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Abstract: Managing mood disorders poses challenges in counseling and drug treatment, owing to
limitations. Counseling is the most effective during hospital visits, and the side effects of drugs can
be burdensome. Patient empowerment is crucial for understanding and managing these triggers.
The daily monitoring of mental health and the utilization of episode prediction tools can enable self-
management and provide doctors with insights into worsening lifestyle patterns. In this study, we
test and validate whether the prediction of future depressive episodes in individuals with depression
can be achieved by using lifelog sequence data collected from digital device sensors. Diverse models
such as random forest, hidden Markov model, and recurrent neural network were used to analyze
the time-series data and make predictions about the occurrence of depressive episodes in the near
future. The models were then combined into a hybrid model. The prediction accuracy of the
hybrid model was 0.78; especially in the prediction of rare episode events, the F1-score performance
was approximately 1.88 times higher than that of the dummy model. We explored factors such as
data sequence size, train-to-test data ratio, and class-labeling time slots that can affect the model
performance to determine the combinations of parameters that optimize the model performance.
Our findings are especially valuable because they are experimental results derived from large-scale
participant data analyzed over a long period of time.

Keywords: episode prediction; hidden Markov model; recurrent neural network; random forest;
mood disorder; digital healthcare; wearable device; digital phenotype

1. Introduction

There are limitations to managing patients with mood disorders through counseling
and drug treatments. Counseling is only meaningful when visiting a hospital, and drug
side effects are a burden. Therefore, it is important for patients to understand and manage
the conditions causing these episodes. Ultimately, it is important for patients to monitor
their mental health status daily and predict and respond to the possibility of an episode
occurring. If an appropriate episode prediction tool can be utilized, patients will be
able to self-manage their mental health, and doctors will be able to gain insight into the
patents’ lifestyle patterns that have worsened the episode.

For patients with mood disorders, a depressive episode is a period in which overall
mental and behavioral changes occur along with a decrease in mood. The term episode
means that there is a clear distinction between when symptoms are present and when they
are asymptomatic. During a depressive episode, the depressed state lasts for most of the
day, and this characteristic is very important in distinguishing normal from pathological
conditions. Therefore, predicting an episode in real time using digital phenotypic data
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obtained from a wearable sensor device can help to quickly grasp the condition of the
patient in daily life and manage the mental health of the patient.

In a face-to-face clinical assessment of three-month intervals, clinicians determined
the onset of recurrent episodes from the previous assessment by reviewing the patients’
mood self-reports and their experienced symptoms. The clinicians were blinded to both the
lifelog data collected from the wearable tracking devices and the results of the prediction
algorithm. Throughout this process, all patients recorded the timing and duration of their
episodes.

Many studies have analyzed or predicted mood changes and stress levels in patients
with mood disorders. Such studies have used smartphone sensor data, social media data,
and circadian rhythms to predict mood and used heart rate variability (HRV) to assess and
predict mental health. These studies primarily performed data analyses using algorithms
related to machine learning, deep learning, and regression analysis.

A previous study [1] predicted changes in depressive moods among 31 college students
and used passive sensor data collected from smartphones to predict depressive moods over
time. The study reported in [2] proposed an online anomaly detection method for the early
detection of surgical complications during recovery and the prevention of recurrence in
patients with serious mental illnesses. In another study [3], the authors recruited 14 elderly
participants living alone and used wearable bands equipped with multiple sensors to
monitor their daily activities and biometric data for 71 days. In the study reported in [4],
the authors detected changes in depression severity without clinical input data by analyzing
accelerometer data from 100 participants. They used a machine learning model to predict
clinically relevant changes in depression based on clinical and typing measures. Another
previous study [5] collected and analyzed data such as the number of phone calls made to
others through smartphones, the number of text messages, and the entropy of changes in
the subject’s location based on a global positioning system (GPS). Some studies [6,7] have
analyzed human behavioral movements using accelerometer sensors, ambient lighting
and noise [6], and paralinguistic features of smartphone voices [7]. In one study [8], a
smartphone sensor was used to predict mood changes in 32 subjects over a two-month
period. The authors analyzed data on the number and length of phone calls, text messages,
and email communications. A mood prediction model was built using app usage patterns,
web browser connection history, and location change information; the prediction accuracy
of the model was 66%. In the study reported in [6], the mood states of 15 subjects were
predicted with a 50% accuracy by analyzing location information, user behavior, ambient
light, and sound for 30 days. In another study [9], a project called MONARCA was
developed. In that study, 12 patients with bipolar disorder were observed and analyzed
over 12 weeks. Using accelerometer sensors and GPS-based location information, a model
with a mood prediction accuracy of 72–81% was developed.

