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Abstract: Tool wear condition significantly influences equipment downtime and machining precision,
necessitating the exploration of a more accurate tool wear state identification technique. In this paper,
the wavelet packet thresholding denoising method is used to process the acquired multi-source
signals and extract several signal features. The set of features most relevant to the tool wear state
is screened out by the support vector machine recursive feature elimination (SVM-RFE). Utilizing
these selected features, we propose a tool wear state identification model, which utilizes an improved
northern goshawk optimization (INGO) algorithm to optimize the support vector machine (SVM),
hereby referred to as INGO-SVM. The simulation tests reveal that INGO demonstrates superior
convergence efficacy and stability. Furthermore, a milling wear experiment confirms that this
approach outperforms five other methods in terms of recognition accuracy, achieving a remarkable
accuracy rate of 97.9%.

Keywords: tool wear state identification; recursive feature elimination; improved northern goshawk
optimization; support vector machine

1. Introduction

With the swift progression of new technologies, such as the internet of things (IoT)
and artificial intelligence (AI), intelligent manufacturing has emerged as the new norm in
the manufacturing sector. Despite this transformation, mechanical machining continues
to hold a central role. Research has shown that real-time tool wear identification can
enhance machine utilization by 50%, boost productivity by 35% and cut production costs
by 30% [1–3]. Therefore, the real-time and accurate identification of tool wear state holds
paramount significance in enhancing the efficiency of manufacturing processes and the
quality of final products.

The identification of tool wear conditions primarily relies on two monitoring ap-
proaches: direct and indirect methods. The direct monitoring method utilizes industrial
cameras to directly observe the wear state of the tool, ensuring accurate assessments. How-
ever, it is susceptible to interference from cutting fluids and chips, and it requires the
machine tool to be stopped during measurement, limiting its practical application [4]. In
contrast, the indirect monitoring method uses sensor data from the machining process. It
establishes a mapping relationship with tool wear. This method provides online monitor-
ing and aligns well with real-time production needs [5]. The indirect monitoring method
involves the stages of signal acquisition and preprocessing, feature extraction, feature
selection and identification model development.

Direct utilization of the acquired signal data can introduce noise, potentially leading
to misinterpretations [6]. Therefore, data preprocessing, especially the employment of
denoising techniques, is important to ensure the accurate identification of the tool wear state.
After denoising, to avoid directly processing the substantial signal data and to mitigate the
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risk of overfitting and poor generalization in the identification model, numerous features
characterizing tool wear are extracted from the denoised signal [7]. However, not every
feature is invariably sensitive to tool wear, necessitating the selection of extracted features.

Recursive feature elimination (RFE) is one of the commonly used feature selection ap-
proaches in machine learning. It can select a high-quality feature set and remove redundant
and irrelevant features from the dataset [8]. RFE is widely used for machine health diag-
nosis, prediction, product defect detection and other manufacturing applications [9–11].
In the intricate scenarios of tool wear, the strength of RFE lies in its ability to account
for interdependencies among features and progressively eliminate the least significant
ones. Compared to basic linear correlation methods, RFE is more adept at uncovering
complex relationships with the target variable, thereby selecting a more representative
feature subset.

Selected signal features can be utilized as inputs, and a tool wear state identification
model can be developed. Typical machine-learning models for tool wear identification
encompass the artificial neural network (ANN), support vector machine (SVM), hidden
Markov model (HMM) and random forest (RF), among others [12]. Cao et al. [13] intro-
duced a tool condition monitoring approach integrated with a field fiber optic temperature
measurement device, where spectral features were extracted and input into an ANN for
tool state classification. Experimental results showed accuracy consistently above 90%
during variable parameters. Basil et al. [14] harnessed sensors to capture vibration data
from lathes, employing the random forest algorithm to develop a real-time tool wear
classification model, which exhibited notable classification prowess. However, these algo-
rithms are prone to overfitting when processing small sample data. Moreover, since they
predominantly rely on the empirical risk minimization principle for optimization, they
are susceptible to falling into local optimum solutions, undermining the model’s accuracy
and stability.

SVM fundamentally adheres to the structural risk minimization principle, effectively
mitigating the risk of overfitting by incorporating regularization terms to control the
model’s complexity. Moreover, studies highlight that the non-linear relationship between
tool wear and monitoring signals, along with the limited training samples for model
development, stand as two significant challenges in tool wear identification [15]. Given
SVM’s theoretical foundation in non-linear mapping and its efficacy in small sample
machine learning, SVM has found widespread application in the field of tool wear state
recognition [16–18]. Nonetheless, the efficacy of SVM is significantly influenced by the
selection of the penalty factor C and the kernel parameter γ, which directly dictate the
model’s classification accuracy and generalization ability. Hence, to fully exploit the
potential of SVM grounded in the structural risk minimization principle, it is vital to aptly
optimize the penalty factor C and the kernel parameter γ [19].

In recent years, the development of intelligent optimization algorithms has pro-
gressed significantly, and researchers have designed algorithms inspired by some natural
phenomena, such as gray wolf optimization (GWO) [20], the whale optimization algo-
rithm (WOA) [21], sparrow search algorithm (SSA) [22], northern goshawk optimization
(NGO) [23], and so on. These algorithms have been extensively utilized for parameter
search optimization in SVM. Especially in the field of tool wear state identification, they
play a key role in the training process of identification models. Stalin et al. [24] intro-
duced a tool wear prediction method, leveraging particle swarm optimization (PSO) for
SVM tuning, and experimentally demonstrated that PSO can effectively optimize SVM
parameters to achieve good prediction accuracy. Ying et al. [25] introduced a broaching
tool condition monitoring model optimized with GWO for SVM. The experimental results
indicate that, compared to PSO-optimized SVM, the GWO-SVM method demonstrates
advantages in terms of classification accuracy and optimization time. Gai et al. [26] con-
structed a SVM classification model optimized with the WOA, designated for tool wear
state identification. The approach’s efficiency and practicality were confirmed through
milling wear experimentations. These research works underscore the significant potential
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of intelligent optimization algorithms in enhancing the performance of tool wear state
identification approaches. By leveraging the strengths of these algorithms, researchers can
monitor and predict tool wear more accurately and robustly. Although these algorithms
show great potential in parameter search optimization, ensuring their convergence accuracy
and stability in complex problems remains a challenge.

