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Abstract: We developed a shoe sole sensor system with four high-capacity, compact triaxial force
sensors using a nitrogen added chromium strain-sensitive thin film mounted on the sole of a shoe.
Walking experiments were performed, including straight walking and turning (side-step and cross-
step turning), in six healthy young male participants and two healthy young female participants
wearing the sole sensor system. A regression model to predict three-directional ground reaction
forces (GRFs) from force sensor outputs was created using multiple linear regression and Gaussian
process regression (GPR). The predicted GRF values were compared with the GRF values measured
with a force plate. In the model trained on data from the straight walking and turning trials, the
percent root-mean-square error (%RMSE) for predicting the GRFs in the anteroposterior and vertical
directions was less than 15%, except for the GRF in the mediolateral direction. The model trained
separately for straight walking, side-step turning, and cross-step turning showed a %RMSE of less
than 15% in all directions in the GPR model, which is considered accurate for practical use.

Keywords: ground reaction force; shoe sole sensor system; machine learning; gait; walking; turning

1. Introduction

With the advent of aging in society, the number of falling accidents among elderly
people and patients with gait disorders is increasing. Thus, fall prediction and rehabilitation
based on balance assessment are becoming increasingly important. The measurement of
ground reaction forces (GRFs) during gait is used in a wide range of medical and healthcare
applications, including the assessment of fall risk [1], diagnosis of pathological gait [2], and
biofeedback for rehabilitation [3]. Three-directional GRFs are usually measured using force
plates because of their high accuracy. However, force plates cannot be easily introduced
in small clinical facilities owing to their high cost, and space and movement limitations.
Furthermore, it is difficult to measure GRFs with force plates during natural gait in a living
environment.

Many attempts have been made to measure GRFs without using force plates. Studies
have been conducted to estimate GRFs using kinematic data obtained from marker-less
motion capture [4,5]. Liu et al. [6] found that if the cross-correlation coefficient is greater
than 0.9 and the percent root-mean-square error (%RMSE) is less than 15%, the accuracy of
GRF estimation is excellent. However, limited reports using marker-less motion capture
met these criteria for GRF estimation in three-axis directions. Another problem is that the
use of a camera also imposes location restrictions. GRF estimation using wearable sensors
equipped with inertial measurement units (IMUs) is widely adopted because of its ease
of use and low cost, and it is less subject to location and motion restrictions [7–9]. One
potential problem with an IMU system is that its performance can be reduced by placement
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error [10]. Shoe sole sensor systems incorporating devices that measure forces in shoes,
such as pressure sensors embedded in insoles and triaxial force sensors attached to the
outer sole of shoes, have been developed. Moreover, various types of low-cost in-shoe
mobile measurement systems using a small number of force sensors have been developed
in previous studies [11–15]. Furthermore, some groups have proposed the estimation of
GRFs during walking from these local measurements, using machine learning techniques,
such as linear [16–18] and nonlinear [19–21] regressions. The insole-type sensor uses only
vertical forces to estimate three-directional GRFs, and a three-axis force sensor would enable
estimation with the addition of horizontal (anteroposterior and mediolateral) force data,
which could increase accuracy. Therefore, shoe sole sensor systems with three-axis force
sensors attached to the outer sole of the shoe have been developed [22,23]. Although these
systems are superior to previous systems as they can directly measure GRFs and have a
small error rate, the possibility that they may affect natural gait cannot be denied. Moriyasu
et al. [24] and Yamaguchi [25] developed sole sensor systems with a number of small triaxial
force sensors mounted on the outer sole of a shoe to measure GRF distribution during
running and walking, respectively, but the systems had problems, such as an inability to
measure the vertical GRF component at the heel, where a high load is applied owing to the
limited rated capacity of the sensors.

In the present study, we developed a lightweight sole sensor system with a high-
capacity, compact triaxial force sensor using a nitrogen added chromium (Cr–N) strain-
sensitive thin film [26,27] mounted at four points (heel, fifth metatarsal, first metatarsal, and
toe) on the sole of a shoe, and estimated three-directional GRFs using machine learning. We
aimed to investigate whether it is possible to estimate three-directional GRFs using machine
learning, such as multiple linear regression (MLR) analysis and Gaussian process regression
(GPR), with a small number of data measured using the sole sensor system. In addition,
since it is difficult to obtain a large amount of data when considering the application to
clinics, we used a GPR model [28–31] and cross-validation to enable estimation without
overfitting even with a small amount of data.

