prioritizes shorter paths without considering real-time network conditions, the DOS-RL
and SDN-Q are capable of applying intelligent decision making which achieves a relatively
better performance. The better performance exhibited by the proposed DOS-RL compared
to that of the SDN-Q is due to its adaptability features to the dynamic changing network
environment assisted by shaping rewards, which assists it in making decisions somewhat
carefully to avoid poor energy consumption by dynamically adjusting objectives based on
the measured networking conditions to avoid congestion and minimize packet loss.

Next, we explore the impact of varying the number of deployed nodes (RNs) in the
network while keeping other parameters, such as the number of traffic sources, constant
at five. Interestingly, we observe that the difference in the PDR remains relatively small
across the different numbers of the RNs. In Figure 5b, we notice a gradual decline in the
PDR as the number of nodes increases. This decline can be attributed to factors such as
increased network complexity, scalability, congestion, and increased overhead resulting
from a larger number of nodes sharing the network resources. Nevertheless, our proposed
scheme continues to outperform the other routing schemes by maintaining a comparatively
higher PDR, even when the number of RNs is doubled.
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(a) PDR vs. the number of traffic source (b) PDR vs. the number of nodes(RNs)

Figure 5. Packet delivery ratio performance.

4.4.2. End-To-End Delay of Routing Protocols

Next, we look at the E2E simulation results of the three protocols as shown in Figure 6a.
The OSPF routing algorithm typically aims for a low routing delay by selecting the shortest
path which is expected to perform well under normal conditions; however, the results
state otherwise. From the results, it can be seen that the OSPF has the worst performance.
This is due to the fact that most of the initial routes selected by the OSPF algorithm do
not change and are subject to being overused and fail to respond to real-time network
changes. As a result, the RNs along such paths receive a larger amount of traffic than
they can handle and process in a minimum time. The DOS-RL algorithm outperforms the
SDN-Q not only due to its dynamic adaptability to changes, but because it can intelligently
route traffic while considering different objectives such as prioritizing latency-sensitive
states, optimizing energy efficiency or maximizing reliability, and making decisions to meet
the specific needs of the network at a given time. Unlike the DOS-RL, traditional Q-routing
is subjected to struggle to adapt to the dynamic changes in the network environment or
to optimize objectives beyond what is initially defined. While the number of the RNs
was varied, as shown in Figure 6b, the performance of all schemes in terms of delivery
delay falls progressively. As more nodes are added to the network, the search space and
hence path length increases and this affects the performance of the networks, especially
during the early exploration stages for the SDN-Q and DOS-RL algorithms. However, our
proposed scheme adjusts well by adjusting learning objectives in real-time. The SDN-Q fails
to perform well because the paths it selects last longer and hence, increase the probability
for congested paths to occur.

(a) Delay vs. the number of traffic source (b) Delay vs. the number of nodes(RNs)

Figure 6. End-to-end delay performance.

4.4.3. Energy Efficiency of Routing Protocols

Measured as the ratio of the percentage of packets successfully delivered to the average
of total energy consumed during the entire simulation time, improving this parameter
is one of our highest concerns. As it can be seen in Figure 7a, the performance of all
three routing schemes gradually drops due to the decrease in the packet delivery ratio
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and the corresponding increase in average energy consumption during transmission as
traffic flow increases. Regardless, the proposed scheme, with its ability to consider energy-
efficient objectives, has the potential to outperform the OSPF and Traditional RL in terms of
energy consumption. By selecting objectives that prioritize energy efficiency, the DOS-RL
can route traffic through paths that minimize energy usage. As the simulation results
exhibit, the DOS-RL scheme achieves a successful transmission of data packets to the sink
node with a lower average energy consumption. By leveraging the DOS algorithm and
incorporated shaped rewards, the scheme provided is capable of adjusting the objective
priority while meanwhile selecting relatively shorter paths, unlike those selected by the
OSPF and SDN-Q scheme. The DOS-RL scheme effectively monitors node energy levels,
detects energy depletion or bottlenecks, and redirects traffic along more energy-efficient
paths. This adaptability allows it to align its objectives with the energy efficiency goals of
the network, surpassing the other two routing schemes.

Furthermore, as shown in Figure 7b, the DOS-RL algorithm exhibits better energy
efficiency in successfully delivering data packets compared to the counterparts. With an
increasing number of nodes, more nodes participate in routing which affects the average
energy consumption. Additionally, factors such as the increased overhead and interference
contribute to a decrease in the packet delivery ratio, impacting the overall energy efficiency
of the network. Among the considered algorithms, OSPF performs the worst, as it operates
without considering real-time network conditions and solely selects the shortest path,
which is not always the most efficient choice.

(a) Energy vs. the number of traffic source (b) Energy vs. the number of nodes (RNs)

Figure 7. Energy efficiency performance.

5. Conclusions

In summary, our proposed routing protocol, DOS-RL with shaped rewards, offers a
dynamic objective selection mechanism that optimizes the energy efficiency of SDWSN-
IoT networks. By allowing for adaptive routing objectives based on correlated objectives,
our approach significantly enhances the network operation efficiency. The inclusion of
additional shaping rewards speeds up the learning process, surpassing the performance
of traditional Q-Learning and OSPF algorithms in SDWSN-IoT routing. Leveraging the
power of DOS-RL in intelligent routing, our scheme discovers reliable and energy-efficient
routing policies, yielding a remarkable performance. One notable benefit of our approach
is its ability to incorporate various performance metrics related to Quality of Service (QoS)
requirements into the reward function. This inclusion not only accelerates learning but also
enables the system to make well-informed routing decisions, reflecting specific QoS needs.

The implications of our research are profound. Our proposed routing protocol holds
the potential to revolutionize SDWSN-IoT networks by significantly enhancing energy
efficiency and the overall network performance. It opens doors to applications that demand
efficient routing, reduced energy consumption, and reliable communication. As for future
work, we are committed to further investigating the impact of different parameters on
the performance of the DOS-RL algorithm. Additionally, we intend to explore alternative
methods for speeding up the learning process while striking an acceptable balance among
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multiple objectives. These efforts aim to continually enhance the efficiency and overall
performance of our proposed routing protocol in SDWSN-IoT networks.
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