In 2021, Mohammad et al. [23] introduced the northern goshawk optimization (NGO)
as an efficient population intelligence optimization algorithm characterized by fast con-
vergence, robustness and high accuracy of operating results. In recent years, NGO has
attracted the attention of many scholars. El-Dabah et al. [27] utilized NGO for identifying
the parameters of the photovoltaic module’s triple diode model, and the simulation results
showed that NGO accurately extracted the model parameters with superior convergence
rate and precision compared to alternative algorithms. Xu et al. [28] developed a northern
goshawk optimization–backpropagation artificial neural network (NGO-BP) model for
forecasting blood concentration and pharmacokinetic parameters of MET306. The NGO
has been successfully utilized in resolving a variety of engineering optimization problems,
but how to further improve its convergence accuracy and speed is one of the issues, which
this study attempts to address.

Building on the aforementioned research, we use an improved northern goshawk
optimization algorithm to optimize the SVM’s penalty factor C and kernel parameter γ
for tool wear state identification. First, the force, vibration and acoustic emission signals
are gathered during the milling process. Next, to fully depict the correlation between
the signals and tool wear, 245 features from the time, frequency and time–frequency
domains are extracted from seven signal channels, forming the initial feature set. Third, to
minimize the model’s runtime and data storage requirements while avoiding overfitting,
the SVM-RFE model is utilized for feature selection, selecting the optimal feature set
most closely related to tool wear. Fourth, the NGO is improved and applied for the
first time to the parameter finding of SVM. Ultimately, the optimal feature set is input
into the INGO-SVM model for training and prediction, achieving precise tool wear state
identification. The feasibility and effectiveness of the proposed approach were validated
using the Prognostic and Health Management Society Conference Data Challenge (PHM
2010) real-world dataset [29]. Experimental results show that the method effectively screens
features related to tool wear and exhibits strong learning ability to accurately identify tool
wear state, achieving an identification accuracy of 97.9% with small sample data. This
offers a novel approach for research on tool wear state identification.

The rest of this paper is organized in the following manner. Section 2 offers an in-
depth explanation of the proposed method and briefly examines related theories. Section 3
presents the experimental setup relevant to this paper while providing a detailed discussion
of the obtained results. Finally, Section 4 serves as the conclusion of this paper.

2. Proposed Methodology
2.1. Support Vector Machine Recursive Feature Elimination (SVM-RFE)

SVM-RFE is an SVM-based sequential backward selection algorithm utilized for
feature selection. The selected features have complementary characteristics, and in each
cycle, the features with the lowest scores are removed. However, this does not imply that
the top-ranked features alone can achieve the best classification performance for SVM.
Multiple features need to be combined to achieve the optimal classification performance,
facilitating the fusion of multi-sensor signal features. SVM-RFE involves the following
main steps:

Step 1: Determine the kernel function type to be used in the SVM.
Step 2: Train the SVM model using the initial feature set and calculate the importance

score Ks for each feature.
The SVM was originally developed for binary classification problems with linearly

separable data. Due to the limited scope of the paper, the classification principle of the
SVM is not elaborated here. In this paper, the square of the weight vector of the optimal
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hyperplane of the SVM, i.e., ω2, is used as the ranking criterion for each feature [30,31].
However, the problem of identifying tool wear state typically involves multiple wear classes,
which requires a multi-classification strategy. Therefore, a one-vs-one (OVO) strategy is
used, where each category constructs a binary subproblem with all other categories, and
if a is the number of categories, resulting in A = a(a− 1)/2 subproblems. During each
SVM-RFE training process, A subproblems need to be solved to obtain A ranking criterion
scores. The A ranking criterion scores are then summed to obtain the total score, i.e.,

Ks =
A
∑

i=1
ω2

i , which is used as the criterion for feature ranking.

Step 3: Arrange the importance scores of all features in decreasing order and eliminate
the feature with the lowest score.

Step 4: Continue iterating Steps 2 and 3 until the remaining features meet the feature
reduction criteria.

2.2. Northern Goshawk Optimization
The Principle of NGO

The hunting strategy of the northern goshawk can be divided into two steps: detecting
the prey, and pursuing and evading. The mathematical model formulated by NGO, inspired
by these distinct hunting steps, is detailed below:

(1) Prey detection step (exploration step).
In the initial step of the northern goshawk’s hunting process, it randomly chooses

the prey and quickly launches an attack. The mathematical representation of the northern
goshawk’s behavior in this step is as follows:

Pi = Xk, i = 1, 2, · · · , N; k = 1, 2, · · · , i− 1, · · · , N, (1)

xnew,p1
i,j =

{
xi,j + r

(
pi,j − Ixi,j

)
, FPi < Fi,

xi,j + r
(

xi,j − pi,j
)
, FPi ≥ Fi,

(2)

Xi =

{
Xnew,p1

i , Fnew,p1
i < Fi,

Xi, Fnew,p1
i ≥ Fi,

(3)

In this equation, Pi represents the prey’s position selected by the ith northern goshawk;
FPi represents the objective function value (i.e., the fitness value) of the prey’s location
corresponding to the ith northern goshawk; k is a randomly chosen integer from [1, N];
Xnew,p1

i represents the new position of the ith northern goshawk; xnew,p1
i,j represents the new

position of the ith northern goshawk in the jth dimension; Fnew,p1
i represents the fitness

value based on the update of the ith northern goshawk following this step; r is a randomly
generated value within [0, 1]; and I is a random integer of 1 or 2.

