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Abstract: In electronic warfare systems, detecting low-probability-of-intercept (LPI) radar signals
poses a significant challenge due to the signal power being lower than the noise power. Techniques
using statistical or deep learning models have been proposed for detecting low-power signals.
However, as these methods overlook the inherent characteristics of radar signals, they possess
limitations in radar signal detection performance. We introduce a deep learning-based detection
model that capitalizes on the periodicity characteristic of radar signals. The periodic autocorrelation
function (PACF) is an effective time-series data analysis method to capture the pulse repetition
characteristic in the intercepted signal. Our detection model extracts radar signal features from PACF
and then detects the signal using a neural network employing long short-term memory to effectively
process time-series features. The simulation results show that our detection model outperforms
existing deep learning-based models that use conventional autocorrelation function or spectrogram
as an input. Furthermore, the robust feature extraction technique allows our proposed model to
achieve high performance even with a shallow neural network architecture and provides a lighter
model than existing models.

Keywords: electronic warfare; low-probability-of-intercept; signal detection; deep learning; time-series
analysis

1. Introduction

With the increasing complexity of electronic warfare, the superiority of friendly forces
is considerably influenced by the electronic warfare support (ES) system capabilities. These
ES systems are tasked with detecting, identifying, and locating the sources of radiated
emissions from adversaries, thereby recognizing threats and influencing contemporary
warfare strategies [1]. The effectiveness of ES systems depends on their ability to detect
enemy radar signals and extract information accurately. However, the emergence of low-
probability-of-intercept (LPI) radar signals has increased detection difficulty. LPI radars
incorporate characteristics such as wideband modulation and frequency agility, making
detection by adversarial ES systems more challenging. Among these characteristics, the low
power transmission is the most challenging, making LPI radar signals difficult to detect.
Owing to the low power broadcasting of LPI radars, the signal-to-noise ratio (SNR) of the
signals intercepted by ES systems is below 0 dB, substantially complicating detection [2].
The lack of a reliable detection algorithm for LPI radars can lead to strategic disadvantages
and potential detriment.

Over the past several decades, considerable effort has been expended in research to
detect radar signals. This includes techniques using energy as a test statistic for signal
detection [3], methods employing frequency domain analysis [4,5], and method utilizing
visibility graphs [6]. These methods have been primarily used as algorithms for radar
signal detection due to their effectiveness. However, these conventional methods often fail
when facing the low signal power and frequency agility of LPI radar signals.
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Recently, deep learning algorithms based on convolutional neural networks (CNNs)
or recurrent neural networks (RNNs) have demonstrated considerable potential in signal
processing. Deep learning algorithms are also being applied in radar signal processing.
Moreover, deep learning-based signal detection techniques have shown superior detection
performance compared to conventional methods [7–9].

While existing deep learning-based algorithms have shown effective performance in
signal detection, these methods rely on feature extraction techniques that do not consider
the unique characteristics of radar signals, leading to performance limitations in radar
signal detection. These existing methods often struggle to adapt to the dynamic and
complex characteristics of radar signals, making it a challenge to achieve optimal detection
performance. Therefore, using feature extraction techniques tailored for radar signals
allows for overcoming the limitations in detection performance. This adaptation enables
the extraction of more relevant and distinct features, enhancing the detection accuracy
and efficiency. We propose a robust detection method by leveraging feature extraction
techniques that utilize the periodicity characteristic of radar signals. Considering the
pulse repetition characteristic of radar signals, we utilized the periodic autocorrelation
function (PACF) to capture and analyze periodic signals and provide richer information.
Additionally, our model employs radar signal detection neural networks structured with
long short-term memory (LSTM), demonstrating high efficacy in processing time-series
features. The primary objective of this study is to contribute to ES system advancement by
introducing a robust method for LPI radar signal detection. This paper demonstrates that
integrating PACF and deep learning approaches can substantially enhance the detection
capabilities of ES systems compared to existing algorithms and solve the challenges raised
by LPI radar signals.

The remainder of this paper is organized as follows. In Section 2, we introduce the
LPI radar signals received by the ES system and present previous studies related to signal
detection. Section 3 provides a detailed explanation of the proposed LPI radar signal
detection method. In Section 4, we present the simulation environment and performance
analysis results. In addition, we highlight the detection capabilities of our proposed
method by comparing it with existing deep learning-based detection algorithms. Finally,
the discussions and future research directions are presented in Section 5, and the conclusions
are summarized in Section 6.