2. Methods
2.1. Sole Sensor System Using a Cr–N Strain-Sensitive Thin Film

The triaxial force sensor using a Cr–N thin film (Research Institute for Electromagnetic
Materials, Tomiya, Japan; dimensions: 20 mm × 20 mm × 7.5 mm; mass: 18 g) used in this
study is shown in Figure 1. The sensor consists of a 20 mm square stainless-steel housing
and a force-sensing contactor (lever). The rate capacities of the sensor in the x, y, and z
directions were±500 N,±500 N, and 1000 N, respectively. As shown in Figure 1b, the force
sensor was fabricated by forming an insulating film on the stainless-steel strain structure
and directly forming a Cr–N thin film on it through sputtering [26]. When a force acts on
the tip of the contactor, voltage output signals are obtained from four sets of Cr–N strain
gauge thin-film elements on the outer edge of each of the four arms, and the magnitude
and direction of the applied force can be estimated by analyzing these signals [26,27].

Figure 2 shows the appearance of the shoe sole sensor system developed in this
study. An 8 mm thick polyethylene foam outsole was attached to the sole of a walking
shoe (LifeWalker Men’s FLC101, size: 27.0 cm; LifeWalker Women’s FLC307, size: 25.0
cm; ASICS, Kobe, Japan). A Cr–N thin-film strain sensor was attached to the partially
cut-out portion of the sole. A total of eight sensors, four for each shoe, were mounted
simultaneously to measure three-directional forces at each location. The sensors were
covered with 1 mm thick nitrile rubber to prevent abrasion between the contactor of the
sensors and the ground surface. The force sensors were wired to a microcontroller (Teensy
3.6, SparkFun Electronics ®, Niwot, CO, USA), and a case containing the board and battery
was attached to the side of the shoe. The mass of the entire shoe sole sensor system,
including each sensor, battery, and board, was less than 380 g. Force data were recorded to
an SD card for each measurement. The sampling frequency for data measurement was 870
Hz. As shown in Figure 2a, the x, y, and z directions of the force measured by the small
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triaxial force sensor were the foot width, foot length, and vertical direction of the shoe. The
three-directional forces measured by the triaxial sensor were denoted as f xi, fyi, and f zi,
respectively, where i denotes the position of the sensor, i = 1 is the heel, i = 2 is the first
metatarsal, i = 3 is the fifth metatarsal, and i = 4 is the toe.
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of the sensor and layout of the Cr–N thin film.
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Figure 2. Sole sensor system. MT1 and MT5 represent the first and fifth metatarsal heads, respectively.
(a) Location of the four triaxial force sensors, and (b) side view of the sole sensor system.

2.2. Participants

The study included six healthy young males and two healthy young females. The
mean± SD age, height, and body mass of the participants were 22.0± 1.7 years, 1.69± 0.048
m, and 58.0 ± 5.4 kg, respectively. The experimental protocol of this study was approved
in advance by the Ethics Committee for Human Subjects Research, Graduate School of En-
gineering, Tohoku University (20A-5), and informed consent was obtained in writing from
each participant after providing them with an explanation of the experimental methods
and precautions in advance.

2.3. Experimental Procedure

Participants were instructed to walk on a 5 m long walkway with two force plates
(FP4060-08, Bertec, Columbus, OH, USA; each was 0.6 m × 0.4 m in size) embedded in
the center (Figure 3). Infrared reflective markers were attached to the toes and heels of
the sole sensor system, and the position coordinates of the infrared reflective markers
were measured using a three-dimensional motion analysis system (Optitrack, Acuity Inc.,
Reston, VA, USA). The sampling frequency for the position data of each marker in the
three-dimensional motion analysis system was 200 Hz, and the sampling frequency of the
GRF data (FX, FY, and FZ) on the force plate was 1000 Hz. The X, Y, and Z coordinates in
the walking experiment system were defined as shown in Figure 3, and the three-directional
reaction forces measured by the force plate were denoted as FX, FY, and FZ, respectively.



Sensors 2023, 23, 8985 4 of 13

Sensors 2023, 23, x FOR PEER REVIEW 4 of 13 
 

 

data (FX, FY, and FZ) on the force plate was 1000 Hz. The X, Y, and Z coordinates in the 
walking experiment system were defined as shown in Figure 3, and the three-directional 
reaction forces measured by the force plate were denoted as FX, FY, and FZ, respectively. 

The participants were instructed to walk on a walkway from a stationary standing 
position with a self-selected stride and walking speed, and to step on the first force plate 
with the left foot. As shown in Figure 4, the participants were instructed to walk in a 
straight line and then turn on the first force plate. The participants performed two types 
of turns, a side-step turn (Figure 4b) and a cross-step turn (Figure 4c), as well as straight 
walking (Figure 4a), for a total of three types of walking styles. The turning angle was 
approximately 20 degrees for each turning trial. Participants performed multiple practice 
trials for each gait movement and performed 10 gait experiments for each gait movement. 