(2) Pursuit and fleeing step (development step).
After being attacked by the northern goshawk, the prey will attempt to flee. During

the pursuit, northern goshawks are extremely fast and can catch their prey in various sce-
narios. Assuming the hunt takes place within a range of attack radius R, the mathematical
representation of the northern goshawk’s behavior in this step is as follows:

xnew,p2
i,j = xi,j + R(2r− 1)xi,j, (4)

R = 0.02
(

1− t
T

)
, (5)

Xi =

{
Xnew,p2

i , Fnew,p2
i < Fi,

Xi, Fnew,p2
i ≥ F,

(6)

In this equation, t represents the current iteration count, and T represents the maximum
iteration limit. Xnew,p2

i represents the new position of the ith northern goshawk in the
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second step, while xnew,p2
i,j represents the new position of the ith northern goshawk in the

jth dimension during the second step, and Fnew,p2
i corresponds to the fitness value based

on the update of the ith northern goshawk following this step.

2.3. Improvement of NGO (INGO)

The NGO has been widely used due to its high convergence accuracy and good
robustness. However, it still has certain limitations:

1. During the population initialization step, the NGO employs a method, which gen-
erates the initial population randomly. This method results in a high degree of
randomness and uneven distribution within the initial population, with individuals
exhibiting significant disparities. This can easily lead to a lack of diversity in the
population, potentially missing out on potential optimal solutions.

2. In the prey recognition step, the NGO relies heavily on two random numbers, “r” and
“I”, to depict the random behaviors within the population. This excessive randomness
might lead to unstable output results, thereby diminishing the quality of solutions.

3. As indicated in Equation (6), the greedy selection mechanism (GSM) governs the
population position updates during the pursuit and evasion phases, which easily
leads the algorithm into local optima traps.

Based on the aforementioned analysis, in order to further enhance the optimization
capabilities of the NGO, a new method termed INGO has been proposed. Initially, the
population is initialized through tent chaos mapping—a process, which not only ampli-
fies the diversity within the population but also facilitates the algorithm in identifying
potential optimal solutions from a broader solution space, thereby augmenting its global
search capabilities. Subsequently, an adaptive weight factor is introduced during the prey
detection step of the NGO to dynamically adjust the search strategy. This adaptive weight
factor is capable of automatically modulating the search strategy based on the progression
of iterations, consequently reducing the algorithm’s randomness to a certain extent. In the
pursuit and fleeing step, we incorporate a Levy flight strategy—a tactic, which renders the
algorithm more flexible and diversified during the search process, effectively circumventing
premature convergence to local optima. The improved algorithm flowchart is illustrated in
Figure 1, and the mathematical principles of the enhanced strategy are as follows:

2.3.1. Tent Chaos Mapping

Chaos mapping is especially adept at initializing populations in optimization algo-
rithms; by substituting random parameters with chaos mapping, the algorithm is capable
of generating initial solutions with excellent diversity within the search space [32]. Utilizing
the random chaotic sequences generated by tent chaos mapping facilitates the creation of
the initial generation of the population. The universal formulation of tent chaos mapping
is as follows:

x(n + 1) =
{

x(n)/α, x(n) ∈ [0, α),
(1− x(n))/(1− α)), x(n) ∈ [α, 1],

(7)

where α ∈ [0, 1].

2.3.2. Adaptive Weight Factor

During the prey detection step, we introduced a dynamically varying adaptive weight
factor, ω(t), which changes according to the iteration count. In the early stages of iteration,
ω(t) is set to a relatively high value, aiming to amplify the global search capability of
the algorithm. As the iteration progresses, ω(t) will gradually decrease to 0.5, thereby
enhancing the algorithm’s local search ability. This strategy assists in maintaining a balance
between the global and local search capabilities of the algorithm, ultimately improving the
convergence accuracy. The mathematical representation of the adaptive weight factor ω(t)
is as follows:

ω(t) = 1− t
2·tmax

(8)
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where t is the current iteration count, and tmax is the maximum number of iterations.
Consequently, after incorporating the adaptive weight factor, Equation (2) is updated
as follows:

xnew,p1
i,j =

{
xi,j + ω(t)× r

(
pi,j − Ixi,j

)
, FPi < Fi

xi,j + ω(t)× r
(
xi,j − pi,j

)
, FPi ≥ Fi

(9)Sensors 2023, 23, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. The flowchart of INGO. 

2.3.1. Tent Chaos Mapping 
Chaos mapping is especially adept at initializing populations in optimization algo-

rithms; by substituting random parameters with chaos mapping, the algorithm is capable 
of generating initial solutions with excellent diversity within the search space [32]. Utiliz-
ing the random chaotic sequences generated by tent chaos mapping facilitates the creation 
of the initial generation of the population. The universal formulation of tent chaos map-
ping is as follows:  

( ) / , ( ) [0, ),
( 1)

(1 ( )) / (1 )), ( ) [ ,1],
x n x n

x n
x n x n

α α
α α

 ∈+ =  − − ∈  
(7)

where 
0,1α  ∈   . 