Circadian rhythm mechanisms have been reported to be important factors affecting
the onset and exacerbation of mood disorders [10–12]. In particular, circadian rhythm
misalignment may be a unique clinical sign observed in patients with mood disorders, and
studies have shown that changes in the phase of circadian rhythm may be an indicator
of mood disorders [13,14]. Circadian disturbances, including diurnal mood variations,
have been reported in patients with major depressive disorders, including diurnal mood
variation [15]. Another study [16] reported that seasonal variations in mood, behavior,
diurnal preference, and irregular bed-rise times are closely related to patients with bipolar
disorder.

Sensor data have also been used for health analyses and evaluations in various fields.
For example, the study reported in [17] investigated sleep apnea by measuring fluctua-
tions in the average cardiac electrical axis accompanying breathing and respiratory signals
derived from the ECG of the body surface. HRV has been suggested to be an impor-
tant indicator of the mechanistic relationship between mental stress and cardiovascular
disease [18].
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Various machine learning and deep learning algorithms have been used to predict
the health status in various medical fields [19–29]. For example, in the study reported
in [24], although it is not directly related to the field of mental health assessment, the
authors proposed a method of encoding syntactic knowledge based on long short-term
memory for emotion classification. Another study [25] monitored sleep patterns using
a bed pressure mat sensor to relieve insomnia. In that study, a pattern recognizer was
designed using k-nearest neighbors, the hidden Markov model (HMM), and support vector
machine algorithms. In one study [26], people with insomnia were monitored by analyzing
radio signals reflected from the body using a device called EZ-sleep. The sleep latency
and total sleep time were precisely predicted using the HMM and convolutional neural
network (CNN) algorithms. In some previous studies [27,28], linear regression techniques
were used to characterize abnormal content in Internet posts to identify pro-eating disorder
(ED) content, and a study was conducted to measure the severity of ED for each individual
in the pro-ED community. In another study [29], a deep learning model was proposed to
identify pro-ED-related articles via automatic pattern modeling of various heterogeneous
data such as images and texts posted on social media.

Most existing studies related to mood disorders are small-scale experiments conducted
at a laboratory level for limited periods. In contrast, this study is based on a cohort
study [30] in which 224 patients were followed up for 1590 days; however, only appropriate
data were used. This study accumulated high-quality data from real-life environments, and
based on these data, predictive modeling and model performance analysis are different
from those of previous studies. The circadian rhythm data are large-scale time-series data
captured from sensors. In this study, a prediction model was constructed using the HMM
and recurrent neural network (RNN) suitable for modeling time-dependent sequential
data. Finally, although the random forest model is not suitable for modeling time-series
data, which was proven to some extent in episodic prediction performance in our previous
study [30], it was additionally adopted to finally propose an ensemble-type hybrid model
to improve performance.

The contributions of this study are summarized as follows. First, an episode prediction
model with satisfactory performance is built based on a long period of actual patient
data, and factors affecting model performance are analyzed. Second, features that capture
behavioral patterns from sensor sequence data are proposed to help predict episodes. Third,
owing to the lack of research on predicting episodic events that will occur in the near future
using past time-series behavioral data, algorithms such as the HMM and RNN, specialized
for time-series data, are explored to model sequence data from wearable sensors, and their
utility is proven through experiments. Finally, an ensemble hybrid model is proposed to
increase the model performance.

This study aimed to answer two main research questions: (1) Is it possible to predict
whether there will be an episode event in the near future (e.g., the next 3 days) of depressed
patients using lifelog time-series data collected from digital device sensors? (2) What is
the influence of the factors that affect the performance of the predictive model? Examples
of such factors include data-sequence size, ratio of training and test period, and labeling
method according to whether an episode event is observed for the following days. The
answers to the two questions will be presented in Section 3.