 
Figure 3. Experimental setup for gait trials, and the X, Y, and Z coordinates in the walking experi-
ment system. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Schematic of footprints for each type of gait trial. (a) Straight walking; (b) Side-step turn-
ing; (c) Cross-step turning. 

Figure 3. Experimental setup for gait trials, and the X, Y, and Z coordinates in the walking experiment
system.

The participants were instructed to walk on a walkway from a stationary standing
position with a self-selected stride and walking speed, and to step on the first force plate
with the left foot. As shown in Figure 4, the participants were instructed to walk in a
straight line and then turn on the first force plate. The participants performed two types
of turns, a side-step turn (Figure 4b) and a cross-step turn (Figure 4c), as well as straight
walking (Figure 4a), for a total of three types of walking styles. The turning angle was
approximately 20 degrees for each turning trial. Participants performed multiple practice
trials for each gait movement and performed 10 gait experiments for each gait movement.
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2.4. Data Analysis
2.4.1. Data Preprocessing

The time series data of f xi, f yi, and f zi (i = 1–4), and FX, FY, and FZ during the stance
phase on the first force plate in each gait trial were used for the analysis (Figure 5). Matlab
ver. 9.11 (Mathworks, Natick, MA, USA) was used for subsequent analyses. The time series
data were smoothed by applying a fourth-order Butterworth low-pass filter with a cutoff
frequency of 50 Hz. For the total value of f zi (i = 1–4), i.e., ∑i=4

i=1 fzi, and the time series data
of FZ, the threshold value was set at 15 N for the sole sensor system and 50 N for the force
plate system [32,33] to determine the stance phase. The angle ϕ of the y-axis of the sensor
to the Y-axis of the force plate coordinate axis was obtained from the reflective markers
attached to the toes and heels, and the coordinate transformation for the GRF components
of the force plate was performed as follows:Fx

Fy
Fz

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

FX
FY
FZ

 (1)

where Fx, Fy, and Fz are the GRF components obtained from the force plate in the coordinate
system (x-y-z) for the shoe sole sensor system. Thereafter, the time series data of both
the shoe sole sensor system (f xi, f yi, and f zi) and the force plate (Fx, Fy, and Fz) were
reconstructed into 101 data sets (one for each 1%) by resampling, with the heel contact at
0% and the toe-off at 100%.
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Figure 5. Forces obtained by the shoe sole sensor system and ground reaction forces (GRFs) obtained
by a force plate. Twelve force sensor outputs (f xi, f yi, f zi [i = 1–4]) were used to estimate a model to
predict the GRF in each direction.

2.4.2. Machine Learning Models

The test data T and training data D are expressed by the following equations:

T = [Ftest | ftest] (2)

Ftest =
[
Fxtest Fytest Fztest

]
(3)

ftest =
[
fx1test fx2test fx3test fx4test fy1test fy2test fy3test fy4test fz1test fz2test fz3test fz4test

]
(4)

D = [F | f] (5)

F =
[
Fx Fy Fz

]
(6)
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f =
[
fx1 fx2 fx3 fx4 fy1 fy2 fy3 fy4 fz1 fz2 fz3 fz4

]
(7)

[Fxtest Fytest Fztest] =



F1
xtest F1

ytest F1
ztest

...
...

...
Fj

xtest Fj
ytest Fj

ztest
...

...
...

Fntest
xtest Fntest

ytest Fntest
ztest


(8)

Fx =



F1
x F1

y F1
z

...
...

...
Fj

x Fj
y Fj

z
...

...
...

Fn
y Fn

z Fn
x


(9)

[fxitest fyitest fzitest] =



f 1
xitest f 1

yitest f 1
zitest

...
...

...
f j
xitest f j

yitest f j
zitest

...
...

...
f ntest
xitest f ntest

yitest f ntest
zitest


(10)

[
fxi fyi fxi

]
=



f 1
xi f 1

yi f 1
zi

...
...

...
f j
xi f j

yi f j
zi

...
...

...
f n
xi f n

yi f n
zi


(11)

where Fxtest, Fytest, and Fztest are the x-, y-, and z-directional components of Ftest, respec-
tively; f xitest, f yitest, and f zitest are the x-, y-, and z-directional components of f test at each
sensor position (i = 1–4), respectively; f xi, f yi, and f zi are the x-, y-, and z-directional compo-
nents of f at each sensor position (i = 1–4), respectively; and n and ntest are the numbers of
samples of the training data and test data, respectively.