2. Research Background

The signal detection algorithm is central in the ES system and allows a quick under-
standing of the enemy’s location, activities, and tactics. However, inaccurate detections can
result in strategic warfare setbacks, emphasizing the demand for rapid and precise signal
detection algorithm development. In this section, we discuss the LPI radar signals received
by the ES system and the methods for detecting these signals.

2.1. LPI Radar Signal

Signals intercepted by the ES system include the transmitted radar signals x(n) and
white Gaussian noise w(n). Intercepted signal y(n) can be represented as follows:

y(n) = x(n) + w(n) = A exp(j2π f (n)(nTs) + φ(n)) + w(n), (1)

where n is the sample index increasing every Ts for a sampling frequency fs, A is the ampli-
tude of the radar signal, and f (n) and φ(n) indicate the frequency and phase modulation
functions, respectively. Radar modulation improves target detection resolution, reduces
interference, and optimizes performance across diverse environments and conditions.
Therefore, the selection of f (n) and φ(n) can determine the modulation technique used.
One of the key modulation schemes used in radar is linear frequency modulation (LFM),
which improves range resolution in target detection by exhibiting a linearly changing fre-
quency within a pulse [10]. Another modulation scheme using the frequency modulation
function is the Costas code, which features frequency hopping to reduce interference in
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radar systems [11]. In contrast, Barker code modulates the phase by shifting it using binary
code sequences designed to have low autocorrelation properties [2]. The frequency and
phase modulation functions for the three modulation signals considered in our study are
presented in Table 1. B represents the modulation bandwidth of LFM, τpw denotes the
pulse width, and fi represents the Costas sequence.

Table 1. Frequency and phase modulation functions for three modulation schemes.

Modulation Scheme f (n) (Hz) φ(n) (rad)

LFM f0 + B/τpw(nTs) constant
Costas code fi constant
Barker code constant 0 or π

2.2. Signal Detection

The primary focus of this study is to determine whether a signal exists in the in-
tercepted signal y(n). Therefore, we consider the following binary hypothesis testing:

H0 : y(n) = w(n),

H1 : y(n) = x(n) + w(n).
(2)

Here, the null hypothesis H0 indicates no signal within the intercepted signal. The alter-
native hypothesis H1 signifies a radar signal within the intercepted signal. To determine
which of the two hypotheses to accept, we generate a test statistic T(y) from the intercepted
signal and compare it to a pre-established threshold value λ. This process of hypothesis
selection can be represented as follows:

T(y) < λ→ H0,

T(y) ≥ λ→ H1.
(3)

Extensive research has been conducted on generating test statistics that can effectively
detect signals. Among these developed techniques, the energy detection method has been
widely employed to detect the signal by employing the energy of the received signal as
the test statistic [3]. These energy detectors offer implementation simplicity and effective
operation regardless of the modulation scheme. However, they are sensitive to changes in
noise levels and exhibit poor performance in low SNR environments. Detection techniques
that utilize frequency domain analysis to generate test statistics for signal detection have
been developed to address noise issues. For example, an entropy detector [4] uses the
uncertainty in the frequency domain for signal detection, considering that the randomness
of frequency components is proportional to entropy. The method uses statistical estimation
through weighted sum operations between each frequency component and its correspond-
ing probability values. Another frequency analysis detection technique [5] leverages the
theoretical property that higher-order statistical moments are zero when the probability
density function is Gaussian. However, detection techniques based on frequency domain
analysis may encounter performance degradation. These techniques perform well when
energy is concentrated in a single frequency component, as with unmodulated signals or
Barker codes. However, problems arise when energy is spread out in the frequency domain,
as with LFM and Costas code.