To verify the hypothesis and answer the research questions, we needed to develop pre-
diction models, and test and compare their performances with a baseline model (hereafter,
it will be referred to as the dummy model). Thus, we adopted available diverse models
such as HMM [31], RNN [32], and random forest (RF) [30]. HMM offers advantages in
predicting depressive episodes by capturing temporal dependencies, handling incomplete
or noisy data, and providing interpretable results. Its ability to model sequential data and
incorporate uncertainty makes it a versatile and robust tool for analyzing mood patterns
and predicting future episodes in individuals with mood disorders. Another promising
machine learning tool is RNN. Theoretically, the RNN model is simple and has the ad-
vantage that it can handle sequential data of any length. Finally, we also adopted the RF
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model. In general, although RF is an algorithm that is not suitable for modeling time-series
data, it is robust against overfitting, missing values, and outliers. It does not require a
normalization process and shows good accuracy even with nonlinear data. Furthermore, it
has the advantage of being easy to apply to small-sized data compared to HMM or RNN.
Finally, a hybrid model developed by integrating the three models (RF, HMM, and RNN) is
presented. The hybrid model worked in an ensemble approach, voted on the prediction
results from other models, and was able to improve the performance of other models while
supplementing their weaknesses.

2. Materials and Methods

This section describes the data collection method and overall experimental design
used to test the research hypotheses. The study was approved by the Institutional Review
Boards of all the participating hospitals and adhered to the principles outlined in the
Declaration of Helsinki. Prior to enrollment, all participants were informed about the study
and provided written informed consent.

In the experiment, we constructed several prediction models and compared their
performance with that of the dummy model. In addition, we investigated the factors that
affect model performance and conducted experiments to determine the effect of those
factors on performance. Figure 1 shows the overall experimental process carried out in this
study.
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2.1. Data Collection (Step 1)

In this study, the adequacy of light exposure, sleep, activity, and circadian rhythm
of study participants—the major depressive disorders in patients—were evaluated as
daily quantified scores using a smartphone and an activity tracker (Fitbit) to analyze
their correlation with the occurrence of future episodes. With the written consent of the
participants, data were collected from 224 people over 1590 days; each participant had a
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different period of participation. The occurrence and timing of depressive episodes were
obtained through periodic consultations with the patients by professional medical staff.

2.2. Calculation of Health Condition Scores (Step 2)

Light exposure (f 1) can be measured using the smartphone illuminance sensor. Patients
receive a higher score (s1) when as much light as possible is detected in the morning and
during the day, as well as the lower degree of light received at night. Sleep (f 2) was
measured through an activity tracker worn on the wrist; the higher the sleep efficiency
and when the patient is well slept, the higher the score (s2). Sleep efficiency was calculated
through the rate of tossing and turning during the total sleep time, and the sufficiency
of sleep was measured by calculating the gap between the recommended sleep of 7 h
and 30 min in adults and the total sleep time [33]. The amount of activity (f 3) was also
measured through an activity tracker. The more the participant walked during the day and
the less the participant walked during the night, the higher the score (s3). For the circadian
rhythm (f 4), the pulse was sampled from an activity tracker for the previous 48 h to infer a
daily rhythm of the cosine curve via a cosinor analysis [34], and then a score was given by
measuring the parameter acrophase shift from the average. The further from the average
(approximately 13–15 h), the lower the score (s4). For example, in a person who leads an
extremely out-of-rhythm lifestyle, such as napping and nocturnal activity, the acrophase
is severely misaligned. A more detailed explanation of the four features (f 1–f 4) described
above can be found in our prior study [30].

2.3. Data Transformation for Machine Learning (Step 3)

HMM and RNN models take sequential data as input. Therefore, the H-score data
calculated in STEP 2 above must be observed in chronological order and converted into
sequence data.

For HMM modeling, two HMMs were constructed as the information about the
duration of an episode serves as the ground truth. First, pHMM is a positive model built
with the feature sequence observed during two weeks before the time t of the episodic
diagnosis. For a given time point t, if an episode period is included between [t + 1, t + 3],
the observation sequence O = [o1, o2, ..., o14] is collected for a period [t − 14, t − 1].
Second, nHMM is a negative model created with feature sequence data for the prior two
weeks based on normal days without episodic diagnosis. Thus, given a point in time t, if no
episode period is included between [t + 1, t + 3], the observation sequence O = [o1, o2, ..., o14]
is collected. Here, two weeks was arbitrarily set because when psychiatrists diagnose
depression, they usually observe the condition of the patient for the two weeks before
the observation day. In addition, a margin of three days was set to check the duration
of the episode. Many cases of the observation sequence O for constructing pHMM and
nHMM were obtained repeatedly while sliding t for the entire data collection period. The
element o constituting the observation sequence had 81 cases: 4 factors had 3 levels. The
factors that determine the element o were four scores (s1 ~ s4) obtained from the four
observable features (light/sleep/activity/circadian rhythm mentioned in Step 2), and each
score had three levels (high/medium/low). To encode the state of observable features at a
given time t, words were created using H/M/L alphabetic symbols for each of the feature
combination f1, f2, f3, and f4. We coined words that express the number of 81 cases like
these, for example, LLML, HHHH, HMHM, LLLL, . . ., and so on. They represented the
combination of features observed every day with the form of the word of the day. However,
each word was identified with a given unique number in the process of HMM learning.