2.3.2. Adaptive Weight Factor 
During the prey detection step, we introduced a dynamically varying adaptive 

weight factor, ω(t), which changes according to the iteration count. In the early stages of 
iteration, ω(t) is set to a relatively high value, aiming to amplify the global search capabil-
ity of the algorithm. As the iteration progresses, ω(t) will gradually decrease to 0.5, thereby 
enhancing the algorithm’s local search ability. This strategy assists in maintaining a bal-
ance between the global and local search capabilities of the algorithm, ultimately 

Figure 1. The flowchart of INGO.

2.3.3. Levy Flight Strategy

The Levy flight originates from the integration of Levy’s symmetric stable distribution,
serving as a method to generate special random step lengths. Addressing the issue of
random searches, many scholars have incorporated this strategy to enhance algorithms,
thereby achieving superior optimization results [33,34]. In this paper, the Levy flight strat-
egy is introduced in the second phase of NGO to prevent the population from falling into
local optima. The step length of Levy flight follows a heavy-tailed exponential probability
distribution (Levy distribution), which adheres to the distribution formula with a step
length of s:

Levy(s) ∼ u = t−1−β, β ∈ (0, 2] (10)

The step equation for the Levy flight process simulation is shown in Equation (11):

s = u/|v|1/β (11)
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where β = 1.5 [35]; u and v follow a normal distribution with N
(
0, δ2

u
)

and N
(
0, δ2

v
)
, respec-

tively. The expressions for δ2
u and δ2

v are as follows: δu =

[
Γ(1+β)·(sin(πβ/2))

Γ((1+β)/2)·β·(2(β−1)/2)

]1/β

δv = 1,
(12)

where Γ represents the standard Gamma function integration operation.
Figure 2 displays a schematic diagram of Levy flight in 3D space, which showcases

the random search of the INGO in a 3D space. Equation (4) is transformed by adding the
Levy flight strategy:

xnew,p2
i,j = Levy⊗ xi,j + R(2r− 1)xi,j (13)

where ⊗ is the product of the element.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 2. Schematic diagram of the Levy flight in 3D space. 

2.4. SVM Parameter Optimization 
The INGO algorithm is introduced to search for the penalty factor C and kernel func-

tion parameter γ of the SVM in order to train an optimal identification model. The process 
of implementing INGO-SVM is outlined below.  

Step 1: Input the training set and test set to establish the fitness function. In this study, 
the average classification error from five-fold cross-validation serves as the fitness func-
tion to evaluate the quality of individual positions, as depicted below: 

*

1

1 ( )  1 100%
( )

K

i

S ifitness
K S i=

 
=  − ×  

   
(14)

where S is the total number of samples; S* is the number of samples correctly classified by 
the SVM; and K is the K-fold cross-validation, where 5K =  in this paper. 

Step 2: Initialization of INGO parameters, including the population size N, maximum 
iteration count Tmax and the range of optimization for the penalty factor C and kernel func-
tion parameter γ. 

Step 3: The initial position of the northern goshawk is initialized using the tent chaos 
mapping, with individual positions encoded as (C, γ); this ensures a more uniform distri-
bution of the initial population across the parameter range. 

Step 4: Conduct iterative optimization following the INGO procedure outlined in 
Figure 1. 

Step 5: Evaluate whether the number of iterations meets the stopping criteria. If not, 
revert to Step 4. If satisfied, halt the algorithm iteration and output the optimal penalty 
factor C and kernel function parameter γ, establishing the SVM tool wear state identifica-
tion model. 

Figure 3 displays the flowchart of the INGO-SVM model. 

Figure 2. Schematic diagram of the Levy flight in 3D space.

2.4. SVM Parameter Optimization

The INGO algorithm is introduced to search for the penalty factor C and kernel
function parameter γ of the SVM in order to train an optimal identification model. The
process of implementing INGO-SVM is outlined below.

Step 1: Input the training set and test set to establish the fitness function. In this study,
the average classification error from five-fold cross-validation serves as the fitness function
to evaluate the quality of individual positions, as depicted below:

f itness =
1
K

K

∑
i=1

(
1− S(i)∗

S(i)
× 100%

)
(14)

where S is the total number of samples; S* is the number of samples correctly classified by
the SVM; and K is the K-fold cross-validation, where K = 5 in this paper.

Step 2: Initialization of INGO parameters, including the population size N, maximum
iteration count Tmax and the range of optimization for the penalty factor C and kernel
function parameter γ.

Step 3: The initial position of the northern goshawk is initialized using the tent
chaos mapping, with individual positions encoded as (C, γ); this ensures a more uniform
distribution of the initial population across the parameter range.

Step 4: Conduct iterative optimization following the INGO procedure outlined
in Figure 1.

Step 5: Evaluate whether the number of iterations meets the stopping criteria. If
not, revert to Step 4. If satisfied, halt the algorithm iteration and output the optimal
penalty factor C and kernel function parameter γ, establishing the SVM tool wear state
identification model.

Figure 3 displays the flowchart of the INGO-SVM model.
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3. Experimental Verification
3.1. Performance Testing and Analysis of INGO
3.1.1. Select the Benchmark Test Functions

To validate the optimization performance of INGO, simulation experiments were con-
ducted using eight standard test functions. Functions F1 to F4 are unimodal, assessing the
algorithm’s convergence effect, while F5 to F8 are multi-modal, evaluating the algorithm’s
local search and search capabilities. Table 1 presents the details of these standard test
functions, where n signifies the search dimensionality.

Table 1. Benchmark test functions.