Multiple linear regression (MLR) analysis was conducted using the GRFs obtained
from the force plate as dependent variables and the triaxial forces obtained from the shoe
sole sensor system as independent variables. The regression model is expressed by the
following equation: F̂x

F̂y
F̂z

 = ftest

kx
ky
kz

+

bx
by
bz

 (12)

where F̂x, F̂y, and F̂z are the vectors of estimated GRFs (n_test × 1) for a single step used
in the test data; kx, ky, and kz are the vectors of partial regression coefficients (k × 1);
bx, by, and bz are vectors consisting of constant terms (ntest × 1); and k is the number of
independent variables. Partial regression coefficients were obtained using the least-squares
method, and the independent variables used in the model were determined using the
stepwise method.

Predictions were also made using Gaussian process regression (GPR), a nonlinear
regression widely used in time series analysis [30]. GPR provides the probability dis-
tribution of the objective variable and outputs the prediction uncertainty as standard
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deviation [28–31]. For example, in the x direction, the probability distribution of the
predicted force plate GRF p

(
F̂x
)

is expressed in the following equation:

p
(
F̂x
)
= N

(
Fxtest

∗ + Hβ, σ2I
)

(13)

where Fxtest
∗ is the latent variable in GPR, H is a basis function vector consisting of 1, β is

the vector of the coefficients of H, σ is the noise standard deviation, and I is the unit matrix.
The forecasting procedure is as follows.

First, calculate β̂ from the initial values of θ and σ2 computed from the basis matrix H
and the training data D, using the following equation:

β̂
(

θ, σ2
)
=

[
HT
[
K + σ2I

]−1
H
]−1

HT
[
K + σ2I

]−1
Fx (14)

Then, estimate θ and σ2 that maximize the log-likelihood function expressed in the
following equation:

logp(Fx) = −
1
2

(
Fx −Hβ̂

)T[
K + σ2I

]−1(
Fx −Hβ̂

)
− n

2
log 2π − 1

2
log
∣∣∣K + σ2I

∣∣∣ (15)

Using the estimated β, θ, and σ2, find the probability distribution of the latent variable
Fxtest

∗ in the GPR and calculate the probability distribution of the predicted values using
the following formula:

µ = k∗
[
K + σ2I

]−1
Fx −Hβ (16)

Σ = k∗∗ − k∗
[
K + σ2I

]−1
k∗T (17)

p(Fxtest
∗|ftest, D) = N (µ, Σ) (18)

where K, k∗, and k∗∗ are kernel matrices and k
(

fi, fj
)

is the kernel function.

K =


k
(

f1, f1
)

k
(

f1, f2
)
· · · k(f1, fn)

k
(

f2, f1
)

k
(

f2, f2
)
· · · k(f2, fn)

...
...

. . .
...

k
(

fn, f1
)

k
(

fn, f2
)
· · · k(fn, fn)

 (19)

k∗ =


k
(

f1, f1
)

k
(

f1, f2
)
· · · k(f1, fntest)

k
(

f2, f1
)

k
(

f2, f2
)
· · · k(f2, fntest)

...
...

. . .
...

k
(

fn, f1
)

k
(

fn, f2
)
· · · k(fn, fntest)

 (20)

k∗∗ =


k
(

f1, f1
)

k
(

f1, f2
)

· · · k(f1, fntest)

k
(

f2, f1
)

k
(

f2, f2
)

· · · k(f2, fntest)

...
...

. . .
...

k
(

fntest , f1
)

k
(

fntest , f2
)
· · · k(fntest , fntest)

 (21)
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The squared exponential kernel was expressed as follows:

k
(

fi, fj
)
= σf

2 exp

−1
2

(
fi − fj

)T(
fi − fj

)
σ2

l

 (22)

where σf and σl are the standard deviations of the training data of f and the characteristic
length scale, respectively. σf and σl need to be greater than 0 and can be enforced by
the unconstrained parametrization vector θ= (logσf , logσl)T. MLR and GRP models were
trained using the Matlab ver. 9.11 (Mathworks, Natick, MA, USA) Statistics and Machine
Learning Toolbox.

Prediction models for each movement and all movements were created by machine
learning using all subject data. Therefore, 8 persons × 10 steps = 80 cases were used for
each movement model, and 8 persons × 10 steps × 3 movements = 240 cases were used
for all movement models. Leave-out-one cross-validation was used. That is, a regression
model was created using one step of the measured data as test data T and the remaining
data as training data D. By changing the trials used as test data and training data, the
prediction accuracy of all trials used to create the model was determined, and the average
of the predictions was calculated.