For RNN modeling, the word sequences that were input to the HMM obtained above
were used as they were. However, since the sequence data input to the neural network
needs vectorization, it underwent a word embedding process. If the sequence sizes are
different, additional padding is required, but in our experiment, the input data were
designed to have the same sequence size, thus padding was not required.
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HMM and RNN take sequence data as input, whereas the RF model takes snapshot
features at a specific moment as input. Therefore, it is necessary to extract static feature
information from given sequence data. For example, for O = [o1, o2, ..., o14], there are
81 observable word types (vocabulary) in set O. The word frequency can be investigated
by counting how many times 81 words individually appear in set O. In this way, a word
frequency table can be created by examining the frequency of occurrence of all word
vocabularies for given sequences, and an RF can be trained using the table. For class label
information, supervised learning is performed using the class information created in the
process of generating sequence data for HMM.

When the sequence size was fixed at 14 days, the total sample size of the sequence data
for model learning created in Step 3 was 6436, of which 5686 were negative-label samples
(euthymic days) and 750 were positive-label samples (episodic days).

2.4. Prediction Model Construction (Step 4)

In this step, Python interpreter version 3.9.13, scikit-learn version 1.0.2, hmmlearn
library version 0.3.0, and tensorflow version 2.13.0 were used for model construction and
experimentation.

The dummy model was programmed to predict episode events (positive or negative)
randomly regardless of the input data.

HMM assumed two hidden states when building the model. How to build the HMMs
used in the prediction phase is as follows: given an observation sequence O = [o1, o2, ..., o14]
as a test case at a certain time point t, the probability that the sequence is observed in either
the pHMM or the nHMM model is calculated. That is, if Prob(pHMM(O)) > Prob(pHMM(O)),
it means that an episode is likely to occur within three days from the date t, and in the
opposite case, the next three days are likely to be euthymic days.

When building the RNN model, in tuning parameters with experimental experiences,
the number of dimensions (embedding_dim) of the word embedding vector used in the
tensorflow.keras library was 16, the number of nodes (hidden_units) of one hidden layer
was 8, the batch size for training was 32, and the learning epochs were 4. The RF model
was built using the default parameter settings provided by the scikit-learn library. The
classification probability threshold used in both RNN and RF was set to 0.2.

2.5. Model Evaluation and Optimization (Step 5)

To evaluate and compare models, metrics of precision, recall, and F1-score were used
because they are popularly used in the machine learning literature [35]. Precision is the
number of instances correctly classified as positive, divided by the total number of all
instances classified as positive. Recall is the number of instances correctly classified as
positive, divided by the total number of actual positive instances. F1-score is a harmonic
mean of precision and recall for positive instances [36].

To evaluate the performance of the models, several instances were tested by varying
the test time point t. After splitting the entire data 50:50 over the timeline, the first half of
the data were used for learning and the other half were used for testing. Under that setting,
the model trained with past data predicts an episode event by looking at an observation
sequence at an unseen future time point.

However, the 50:50 data split between learning and testing based on the time axis is not
necessarily fixed; it may be changed. Factors that affect performance must be considered
when evaluating models. For example, in the description of Step 3, the sequence data size
was assumed to be 14, but this is also a variable. As mentioned above, the split criterion for
learning and testing is also a variable factor that affects performance, and the timeslot for
the next three days, which is the interval for determining whether future episode events
are observed or not, mentioned in Step 4, is also a variable factor with the possibility
of change. As mentioned in the second research question in Section 1, the experiment
results are introduced in Section 3, and the influence of these variable factors on the model
performance is evaluated.
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2.6. Model Application (Step 6)

In model application, as in model learning, sensor data undergo Steps 2–3, and they are
created as a test case of instance data; these are data that have never been seen (unlearned)
from the perspective of the model, and when fed into the model, the model estimates and
returns the classification probability. The built model uses sequential sensor data from the
past 14 days to predict the likelihood of an episodic event occurring in the next 3 days.
Here, the sequence data size and the timeslot size for the episode event check are the
optimal values obtained through the experiment in Section 3. The model developed from
the proposed modeling process (Figure 1) may allow just-in-time event prediction and
adaptive interventions to treat depression patients.