Recently, deep learning techniques have gained significant attention as powerful tools
in signal processing. Particularly, their application to signal detection techniques has
demonstrated remarkable performance improvements. Recent techniques for signal detec-
tion use short-time Fourier transform (STFT) and CNN [8]. These approaches transform
the received signal into images using time-frequency analysis to apply image classifica-
tion techniques commonly employed in computer vision. Furthermore, signal detection
techniques that combine autocorrelation functions (ACFs) and one-dimensional CNN [9]
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have been proposed. This approach uses the ACF’s capability to capture patterns and
structures within time-series data. Experiments conducted in various SNR environments
showed that these deep learning-based methods exhibited superior performance compared
to conventional signal detection algorithms.

3. Proposed Signal Detection Method

Although existing signal detection techniques have contributed significantly to the
advancement of signal detection, the demand for methods that offer improved accuracy,
inference speed, and generalization capabilities persists. This section introduces a novel
deep learning-based signal detection method that utilizes the inherent periodicity of radar
signals and leverages periodicity analysis to achieve superior signal detection performance
compared to conventional methods. Furthermore, by exploiting the periodicity feature
of signals for signal detection, our approach exhibits generalization capabilities, allowing
accurate detection of signals not included in the training dataset. In addition, the proposed
model applies preprocessing steps that compress the data size while minimizing perfor-
mance degradation for rapid signal detection. The overall block diagram of the proposed
model is shown in Figure 1.

Figure 1. Block diagram of the proposed signal detection method.

As shown in Figure 1, the proposed detection technique consists of the following steps:
(1) Computation of PACF; (2) Data preprocessing and compression; (3) Feature extraction
using LSTM network; (4) Signal detection using fully-connected network.

3.1. Periodicity Analysis

In this subsection, we introduce the ACFs used to generate the data input for the neural
network employed for signal detection. Because the signals intercepted by the ES system
are time-series data, these received signals can be used directly as input for the neural
network. However, ES systems utilize a very high sampling frequency to receive signals,
resulting in many samples in the intercepted signals. Hence, using the received signals
directly as input data for the neural network can increase the computational demand for
signal detection. Therefore, rather than using the received data directly as neural network
input, extracting the features from the received signal and using them as the input proves
effective for neural network training. Therefore, we introduce ACF, traditionally used for
periodicity analysis, and PACF, which effectively captures the inherent periodicity features
of the intercepted radar signals, in our proposed method.

3.1.1. Autocorrelation Function

Time-series data shows that the current state’s value is closely related to past and
future values. Such time-series data is said to have autocorrelation. ACF represents the
degree of correlation over time and assesses the correlation between signals y(t) and
y(t + τ), where y(t + τ) is y(t) shifted by a delay τ. The ACF exhibits significant values
when the original signal components persist over time at a specific time delay τ. The ACF
R(τ) for the received signal y(t) is expressed as follows:

R(τ) =
∫ ∞

−∞
y(t)y∗(t + τ)dt. (4)
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Figure 2a is an example of an LFM signal used to examine ACF. The simulated signal is
a periodic signal with SNR of 0 dB with a signal acquisition time (T) of 120 µs, a pulse width
(τpw) of 20 µs, and a duty cycle of 50%, resulting in a pulse repetition interval (TPRI) of
40 µs. The ACF computed using the signal in Figure 2a is shown in Figure 2b. The highest
correlation is present at a time delay of 0 µs in the ACF. Additionally, due to the periodicity
of the signal, we observe peaks at ±40 µs and ±80 µs in the ACF.

Figure 2. Examples of simulated radar signals and corresponding computed autocorrelation functions
(ACFs). (a) Simulated LFM radar signal, (b) Computed ACF, (c) Computed PACF.

3.1.2. Periodic Autocorrelation Function

In time-series data, the current state’s value is closely related to past and future values.
In particular, when considering radar signals received by ES systems, they exhibit a distinct
pulse repetition interval, representing a periodic signal where pulses repeat. For such
radar signals, ACF depicts the degree of correlation over time. However, with increasing
delay, there is a corresponding decrease in correlation, as shown in Figure 2b. The signal
perfectly matches itself at τ = 0, resulting in maximum ACF. However, as τ approaches
signal acquisition time, only the correlation between the end and beginning of the signal is
computed. Thus, only a portion of the signal matches, decreasing the ACF values. The issue
of decreasing correlation with increasing delay, even when using periodic signals, makes it
challenging to extract signal features in weak signal environments.