The mean absolute error (MAE), the %RMSE, and the degree-of-freedom-adjusted
coefficient of determination R2 were used as evaluation indices for the prediction accuracy
of the three-directional GRFs. The %RMSE was obtained by normalizing the RMSE by
the range between the maximum and minimum values of the measured GRF values. For
example, the MAE, %RMSE, and the R2 in the x direction are expressed by the following
equations:

MAE =
1
n

n

∑
j=1

∣∣∣F j
xtest − F̂ j

xtest

∣∣∣ (23)

%RMSE =

√√√√∑n
j=1

(
F j

xtest − F̂ j
xtest

)2

n
100

Fxmax − Fxmin
(24)

R2 = 1−
∑n

j=1

(
F j

xtest − F̂ j
xtest

)2

∑n
j=1

(
F j

xtest − Fxtest

)2
n− 1

n− k− 1
(25)

where F j
xtest and F̂ j

xtest are the measured GRF used for the test data and the predicted GRF
in the x direction (1 ≤ j ≤ n), respectively, and Fxtest is the mean value of the measured
GRF used for the test data. Note that the MAE was calculated using the F j

xtest and F̂ j
xtest

divided by the participant’s body mass.

3. Results
3.1. Estimation of GRFs Using the Data of Each Movement

Figure 6 shows examples of time-series changes in the predicted and measured GRF
values in the test trials for each movement, using the regression model trained on the
data of each movement. The figure shows that in the y and z directions, the GPR model
accurately predicted GRFs measured with the force plate throughout the stance phase for
each movement. Conversely, the prediction using multiple regression analysis tended to
be less accurate in the first half of the stance phase. Estimation accuracy was lower in
cross-step turning (Figure 6c) than in straight walking (Figure 6a) and side-step turning
(Figure 6b).



Sensors 2023, 23, 8985 9 of 13

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

example, the MAE, %RMSE, and the R2 in the x direction are expressed by the following 

equations: 

MAE =
1

𝑛
 ∑|𝐹 𝑥test

𝑗
− 𝐹̂ 𝑥test

𝑗
|

𝑛

𝑗 = 1

  (23) 

%RMSE = √∑ (𝐹 𝑥test
𝑗

−𝐹̂ 𝑥test
𝑗

)
2

𝑛
𝑗 = 1

𝑛

100

𝐹𝑥max−𝐹𝑥min
  (24) 

R2  =  1 −
∑ (𝐹 𝑥test

𝑗
−𝐹̂ xtest

𝑗
)
2

𝑛
𝑗 = 1

∑ (𝐹 𝑥test
j

−𝐹̅𝑥test)
2

𝑛
𝑗 = 1

𝑛−1

𝑛−𝑘−1
  (25) 

where 𝐹 𝑥test
𝑗

 and 𝐹̂ 𝑥test
𝑗

 are the measured GRF used for the test data and the predicted 

GRF in the x direction (1 ≤ j ≤ 𝑛), respectively, and 𝐹̅𝑥test is the mean value of the meas-

ured GRF used for the test data. Note that the MAE was calculated using the 𝐹 𝑥test
𝑗

 and 

𝐹̂ 𝑥test
𝑗

 divided by the participant’s body mass. 

3. Results 

3.1. Estimation of GRFs Using the Data of Each Movement 

Figure 6 shows examples of time-series changes in the predicted and measured GRF 

values in the test trials for each movement, using the regression model trained on the data 

of each movement. The figure shows that in the y and z directions, the GPR model accu-

rately predicted GRFs measured with the force plate throughout the stance phase for each 

movement. Conversely, the prediction using multiple regression analysis tended to be less 

accurate in the first half of the stance phase. Estimation accuracy was lower in cross-step 

turning (Figure 6c) than in straight walking (Figure 6a) and side-step turning (Figure 6b). 

 
(a) 

 
(b) 

Force plate

MLR

GPR

Force plate

MLR

GPR

F
y
/B

W
 a

n
d

 F
y
/B

W
, 

N
/k

g

F
x
/B

W
 a

n
d

 F
x
/B

W
, 

N
/k

g

F
z
/B

W
 a

n
d

 F
z
/B

W
, 

N
/k

g Force plate

MLR

GPR

Force plate

MLR

GPR

Force plate

MLR

GPR

Force plate

MLR

GPR

F
y
/B

W
 a

n
d

 F
y
/B

W
, 

N
/k

g

F
x
/B

W
 a

n
d

 F
x
/B

W
, 

N
/k

g

F
z
/B

W
 a

n
d

 F
z
/B

W
, 

N
/k

g

Sensors 2023, 23, x FOR PEER REVIEW 9 of 13 
 

 