Name Expression Dimension Search
Space

Optimal
Value

Sphere F1(x) =
n
∑

i=1
x2

i
30 [−100,100] 0

Schwefel 2.22 F2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10,10] 0

Schwefel 1.2 F3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100,100] 0

Quartic F4(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28,1.28] 0

Rastrigin F5(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30 [−5.12,5.12] 0

Ackley F6(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi )

)
+20 + e

30 [−32,32] 0

Griewank F7(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

Penalized 1
F8(x) = π

n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+

n
∑

i=1
u(xi, 10, 100, 4)

}
yi = 1 + xi

4 u(xi, a, k, m) =


k(xi − a)m, xi > a

0,−a < xi < a
k(−xi − a)m, xi < −a

30 [−50,50] 0
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3.1.2. Comparison of INGO with the Other Algorithms

Simulation experiments using standard test functions are performed to confirm
INGO’s optimization impact and to compare its performance against NGO and three
classic optimization algorithms: PSO, GWO and WOA. For each algorithm, we set the
population size to 30 and the maximum number of iterations to 1000, and each standard
test function is executed independently 30 times. Table 2 presents the initial parameters for
each algorithm.

Table 2. Initialization parameters of all algorithms.

Algorithm Values of the Parameters

PSO c1 = c2 = 2
GWO a:Linear reduction from 2 to 0
WOA a:Linear reduction from 2 to 0
NGO r = [0, 1], I = {1, 2}
INGO r = [0, 1], I = {1, 2}, α = 0.7, β = 1.5

Simulation experiments were completed using MATLAB R2022b on a computer
equipped with an AMD Ryzen 7 5800H CPU, 3.2 GHz base frequency, 32 GB memory
and Windows 11 operating system. The mean and standard deviation of the fitness were
employed to evaluate the optimization performance. A lower mean fitness value implies
increased convergence accuracy, whereas a smaller standard deviation value suggests
enhanced algorithm stability. The evaluation formula is expressed as

Mean =
1
M

M

∑
i=1

f itness(i) (15)

Std =

√√√√ 1
M

M

∑
i=1

( f itness(i)−Mean)2 (16)

where fitness(i) represents the adaptation value in the ith experiment, and M is the number
of runs for a single experiment.

Table 3 presents the simulation experiment outcomes for each algorithm operating
on eight standard test functions, with the bold text denoting the minimum value among
all algorithms. The statistical results of INGO for the eight sets of standard test functions
outperform significantly those of other comparison algorithms under the same test con-
straints. For unimodal functions, INGO finds the theoretical optimal values on F1~F3 with
a standard deviation of 0. Although the mean value in function F4 is lower, it still out-
performs the other algorithms, indicating that INGO has a certain advantage in its ability
to seek superiority on unimodal functions. For multi-modal functions, INGO finds the
theoretical optimal values on F5 and F7, performing slightly better than GWO, WOA and
NGO, while the mean fitness on F8 is slightly lower than that of NGO, ranking second only.
In general, INGO exhibits an enhanced capacity to escape local optima on multi-modal
functions, and the standard deviation value indicates higher stability for INGO compared
to other algorithms. The analysis suggests that the proposed INGO can effectively explore
the search space, ensuring robust global and local search capabilities, which significantly
improve the algorithm’s convergence accuracy.
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Table 3. Comparison of the experimental results of each algorithm.

Algorithm Statistics
Function

F1 F2 F3 F4 F5 F6 F7 F8

PSO
Mean 0.2880 0.9667 78.9099 2.8202 106 1.1147 0.0216 0.0059

Std 0.1395 0.3465 25.4474 1.9699 28.4601 0.5690 0.0105 0.0190

GWO
Mean 2.83 × 10−58 1.41 × 10−34 2.84 × 10−14 8.69 × 10−4 0.5376 1.51 × 10−14 0.0021 0.0473

Std 9.54 × 10−58 1.55 × 10−34 9.56 × 10−14 7.80 × 10−4 2.1970 2.86 × 10−15 0.0050 0.0240

WOA
Mean 1.35 × 10−80 6.71 × 10−39 3.82 × 10−31 0.0011 0 3.52 × 10−15 0.0023 0.0070

Std 7.25 × 10−80 3.39 × 10−38 2.02 × 10−30 8.51 × 10−4 0 2.20 × 10−15 0.0123 0.0068

NGO
Mean 1.21 × 10−179 1.58 × 10−92 2.95 × 10−48 2.81 × 10−4 0 5.54 × 10−15 0 3.75 × 10−9

Std 0 3.25 × 10−92 1.59 × 10−47 1.22 × 10−4 0 1.76 × 10−15 0 2.73 × 10−9

INGO
Mean 0 0 0 2.11 × 10−5 0 4.44 × 10−16 0 2.03 × 10−5

Std 0 0 0 2.20 × 10−5 0 0 0 2.85 × 10−5
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In recent years, statistical testing has emerged as a prevalent tool for assessing the
performance of computational methods. Particularly in experimental research, they are
utilized to observe and compare the performance of different algorithms. Among these,
the Wilcoxon signed-rank test has gained favor due to its simplicity in computation and
reliability in results [36,37]. To further assess INGO’s performance, a Wilcoxon signed-rank
test was conducted on the optimal results of the INGO and four other algorithms over
30 independent runs at a significance level of p = 5%, determining whether INGO signifi-
cantly differed from other intelligent optimization algorithms. The symbols “+”, “=” and
“-” represent INGO’s performance as superior, similar or inferior to the comparison algo-
rithms, respectively, while N/A signifies that the algorithms exhibit similar performance
and are not comparable. Table 4 demonstrates that in the context of the eight standard test
functions considered, INGO exhibits advantageous performance over PSO on all functions,
GWO on seven functions, and WOA and NGO on six functions, highlighting its promising
capabilities in these instances. Moreover, the majority of p-values fall below 5%, signifying
that INGO is generally significantly different from the comparison algorithms.

Table 4. p-value of Wilcoxon signed-rank test.