We utilize a modified ACF to overcome the issue of decreasing correlation with
increasing delay. The modified ACF uses the received signal repetitively when calculating
the correlation. We utilize an extended signal yext(t) as follows, repeating y(t) when t
exceeds a multiple of signal acquisition time T.

yext(t) = y(t mod T). (5)
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Using the extended signal, we compute PACF Rp(τ) as follows:

Rp(τ) =
∫ ∞

−∞
yext(t)y∗ext(t + τ)dt. (6)

Figure 2c shows the results of calculating PACF using simulated signals from Figure 2a.
Compared to the ACF results in Figure 2b, the correlations at ±40 µs delay times are more
pronounced in the PACF. Furthermore, the correlations at ±80 µs delays in the ACF exhibit
relatively lower values, whereas in the PACF, they maintain substantial correlation values
similar to those observed at ±40 µs delay times.

3.2. Data Preprocessing and Compression

Using PACF, we can accurately observe the periodic characteristics of radar signals,
even in weak signal environments. To efficiently train the neural network and reduce
computational load, we introduce a data preprocessing step before using PACF results in
the neural networks. The data preprocessing consists of three steps: a unit conversion step,
negative delay value removal step, and data compression step. The unit conversion step
involves converting the PACF data, which has a linear scale, into a decibel scale to increase
the learning efficiency of the deep learning model. Figure 3a shows the result of converting
the PACF from Figure 2c. The peaks due to correlations are observed when examining the
effects in Figure 2c with a linear scale. However, by converting the results into a decibel
scale as shown in Figure 3a, we can observe the peaks caused by correlations and assess
the sidelobe levels generated by the signal and noise.

Figure 3. Results of the preprocessing steps. (a) decibel scale conversion process results, (b) negative
delay removal process results, (c) fixed-length max pooling results.

The second data preprocessing step involves removing data related to negative delays
and eliminating unnecessary data to reduce the computational load of the neural network
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model. PACF used for time-series analysis has a symmetric property around zero delay,
as described by the following equation:

Rp(τ) = Rp(−τ). (7)

Negative delay values are redundant to perform signal detection with the data correspond-
ing to positive delays. Therefore, when inputting PACF data into the neural network
model, unnecessary negative delay values can be removed. This helps reduce the compu-
tational load of the neural network. Figure 3b shows the result of retaining only the data
corresponding to positive delays from the PACF data in Figure 3a.

The final step in the preprocessing stage involves compressing the data using fixed-
length max pooling. Max pooling is a commonly used technique in deep learning models
to reduce data size [12]. It involves extracting the maximum value within a window and
discarding the other values. Thus, the data size is reduced while preserving its inherent
features, decreasing the computational load while minimizing performance degradation.
The max pooling used in our proposed detector is configured with a variable window
length, ensuring a predetermined fixed-length max pooling result. The fixed-length max
pooling ensures that the neural network used for detection has a consistent computational
load regardless of the signal’s length. Figure 3c displays the result of applying fixed-length
max pooling to the PACF data from Figure 3b. In this example, the window length was
set to achieve a data length of 256 after the pooling process. Applying the fixed-length
max pooling technique highlights the peaks due to correlation while reducing the PACF
data length.

3.3. Signal Detection Neural Network
3.3.1. Long Short-Term Memory

In this subsection, we introduce LSTM, a type of RNN used in our proposed method to
detect signals from the extracted PACF feature data. Unlike basic artificial neural networks
(ANNs), RNN has a loop structure and contains hidden states within the network. The loop
structure allows RNN to store information from past input data in hidden states and
utilizes it for current and future data to improve the performance of neural networks. Due
to these characteristics, RNN is known to be more efficient than traditional ANN in solving
problems related to time-series data, such as natural language processing, video analysis,
and signal classification [13–16].

A common issue with traditional RNN structures is the lack of long-term dependencies.
In other words, these networks primarily rely on recent input data, and data from a
distant past have limited influence on the processing of current input data. LSTM [17]
was introduced to address this lack of long-term dependencies problem in standard RNNs.
The key innovation of LSTM is utilizing the cell state to address the lack of long-term
dependencies. The cell state is represented by the horizontal line at the top of the LSTM
module, as shown in Figure 4.