3. Experiment Results

Figure 2 shows the model performance evaluation results. Each of the performance
measures is about predicting the positive class label; predicting rare episode events is
usually more difficult than common euthymic events. The prediction accuracies of HMM
and RNN were 73% and 79%, respectively, significantly outperforming the dummy model
and confirming that the first research question is true; the models can predict episode events
for the upcoming 3 days using the past 14 days of sequential sensor data. Thus, HMM
and RNN can capture chronological patterns in the time-series sensor data, supporting the
interesting hypothesis that the current state of health condition can be dependent on the
past state of user behavior or habit to some extent.
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Figure 2. Model performance comparison.

The prediction accuracy of the hybrid model was 78%, and the F1-score performance
was about 1.88 times higher than that of the dummy model (34% vs. 18%). The hybrid
model raised the F1-score performance by integrating the other models. Table 1 shows
the details of the performance measurement of the hybrid model. For the negative test
cases, the model performed quite high (F1-score: 86%), but for the positive test cases, it
showed a relatively low performance (F1-score: 34%). This is a phenomenon that occurs
because the positive sample ratio (about 11% = 750/6436) in the data pool is relatively low.
From a practical point of view, the episode prediction model is as much useful as it predicts
positive cases better than negative cases.

Table 1. Performance measurement of the hybrid model.

Class Precision Recall F1-Score Support

negative 0.92 0.81 0.86 5686
positive 0.26 0.49 0.34 750
accuracy 0.78 6436

macro avg. 0.59 0.65 0.6 6436
weighted avg. 0.85 0.78 0.8 6436
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Table 2 presents the results of comparing the performance of each model in terms
of the F1-score and accuracy. The numbers in the table are multiples of the performance
values of each model, assuming that the performance of the dummy model is 1. Table 2
summarizes the advantages and disadvantages of each model.

Table 2. Performance comparison and pros and cons of each model. The numbers are multiples of
the performance value, assuming that the performance of the dummy model is 1.

F1-Score
Multiple

Accuracy
Multiple Pros Cons

RF 1.611 1.46
Applicable to small data.

Decent performance.
Model learning is fast.

Sequence data modeling
is not possible

HMM 1.833 1.46
Sequence data can be

learned. Small data can
be applied.

Difficulty in modeling
long sequence patterns

RNN 1.778 1.58 Specialized in sequence
data learning.

Training requires a lot of
data and a long time

Hybrid 1.889 1.56

Overcomes performance
shortcomings of other
models. Typically high

generalized
performance.

Multiple learning models
are needed. Does not

always guarantee higher
performance than
individual models

As discussed in Step 5, several factors affect the performance of the prediction model;
we selected three of them. We focus on the data-sequence size, the composition ratio of
training and test data, and the future timeslot to determine the positive class label (to
check if an episode event exists in the future). Figure 3 shows the results of analyzing the
performance sensitivity when the corresponding variable factor was varied while the other
two remained constant. In Figure 3, the sensitivity was evaluated based on the hybrid
model.
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Sequence size (See Figure 3a) was analyzed with the train/test data ratio fixed to 50:50
and the class-labeling timeslot fixed to 3. As the sequence size increased (horizontal axis),
the model performance increased at the beginning, peaked at about 14, and then decreased.
This implies that it is most efficient to predict the near future by referring to past data of
about two weeks. This is consistent with the usual practice by clinicians. In the case of
sequence size, it was determined that it was illogical to consider past data of more than one
month to realistically predict the near future health status of patients; thus, the change in
size was limited to 3 to 30 days.

As seen in Figure 3b, it seems appropriate to maintain the training/test data ratio at
50:50. Even if there is too little or too much training data, it is judged to be not good in
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terms of performance. In other words, if there is too little data for training and too much
data for testing, it will be difficult to predict the future with a poorly trained model. Also,
if there is too much training data, the model overfits the data for a long time, and the
prediction performance for unseen test cases in the future becomes poor.