F1 F2 F3 F4 F5 F6 F7 F8 +/=/−

INGO-PSO 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.34 × 10−6 8/0/0
INGO-GWO 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.88 × 10−4 5.96 × 10−7 0.0300 0.3820 7/0/1
INGO-WOA 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 N/A 5.79 × 10−5 0.2500 0.0039 6/1/1
INGO-NGO 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 N/A 6.91 × 10−7 N/A 6.34 × 10−6 6/2/0

To visually compare the convergence performance of each algorithm, a convergence
curve comparison is constructed by choosing the run closest to the average result value,
with the horizontal axis representing the iteration count and the vertical axis representing
the fitness value. Figure 4 demonstrates that, for various types of test functions, INGO’s
convergence speed and accuracy are only slightly lower than NGO’s on F8, while they
are significantly superior to other algorithms on the remaining functions. INGO requires
the fewest iterations to converge to the same accuracy among the different algorithms. In
particular, for F5 and F7, INGO converges to the optimal value in fewer than ten iterations,
indicating that the three improvement strategies introduced in this paper effectively en-
hance the algorithm’s convergence speed and accuracy. However, further evaluation of the
performance of INGO in the tool wear state identification problem is still necessary.

3.2. Tool Wear Experiment
3.2.1. Description of Experiment

The experiment was designed to validate the proposed method using the real-world
PHM 2010 dataset. For the experimental setup, a square stainless steel workpiece with
a hardness of HRC52 was subjected to end-milling on a Röders Tech RFM760 computer
numerical control (CNC) machine using a ball-ended tungsten carbide cutter. The ma-
chining parameters were set as follows: a spindle speed of 10,400 r/min, a feed rate of
1555 mm/min and cutting depths of 0.125 mm radially (Y direction) and 0.2 mm axially
(Z direction).

A three-way force gauge was positioned between the workpiece and the machining
table to measure the cutting force. Additionally, vibration signals were captured from
three directions using accelerometers, while acoustic waves were recorded by an acoustic
emission sensor mounted on the workpiece. Data were collected across seven signal
channels at a 50 kHz sampling frequency using the NI PCI 1200 data acquisition card. A
detailed schematic representation can be found in Figure 5. More detailed information
about the experimental equipment can be found in Table 5.
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The experiment involved six milling cutters, labeled C1 through C6. The exact wear
values for C2, C3 and C5 were not disclosed; hence, this study primarily focused on data
from cutters C1, C4 and C6. Each of these cutters was used 315 times under identical
machining conditions. Following each use, the wear values were measured offline on the
three flutes of the cutter using a LEICA MZ12 microscope. Specifically, according to ISO
3685:1993 [3], tool wear is determined by measuring the flank wear width (VB) at a depth
equal to half of the cutting depth. To best represent authentic machining conditions, the
highest wear among the three flutes was considered as the final metric for each cutter.
For detailed analysis, 100,000 sample points from the center of each milling operation
were selected, excluding anomalies during the cutter’s entry and exit. The experimental
equipment and machining parameters are shown in Table 5.
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Table 5. Experimental equipment and machining parameters.

Category Parameter Value

Experimental equipment

CNC machine Röders Tech RFM760
Three-way force gauge Kistler 9265B

Accelerometer Kistler 8636C
Acoustic emission sensor Kistler 8152

Data acquisition card NI PCI 1200
Microscope LEICA MZ12

Machining parameters

Spindle speed 10,400 r/min
Feed rate 1555 mm/min

Cutting depth (Radial, Y direction) 0.125 mm
Cutting depth (Axial, Z direction) 0.2 mm

Workpiece and Cutter material
Workpiece material HRC 52

Cutter material Ball-ended tungsten carbide cutter

3.2.2. Performance of the Proposed Methodology

During the milling process, the collected vibration signal contains a significant quantity
of noise. In order to reliably and effectively assess the identification tool wear state, it
is necessary to perform denoising on the signal. Wavelet packet threshold denoising
(WPTD) has demonstrated great advantages in denoising non-stationary signal and is
widely used for this purpose [38]. WPTD involves three parts: decomposition, threshold
denoising and reconstruction, which essentially filters the signal. In this paper, the “db3”
wavelet basis function is selected to perform four-level wavelet packet decomposition and
denoise the vibration signal, decomposing the signal into 16 frequency intervals of different
frequency bands. The unbiased risk estimation threshold (rigrsure) rule is used to select the
threshold value to distinguish between noise and noiseless signal. The noise is then filtered
out by the soft threshold function, and the noiseless signal is reconstructed to achieve
denoising [39,40].

After denoising, the wavelet packet energy was extracted across the entire frequency
band (1~25 kHz) from all seven signal channels. For each channel, 16 time–frequency
domain features were obtained through a four-level wavelet packet decomposition. Addi-
tionally, 14 time–domain features and 5 frequency domain features were extracted from
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each channel. Thus, per channel, we had 16 + 14 + 5 = 35 features. With data from seven
channels, the total number of extracted features was 35 × 7 = 245 features. The types of
extracted features are presented in Table 6.

Table 6. Extracted features of signal.