Figure 4. Architecture of the LSTM network.
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The cell state is updated from the previous cell state value ct−1 using simple linear
operations to produce the current cell state ct. LSTM calculates the forget gate output ft,
the cell state update value it, the new cell state candidates c̃t, the new cell state ct, the output
gate value ot, and the current hidden state ht as follows:

ft = σ(W f · xt + U f · ht−1 + b f ),

it = σ(Wi · xt + Ui · ht−1 + bi),

c̃t = tanh(Wc · xt + Uc · ht−1 + bc),

ct = ft ◦ ct−1 + it ◦ c̃t,

ot = σ(Wo · xt + Uo · ht−1 + bo),

ht = ot ◦ tanh(ct),

(8)

where σ(x) represents the sigmoid function; xt is the current input; ht−1 is the previous
hidden state; U f , W f , and b f are the weights and biases in the forget gate; Ui, Wi, and bi
are the weights and biases in the input gate; Uc, Wc, and bc are the weights and biases
when calculating the cell state candidates; ct−1 represents the previous cell state; ◦ denotes
Hadamard product; and Uo, Wo, and bo represent the weights and biases used to compute ot.

3.3.2. Fully-Connected Network

Our proposed signal detection technique employs a fully-connected network to deter-
mine the presence of a signal based on the extracted feature vectors from LSTM. The fully-
connected network consists of an input and output layer. The input layer is composed
of input nodes, each with a length equal to the number of hidden units in the LSTM.
The output layer has two output nodes to calculate the probabilities associated with the
presence or absence of a signal. Subsequently, the detection model applies the softmax func-
tion [18] to the values output from the two output nodes. The softmax function transforms
the probabilities associated with the two nodes in the fully-connected network output
layer. We employ the result of the softmax function from the node corresponding to the
presence of a signal as a test statistic for signal detection. The threshold value for a specific
false alarm rate has been established using the Neyman–Pearson criterion. This criterion
aids in establishing a threshold that maximizes the detection probability for a given false
alarm probability. Lastly, we can predict the presence of a radar signal by comparing the
established threshold with the test statistic, as indicated in (3).

4. Detection Performance Analysis
4.1. Model Training

For training the detection neural network, we generated a training dataset consist-
ing of three modulation schemes with various modulation parameters for each scheme.
The parameters for the training dataset are summarized in Table 2.

The generated training dataset consists of 60,000 signals, which includes 30,000 signals
with additive white Gaussian noise and 30,000 white Gaussian noise signals used for
generating noisy signals. The 60,000 signals for the training dataset are transformed
into input data using ACFs and the data preprocessing steps introduced in Section 3.
Within the preprocessing steps, the ACFs generated from the signals are compressed to
a length of 256 through fixed-length max pooling. The number of hidden units in the
LSTM layer of the proposed detection model is 32. During the neural network training
using the generated training dataset, the Adam optimization algorithm [19] was employed
to update the weights of the LSTM and fully-connected network in the detection model.
Through iterative experimentation, the hyperparameters that enable the proposed model
to achieve the global minima were selected, and the hyperparameters used for model
training are tabulated in Table 3. In the training process, the weights were updated using
the 60,000 training data for 30 epochs. Additionally, the model was configured to learn
rapidly with a high learning rate at the initial stage of training and more finely with a
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reduced learning rate in the later stages to converge to the optimal parameters. This was
achieved by reducing the learning rate at a fixed ratio per every epoch.

Table 2. Parameters for training dataset generation.

Modulation Scheme Parameter Value

Sampling frequency 50 MHz
SNR U(−20, 10) dB

All Pulse width U(5, 30) µs
Duty cycle U(25, 100)%

Signal acquisition time U(1, 3)TPRI

LFM Center frequency U(6.25, 12.5) MHz
Modulation bandwidth U(5, 12.5) MHz

Fundamental frequency U(2.5, 5) MHz
Costas code Number of frequency hops {4, 6}

Frequency spacing U(2, 4) MHz

Center frequency U(6.25, 12.5) MHz
Barker code Barker code length {7, 11, 13}

Cycles per phase code {20, 24, 28}
U(·, ·) denotes a uniform distribution.

Table 3. Hyperparameter used for training proposed signal detection model.