 
(c) 

Figure 6. Examples of time-series changes in the predicted and measured ground reaction force 

(GRF) values in the test trials for each movement, using the regression model trained on the data of 

each movement for (a) straight walking, (b) side-step turning, and (c) cross-step turning. The hori-

zontal axis indicates the normalized period with 0% for heel ground contact and 100% for toe-off, 

and the vertical axis indicates the measured GRFs and predicted GRFs divided by the participant’s 

body mass. The solid black line shows the GRF values measured with the force plate, the solid red 

line shows the predictions by multiple linear regression (MLR), the solid blue line shows the pre-

dictions by Gaussian process regression (GPR), and the light blue shaded area shows the 95% con-

fidence interval of the prediction by GRP. 

Table 1 presents the mean ± standard deviation of the prediction error, MAE, 

%RMSE, and R2 for each movement using the regression model trained on the data of all 

participants. The table shows that for both straight walking and side-step turning, the 

prediction of the GRF component in any direction had a %RMSE of less than 15%, regard-

less of the regression model. The GPR model had higher estimation accuracy than the 

MLR model, with a %RMSE of less than 15% in any direction of each type of gait, and the 

successful prediction was within the error range acceptable for clinical application. For 

straight walking and side-step turning, the GPR model showed good estimation accuracy, 

with a %RMSE of less than 10% and R2 of greater than 0.7, regardless of the direction. 

%RMSE and R2 was lower in the x direction than in the y and z directions; however, the 

MAE was lower in the x direction than in the y and z directions. In the case of cross-step 

turning, the %RMSE exceeded 15% for the prediction of the GRF component in the x di-

rection using the MLR model. 

Table 1. Results of MAE, %RMSE, and R2 for each regression model trained on the data of each 

movement. 

Type of 

Gait 

Regres-

sion 

Model 

x y z 

MAE %RMSE R2 MAE %RMSE R2 MAE %RMSE R2 

Straight 

walking 

MLR 0.067 ± 0.044 12.8 ± 4.3 0.551 ± 0.217 0.121 ± 0.104 9.5 ± 3.3 0.819 ± 0.071 
0.617 ± 

0.432 
10.8 ± 4.5 

0.682 ± 

0.161 

GPR 0.047 ± 0.034 9.8 ± 2.7 0.706 ± 0.215 0.111 ± 0.090 6.2 ± 1.4 0.916 ± 0.066 
0.237 ± 

0.209 
4.9 ± 2.2 

0.917 ± 

0.067 

Side-step 

turning 

MLR 0.102 ± 0.063 12.1 ± 2.6 0.673 ± 0.199 0.196 ± 0.160 11.3 ± 3.1 0.743 ± 0.193 
0.460 ± 

0.345 
11.1 ± 4.4 

0.674 ± 

0.165 

GPR 0.072 ± 0.059 9.7 ± 2.2 0.755 ± 0.251 0.129 ± 0.187 7.5 ± 1.7 0.840 ± 0.458 
0.195 ± 

0.171 
4.9 ± 1.7 

0.922 ± 

0.067 

Cross-step 

turning 

MLR 0.106 ± 0.092 20.1 ± 5.5 0.281 ± 1.629 0.178 ± 0.129 11.1 ± 2.9 0.752 ± 0.124 
0.517 ± 

0.340 
12.3 ± 4.9 

0.606 ± 

0.176 

GPR 0.062 ± 0.055 13.8 ± 2.2 0.378 ± 0.541 0.124 ± 0.114 7.6 ± 1.2 0.867 ± 0.156 
0.177 ± 

0.186 
5.1 ± 2.0 

0.911 ± 

0.107 

Force plate

MLR

GPR

Force plate

MLR

GPR

Force plate

MLR

GPR

F
y
/B

W
 a

n
d

 F
y
/B

W
, 

N
/k

g

F
x
/B

W
 a

n
d

 F
x
/B

W
, 

N
/k

g

F
z
/B

W
 a

n
d

 F
z
/B

W
, 

N
/k

g

Figure 6. Examples of time-series changes in the predicted and measured ground reaction force (GRF)
values in the test trials for each movement, using the regression model trained on the data of each
movement for (a) straight walking, (b) side-step turning, and (c) cross-step turning. The horizontal
axis indicates the normalized period with 0% for heel ground contact and 100% for toe-off, and the
vertical axis indicates the measured GRFs and predicted GRFs divided by the participant’s body
mass. The solid black line shows the GRF values measured with the force plate, the solid red line
shows the predictions by multiple linear regression (MLR), the solid blue line shows the predictions
by Gaussian process regression (GPR), and the light blue shaded area shows the 95% confidence
interval of the prediction by GRP.