In the case of the timeslot that determines the class label (See Figure 3c), since the
model predicts the health status of the patient in the near future, the model performance
was observed from 1 to 7 days. It was confirmed that the performance increased slightly as
the size of the timeslot increased. The reason for this result is that the longer the timeslot,
the easier the challenge for the predictive model. This is because it is easier for a model to
predict that an episodic event will occur in at least a week than it is to predict that it will
occur within a few days. Therefore, in this study, the experiments reported in Figure 2 and
Table 1 were conducted under a three-day timeslot.

4. Suggestions for Future Research

For patients with mental illnesses, it is difficult to recognize their serious health
conditions unless they visit a hospital and consult a doctor. In most cases, when an episode
occurs, it is identified later through interview and expert consultation, and action is taken
at that later moment. However, it is difficult for medical staff to monitor patients’ health
conditions in a timely manner, because they cannot observe patients’ daily life patterns
outside the hospital.

Therefore, the episode prediction model proposed in this study monitors patients 24/7
through wearable sensor devices on behalf of medical staff outside the hospital, recognizes
patterns of changes in circadian rhythm features, and predicts episode events through a
prediction model. It serves as an observation tool suitable for detecting and responding to
problems in advance or immediately.

The episode prediction model can be developed into a decision support or an expert
system service. In other words, if the accuracy of the prediction is sufficiently high, it will
be possible to evolve the model into a helper tool for deciphering mental illnesses, along
with the experience of the medical staff. In addition, rather than simply focusing on the
results of the prediction (i.e., positive or negative in terms of event occurrence), if the tool
can pinpoint the characteristic elements and patterns in the sequence data that produce
such results, medical staff can analyze those parts closely to determine in detail why such a
phenomenon occurs by conducting additional research. If several years of clinical data are
collected from multiple institutions, a more reliable expert system can be implemented.

The episode prediction model can be developed into a decision support tool or expert
system; however, the episode prediction model must first be implemented for self-health
management purposes rather than for diagnosis. For example, it would be beneficial if
users can easily check the possibility of an episode occurring by simply wearing a wearable
sensor device and using a smartphone, along with receiving feedback about their current
status and what actions to take through an app. Thus, it would be of great help in managing
health if people suffering from mental illnesses can visually monitor and improve their
mental health through a smartphone app.

For realizing the services described above, several future research topics must be
addressed in advance.

First, it is necessary to improve the performance of episode prediction models. Here,
performance means that the model must output accurate prediction results when unknown
test case data are input; it also means increasing the robustness of the model so that
errors or malfunctions do not occur, even in test cases containing noise or missing values.
The accuracy and robustness of the model need to be tested from various demographic
perspectives (e.g., gender, age, and occupation). To increase the reliability of the results, the
model must be tested using additional data.

Second, there is a need to further expand the word vocabulary size in the modeling.
We adopted a simple approach in terms of word definition; however, we believe that a



Sensors 2023, 23, 8544 10 of 12

more detailed vocabulary will be useful for describing longer data sequences. We plan to
conduct further research on this topic.

Third, there are fundamental limitations in predicting the likelihood of future episodes
using only circadian rhythm signals obtained through sensor devices. For example, genetic
and biological factors, medical history, and other environmental factors may play important
roles. Therefore, further research is required to design an ensemble model by incorporating
possible variables into the prediction model, along with circadian rhythm data, through
wearable sensor devices.

Fourth, it would be helpful to perform cross-validation to prevent overfitting of the
model and ensure a generalized performance. The generalized performance of the model
could be optimized by learning data from a specific institution and testing patients from
other institutions. For this purpose, a more diverse and extensive data collection process is
required.

5. Conclusions

In this study, we answered the research question that the observation of past lifelog
sequence data is effective in predicting depressive episodes in the near future. By proposing
the modeling process, the developed hybrid model predicted the future episode events
with reasonable performance (78% accuracy). Furthermore, we explored the factors that
can affect the model performance (Figure 3).

Through this study, we found that episodic events in the near future could be predicted
using sequential circadian rhythm sensor data. In particular, this was an experimental
result derived based on large-scale participant data analyzed over a long period of time,
and thus, we believe this work was meaningful and valuable as an empirical study in the
relevant literature.

The hypothesis that passive digital phenotype data collected from sensors can be used
as a good source for predicting the mental health of patients needs to be continuously
investigated. In the future, we intend to conduct additional robust hypothesis verification
by implementing more available modeling techniques. In addition, we plan to conduct a
hypothesis analysis by grouping patients by different diagnosis types of major depressive
and bipolar disorders.
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