Hyperparameter Value

Initial learn rate 1× 10−4

Learning rate reduction 3% per epoch
Epochs 30

Mini batch size 64
Input data length 256

Number of hidden units 32

4.2. Simulation Results

We analyze the comparative performance between the proposed detection model
and existing signal detection methods. Within the realm of non-neural network detection
methods, we considered an entropy detector, which uses the entropy of the received signal
as a test statistic [4], and detector that utilizes the average degree of the visibility graph
as a test statistic [6]. As introduced in Section 2, the deep learning-based algorithms
considered for comparison include the STFT-CNN model, which converts intercepted
signals into time-frequency images using the STFT and then utilizes a CNN for signal
detection. Additionally, we considered an ACF-1DCNN model that analyzes correlation
using ACF and performs signal detection using a 1-dimensional CNN. Calculating the
neural network computational complexity in terms of floating point operations per second
(FLOPS) for each detection neural network reveals that STFT-CNN has approximately
16.8 MFLOPS, ACF-1DCNN has 1.1 MFLOPS, and our proposed method, PACF-LSTM has
37.2 KFLOPS. Our proposed method exhibits the lowest computational complexity among
these detection neural networks.

The test dataset used for performance comparison was constructed by generating
500 signals for each modulation scheme at a single SNR. The modulation parameters used
to generate test signals were the same as those used in the training dataset, as shown
in Table 2, with a fixed duty cycle of 50%. Figure 5 shows the detection probabilities of
a detector with a false alarm probability of 0.1 for different SNRs across various pulse
widths. All detectors demonstrated similar detection performance across all modulation
schemes, and the results shown in Figure 5 represent the average detection probabilities for
simulated signals with three different modulation schemes.
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Figure 5. Detection probabilities of the detectors at various SNRs. Pulse width of (a) 10 µs, (b) 20 µs,
and (c) 30 µs.

The detection performance analysis reveals that the proposed technique exhibits su-
perior signal detection performance. Among the techniques considered, the STFT-CNN
model exhibited the best performance, followed by the ACF-1DCNN model and non-neural
network detection methods. Moreover, we confirmed that our proposed technique out-
performs existing deep learning-based algorithms in weak signal detection performance.
In the comparative analysis between the STFT-CNN, distinguished for its superior detec-
tion capability among existing methods, and our proposed model, it was found that the
performance deviation was insubstantial at a pulse width of 10 µs. However, a significant
performance discrepancy was observed as the pulse width increased. This can be attributed
to a wider pulse width containing more energy in the radar signals, leading to more signif-
icant peak values from the correlation. Consequently, the proposed technique facilitates
effective signal detection even in low SNR environments. Additionally, using time-series
data analyzed with PACF rather than with ACF allows for superior detection performance
even with neural networks having reduced computational complexity.

5. Discussion

We proposed a deep learning-based radar signal detection model that utilizes LSTM
and PACF for periodicity analysis. Our model employed PACF as a time-series data
analysis method, which provides rich information such as periodicity and sidelobe levels.
The detection model used an LSTM to detect signals from feature data converted with vari-
ous preprocessing steps applied to the computation results of PACF. Performance analysis
using various modulation schemes revealed that the proposed model has remarkable de-
tection capabilities. The analysis results demonstrated that the proposed detection method
outperforms existing deep learning-based models. Furthermore, the proposed technique
exhibited the best detection performance and achieved the lightest model compared to
existing deep learning-based models. These results could be attributed to the powerful
time-series data analysis technique employing PACF and preprocessing methods. Our
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proposed model achieved high performance even with considerably fewer neural network
layers by extracting distinct and feature-rich input data with reduced size from intercepted
signals. Therefore, the proposed method is a promising candidate for practical detection
algorithms in ES systems requiring accurate and fast signal detection techniques. However,
the proposed method presents a challenge for real-time implementation as it requires a
sufficient signal acquisition time. Therefore, in the future, we plan to research on detection
model that can be implemented in real-time using time-series analysis with PACF.

6. Conclusions

We introduced a model for detecting radar signals that exploit deep learning tech-
niques and PACF for periodicity analysis. The model outperformed existing deep learning
models in terms of detection probability and computational complexity. Therefore, we
expect our proposed detection method to be effectively applied to ES systems. We plan
to further research and develop a real-time detection model using time-series analysis
with PACF.
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