Table 1 presents the mean ± standard deviation of the prediction error, MAE, %RMSE,
and R2 for each movement using the regression model trained on the data of all participants.
The table shows that for both straight walking and side-step turning, the prediction of
the GRF component in any direction had a %RMSE of less than 15%, regardless of the
regression model. The GPR model had higher estimation accuracy than the MLR model,
with a %RMSE of less than 15% in any direction of each type of gait, and the successful
prediction was within the error range acceptable for clinical application. For straight
walking and side-step turning, the GPR model showed good estimation accuracy, with a
%RMSE of less than 10% and R2 of greater than 0.7, regardless of the direction. %RMSE
and R2 was lower in the x direction than in the y and z directions; however, the MAE was
lower in the x direction than in the y and z directions. In the case of cross-step turning, the
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%RMSE exceeded 15% for the prediction of the GRF component in the x direction using the
MLR model.

Table 1. Results of MAE, %RMSE, and R2 for each regression model trained on the data of each
movement.

Type of
Gait

Regression
Model

x y z

MAE %RMSE R2 MAE %RMSE R2 MAE %RMSE R2

Straight
walking

MLR 0.067± 0.044 12.8 ± 4.3 0.551± 0.217 0.121± 0.104 9.5 ± 3.3 0.819± 0.071 0.617± 0.432 10.8 ± 4.5 0.682± 0.161

GPR 0.047± 0.034 9.8 ± 2.7 0.706± 0.215 0.111± 0.090 6.2 ± 1.4 0.916± 0.066 0.237± 0.209 4.9 ± 2.2 0.917± 0.067

Side-step
turning

MLR 0.102± 0.063 12.1 ± 2.6 0.673± 0.199 0.196± 0.160 11.3 ± 3.1 0.743± 0.193 0.460± 0.345 11.1 ± 4.4 0.674± 0.165

GPR 0.072± 0.059 9.7 ± 2.2 0.755± 0.251 0.129± 0.187 7.5 ± 1.7 0.840± 0.458 0.195± 0.171 4.9 ± 1.7 0.922± 0.067

Cross-step
turning

MLR 0.106± 0.092 20.1 ± 5.5 0.281± 1.629 0.178± 0.129 11.1 ± 2.9 0.752± 0.124 0.517± 0.340 12.3 ± 4.9 0.606± 0.176

GPR 0.062± 0.055 13.8 ± 2.2 0.378± 0.541 0.124± 0.114 7.6 ± 1.2 0.867± 0.156 0.177± 0.186 5.1 ± 2.0 0.911± 0.107

Abbreviations: MAE, mean absolute error; %RMSE, percentage root-mean-square error; MLR, multiple linear
regression; GPR, Gaussian process regression.

3.2. Estimation of GRFs Using Data of All Movements

Table 2 shows the mean ± standard deviation of the MAE, %RMSE, and R2 for each
regression model trained on the data of all movements. The GPR model achieved lower
MAE and %RMSE than the MLR model. Furthermore, the GPR model achieved a % RMSE
of less than 10% in the y and z directions. However, in the x direction, the error was greater
than 15% for both regression models. Thus, as with the models trained on each movement,
the estimation accuracy was higher with the GRP model than with the MLR model. In
addition, comparing these data with the data in Table 1, it was noted that the estimation
accuracy was higher with the models trained specifically on the data of each movement
than with the models trained on the data of all movements.

Table 2. Results of MAE, %RMSE and R2 for each regression model trained on the data of all
movements.

Regression
Model

x y z

MAE %RMSE R2 MAE %RMSE R2 MAE %RMSE R2

MLR 0.222± 0.221 24.4± 6.6 −0.943± 2.478 0.181± 0.143 11.3± 3.1 0.749± 0.178 0.523 ±0.383 11.8± 4.7 0.630± 0.176

GPR 0.120± 0.115 17.5± 3.5 −0.054± 1.501 0.115 ±0.102 6.9 ± 1.0 0.894± 0.122 0.198± 0.168 5.2 ± 2.2 0.913± 0.063

Abbreviations: MAE, mean absolute error; %RMSE, percentage root-mean-square error; MLR, multiple linear
regression; GPR, Gaussian process regression.

4. Discussion

In the three-directional GRF prediction using our shoe sole sensor system and machine
learning, the %RMSE between the predicted and measured values was less than 15% for
both regression models in the y and z directions, and the prediction accuracy of the GRFs
was considered sufficient for practical use [6]. The error of the prediction using the model
for straight walking only was smaller than that of the conventional three-directional GRF
prediction using pressure sensors [20], indicating the practical feasibility of GRF prediction
using our shoe sole sensor system. Alternatively, in the x direction, the %RMSE exceeded
17% for the prediction using the model of all movements, indicating that the prediction
using the model of all movements is not sufficiently accurate.