Domain Features

Time domain

Maximum value (Max) Minimum value (Min)
Mean value (Mean) Peak-to-peak value (PP)

Absolute mean (Absm) Variance (Var)
Standard deviation (Std) Kurtosis (Kur)
Skewness (Ske) Root mean square (Rms)

Form factor (FF) Crest factor (CF)
Impulse factor (IF) Margin factor (MF)

Frequency domain
Frequency centroid (FC) Mean square frequency (MSF)

Root mean square frequency (RMSF) Frequency variance (FV)
Frequency standard deviation (FSD)

Time–frequency domain Wavelet packet energy after four-level decomposition (WPE)

To minimize the model’s running time and required data storage space, as well as
to prevent overfitting, irrelevant or redundant features were eliminated using SVM-RFE.
To normalize the extracted features, we utilized the max–min normalization method.
Assuming x denotes the normalized data and xi denotes the original data, the equation is
as follows:

x =
xi −min{xi}

max{xi} −min{xi}
(17)

The LIBSVM toolbox is employed to construct the SVM base model [41]. Given that
the dataset we utilize exhibits characteristics such as small sample size, high dimensionality
and non-linearity, the kernel function selected for this paper is the radial basis function
(RBF), represented by the equation below: K(x, xi) = exp

{
− |x−xi |2

γ

}
,

γ = 1
2σ2 ,

(18)

Taking into account the real-time monitoring requirements, we retained 15 features
to form the optimal feature set. Table 7 presents the final set of optimal features, where
E41 and E43 represent the WPE of the second and fourth frequency bands. Exemplified
using milling cutter C1, we selected the amplitudes of these features during the 10th
(initial wear), 150th (normal wear) and 290th (severe wear) milling pass for comparison,
as depicted in Figure 6. Concurrently, Figure 7 displays the variation trends of these
15 features after normalization.

According to Figures 6 and 7, we observed that in all three cutting force directions,
there exist optimal features represented by both PP and Std. These parameters delineate
the difference between signal peaks and troughs, and the dispersion or fluctuation of
the signal, respectively. PP potentially characterizes the maximum cutting force exerted
on the tool during the machining process. As the wear progresses, the cutting edge of
the tool becomes less sharp, enlarging the cutting area and necessitating greater force
for material removal, leading to an augmentation in PP. On the other hand, a rising Std
suggests irregular fluctuations in the cutting force. Tool wear intensifies the instability in
the cutting process. For instance, due to wear at the tool tip, there might be heightened
vibrations during machining, amplifying force oscillations.
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Table 7. Best features combination.

Signal Channel Features

Fx (Force signal in the X direction) PP Std
Fy (Force signal in the Y direction) Mean PP Absm Std Rms E41 E43
Fz (Force signal in the Z direction) Max PP Absm Std Rms

Vx (Vibration signal in the X direction) FF
Vy (Vibration signal in the Y direction) /
Vz (Vibration signal in the Z direction) /

AE (Acoustic emission signal) /
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According to Figure 6, a notable observation was the pronounced increase in both PP
and Std between the 150th and 290th cycle, surpassing the growth observed from the 10th to
the 150th cycle. This shift is attributed to the tool’s evident morphological changes during
its intense wear phase, causing notable increases in force and process irregularities. We also
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noted some vibration signal features correlating with tool wear. However, when employing
SVM-RFE for optimal feature selection, we chose the top 15 features most sensitive to
tool wear, aiming for a model, which is both efficient and concise. The features selected
predominantly originate from cutting force signals, for, under the prescribed experimental
setup, they present a more direct and sensitive metric for tool wear than vibration signals.
Simultaneously, with an increase in the number of milling cycles, the optimal features
generally exhibit an upward trend, which is largely consistent with the wear trend of
milling tools shown in Figure 8. This also suggests that SVM-RFE can effectively select the
features most sensitive to tool wear.
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Based on the existing literature, tool wear can be categorized into three states: initial wear
state (0–80 µm), normal wear state (80 µm–140 µm) and severe wear state (140 µm–∞) [3,42,43].
Figure 8 displays the wear curves of the three milling tools, leading to the sample size
distribution for each category, as depicted in Table 8. An optimal set of features of the
three milling cutters and their corresponding label categories were formed into a dataset.
Samples from each category were divided into training and testing sets at a ratio of 0.7:0.3.
The dataset was then input into the INGO-SVM identification model to evaluate the
identification performance of our proposed approach.

Table 8. Number of samples in each category.

Wear State Training Set Test Set Label

Initial wear 70 30 1
Normal wear 433 185 2
Severe wear 159 68 3

Relying solely on a single accuracy rate to evaluate the identification outcomes may be
limited, given the significant disparity in sample sizes among the three categories in the test
set. Thus, to appraise the INGO-SVM’s performance, we employ four evaluation metrics:
accuracy, precision, recall and macro mean (F1-score). Table 9 presents the approach’s
evaluation results on the test set, while Figure 9 displays the identification outcomes and
confusion matrix of INGO-SVM.

Table 9. Identification accuracy of the proposed methodology.

Accuracy Precision Recall F1-Score

97.9 98.6 94.3 96.2



Sensors 2023, 23, 8591 17 of 21

Sensors 2023, 23, x FOR PEER REVIEW 17 of 21 
 

 

Based on the existing literature, tool wear can be categorized into three states: initial 
wear state (0–80 µm), normal wear state (80 µm–140 µm) and severe wear state (140 µm–∞) [3,42,43]. Figure 8 displays the wear curves of the three milling tools, leading to the 
sample size distribution for each category, as depicted in Table 8. An optimal set of fea-
tures of the three milling cutters and their corresponding label categories were formed 
into a dataset. Samples from each category were divided into training and testing sets at 
a ratio of 0.7:0.3. The dataset was then input into the INGO-SVM identification model to 
evaluate the identification performance of our proposed approach. 

 
Figure 8. Tool wear curves of C1, C4 and C6. 

Table 8. Number of samples in each category. 