4.1. Difference in Prediction Accuracy by Direction

Our results showed that the %RMSE for GRFs tended to be larger in the x direction
than in the y and z directions, regardless of the type of training data, motion, or regression
model used. However, the MAE in the x direction for each movement model was lower
than that in the y and z directions. The MAE in the x direction for all movement model
was comparable with that in the y direction and lower than that in the z direction. This is
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because the absolute GRF values were larger in the y and z directions than in the x direction,
resulting in a smaller %RMSE. In other studies [19,21], the %RMSE was calculated using
the participant’s body mass to normalize the RMSE value, and in this case, the %RMSE
tended to be smaller in the x direction than in the y and z directions.

In addition, in this study, the directions of side-step turning and cross-step turning
were reversed in all motion models, so the data of motion with GRFs in the opposite
directions in the x direction were mixed. There was only one sensor in the heel, so the
x-directional GRF output from the heel to the midfoot was not sufficient to distinguish
between side-step and cross-step turning. Therefore, when the regression model was
used for each movement, the prediction accuracy in the x direction for both side-step and
cross-step turning improved compared with that in the all movement model, as shown in
Tables 1 and 2. Based on these findings, it is considered effective to use different regression
models to distinguish between different walking motions in order to improve the prediction
accuracy of x-directional GRFs during different walking motions.

4.2. Difference in Prediction Accuracy by Movement

As shown in Table 1, the prediction accuracy in the x direction tended to be lower
for cross-step turning than for straight walking and side-step turning, regardless of the
regression model. Cross-step turning is a difficult movement in which the body’s center
of mass tends to deviate from the base of support area and the base of support is narrow,
making it necessary to change direction while maintaining body balance during the move-
ment [34,35]. We determined the between-participant and within-participant standard
deviations of the GRFs divided by the participant’s body mass throughout the stance phase
in the x direction. The mean value of the between-participant standard deviation of the
GRF during cross-step turning (0.221) was larger than that during straight walking (0.148)
and side-step turning (0.151). The mean value of the within-participant standard deviation
of the GRF during cross-step turning (0.183) was larger than that during straight walking
(0.089) and side-step turning (0.121). Therefore, the variation of GRFs in the left-right direc-
tion during cross-step turning within-participant and between participants was larger than
that during straight walking and side-step turning. The prediction accuracy for side-step
turning was equivalent to that for straight walking, as shown in Table 1. This is thought to
be due to the fact that the side-step turning has a larger base of support in the left-right
direction [34,35], making it easier to maintain body balance in the left-right direction.

4.3. Difference in Prediction Accuracy by Regression Models

As shown in Tables 1 and 2, the error was smaller in the GPR model than in the
MLR model, as expected. GPR, which is a nonlinear regression, allows the construction
of complex models dealing with nonlinear relationships between objective variables and
explanatory variables that cannot be handled by multiple regression analysis, which is
a linear regression. In this study, we did not use methods, such as neural networks [36],
because of the small data set, but such machine learning methods are effective if the training
data set is made larger by increasing the number of participants and the number of steps.
However, the results of this study indicate that GPR can perform accurate learning even
with relatively small data sets.

4.4. Study Limitations

Some limitations of the current study should be considered. First, the number of
participants was small, and the representation of genders was uneven. Thus, our results
may not be generalizable to a broader population. In addition, studies with a large sample
size will provide improved GRF prediction accuracy. Second, there were only three types of
walking movements. It is considered necessary to create prediction models with a data set
that considers various movements performed in daily life in addition to straight walking,
side-step turning, and cross-step turning.
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5. Conclusions

The regression model trained for each motion, except for MLR in cross-step turning,
showed less than 15% prediction error (%RMSE) regardless of the direction. The three-
directional GRFs during walking predicted by the shoe sole sensor system showed relatively
good agreement with the GRFs measured with the force plate, indicating the practical
applicability of the shoe sole sensor system for gait analysis. However, the prediction
error in the x direction (%RMSE) for the whole motion model exceeded 15%. Compared
with straight walking and side-step turning, cross-step turning tended to have a lower
prediction accuracy in the x direction, regardless of the regression model.

The prediction of three-directional GRFs using our shoe sole sensor system and ma-
chine learning could be used in a wide range of practical applications, such as in the sports
field and for gait analysis at rehabilitation facilities and in daily life, taking advantage of its
portability and accuracy in prediction.
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