Wear State Training Set Test Set Label 
Initial wear 70 30 1 

Normal wear 433 185 2 
Severe wear 159 68 3 

Relying solely on a single accuracy rate to evaluate the identification outcomes may 
be limited, given the significant disparity in sample sizes among the three categories in 
the test set. Thus, to appraise the INGO-SVM’s performance, we employ four evaluation 
metrics: accuracy, precision, recall and macro mean (F1-score). Table 9 presents the ap-
proach’s evaluation results on the test set, while Figure 9 displays the identification out-
comes and confusion matrix of INGO-SVM. 

Table 9. Identification accuracy of the proposed methodology. 

Accuracy Precision Recall F1-Score 
97.9 98.6 94.3 96.2 

 

  

(a) (b) 

Figure 9. Identification results of INGO-SVM: (a) Identification results of wear state; (b) Confusion matrix.

As shown in Figure 9, our proposed approach achieves an overall identification accu-
racy of 97.9%, with identification accuracies of approximately 83.3%, 99.5% and 100% for
the three wear states, respectively. It is worth noting that tool failure usually occurs in the
severe wear state, and INGO-SVM performs better in this state. Hence, the tool wear identi-
fication approach presented in this study exhibits exceptional accuracy and dependability.

3.2.3. Comparison and Discussion

In this paper, we compare INGO-SVM with PSO-SVM [24], GWO-SVM [25], WOA-
SVM [26], NGO-SVM and unoptimized SVM using the same data. For each algorithm, the
population size was established at 10, and the maximum iteration count was designated
as 50. The initial parameter settings for each algorithm are as shown in Table 2. Figure 10
displays the fitness variation curves of the five identification approaches on the training
set, while Table 10 presents the wear state identification results on the test set. As shown in
Figure 10, all five algorithms converge to a stable state as the number of iterations increases.
PSO converges quickly and requires fewer iterations to reach the optimal value, while
GWO eventually converges to a better accuracy than PSO but requires more iterations.
WOA exhibits similar convergence characteristics to PSO but ultimately converges with
the same accuracy as GWO. During the early iterations, the fitness value of NGO changes
relatively little and only converges to the same value as GWO at the 33rd iteration. All four
algorithms except INGO fall into local optimality, leading to poorer identification results
in the test set. In contrast, INGO converges by the 12th iteration and achieves the optimal
value among all algorithms, with the optimal value for C being 45.981 and the optimal
value for γ being 0.3861, indicating that INGO possesses faster convergence and higher
accuracy in this particular scenario.

Table 10. Results of the six identification approaches in the test set.

Method Accuracy Precision Recall F1-Score

PSO-SVM 91.2 85.7 93.6 88.4
GWO-SVM 93.3 91.1 88.2 89.2
WOA-SVM 94.0 90.1 89.8 90.0
NGO-SVM 94.7 90.3 96.1 92.4
INGO-SVM 97.9 98.6 94.3 96.2

SVM 82.3 78.8 87.9 79.1
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As shown in Table 10, all approaches using parametric optimization outperformed
the approach without parametric optimization in all four evaluation criteria. Among
them, INGO-SVM achieved the highest accuracy (97.9%), precision (98.6%) and F1-score
(96.2%) on the test set. The F1-score is more suitable for evaluating industrial datasets
with unbalanced samples, such as tool wear, as it combines the two metrics of precision
and recall. Furthermore, INGO-SVM attained an average classification accuracy of 98.6%
on the training set, which validates the model’s generalization performance. As a result,
INGO proves to be a more fitting choice for parameter optimization of the SVM applied to
tool wear.

4. Conclusions and Discussion

In this paper, we proposed a tool wear state identification model utilizing an improved
northern goshawk optimization algorithm to optimize the support vector machine, and
we verified its feasibility through the PHM 2010 real-world dataset. The primary research
findings are as follows:

(1) The NGO was theoretically enhanced through three key modifications to elevate
its solution accuracy and convergence speed. Firstly, the integration of tent chaos
mapping in the NGO improved the quality of the initial population. Secondly, the
introduction of an adaptive weight factor harmoniously balanced the global and
local search capabilities, thereby reducing the randomness inherent in the algorithm.
Lastly, the implementation of the Levy flight strategy effectively prevented the algo-
rithm from becoming trapped in local optimum solutions, fostering a more robust
optimization process.

(2) Eight benchmark test functions were selected to compare the INGO with PSO, GWO,
WOA and NGO algorithms. After conducting 30 simulation experiments, INGO
demonstrated superiority in terms of the mean and standard deviation on seven of
the functions, showcasing its enhanced optimization performance and stability.

(3) A sophisticated data processing approach was employed, where signals from seven
channels underwent a four-layer wavelet packet threshold denoising process. This
was followed by the extraction of wavelet packet energy across the entire frequency
band, coupled with several statistical features. This meticulous process, facilitated
by the SVM-RFE method, enabled the selection of an optimal feature set, setting a
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solid foundation for the development of a more accurate and reliable tool wear state
identification model.

(4) Utilizing INGO to optimize the parameters of SVM, and adopting the average classi-
fication error from five-fold cross-validation as the fitness function, the INGO-SVM
showcases higher convergence precision and classification accuracy compared to
existing identification methods. This approach achieves a wear state identification
accuracy rate of up to 97.9%, representing an approximate improvement of 15.6% and
3.2% over SVM and NGO-SVM, respectively, thus demonstrating a notable advantage
in the experiments conducted. These results indicate that the INGO-SVM model
possesses superior classification accuracy, making it viable for real-time monitoring of
tool wear conditions.

The proposed method for tool wear state identification provides an effective approach
for real-time tool condition monitoring and early warning in practical machining, showcas-
ing potential application value. However, another crucial aspect of tool state monitoring
concerns the prediction of the tool’s remaining useful life. In subsequent research, we
anticipate that a more comprehensive solution for tool management will be provided by
integrating the INGO algorithm with other advanced predictive technologies.
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