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Abstract: Currently, Convolutional Neural Networks (CNN) are widely used for processing and
analyzing image or video data, and an essential part of state-of-the-art studies rely on training
different CNN architectures. They have broad applications, such as image classification, semantic seg-
mentation, or face recognition. Regardless of the application, one of the important factors influencing
network performance is the use of a reliable, well-labeled dataset in the training stage. Most of the
time, especially if we talk about semantic classification, labeling is time and resource-consuming and
must be done manually by a human operator. This article proposes an automatic label generation
method based on the Gaussian mixture model (GMM) unsupervised clustering technique. The other
main contribution of this paper is the optimization of the hyperparameters of the traditional U-Net
model to achieve a balance between high performance and the least complex structure for implement-
ing a low-cost system. The results showed that the proposed method decreased the resources needed,
computation time, and model complexity while maintaining accuracy. Our methods have been tested
in a deforestation monitoring application by successfully identifying forests in aerial imagery.

Keywords: Convolutional Neuronal Network; semantic segmentation; Gaussian Mixture Model;
computer vision; aerial imagery; U-Net; clustering

1. Introduction

Until the 21st century, there was a high demand for imagery data, including satellite,
aerial, medical, and so on. However, due to the constant evolution of technology, better
sensors and survey platforms have emerged, resulting in a constantly growing pool of data,
some of it even available free of charge. The main challenge is how to evaluate this data.
Image analysts must have years of training to be both fast and accurate, and even then
they specialize in one domain. For example, a military intelligence analyst cannot interpret
medical images with success. In recent years, the need for image data interpretation grew,
and along with it, machine learning techniques such as Convolutional Neural Networks
(CNN). The first notion of CNN was introduced in the late 1980s by Yann LeCun and his
colleagues [1], but the groundbreaking point was in 2011 when AlexNet [2] was presented
and gave rise to deep CNNs. Besides the eight layers, AlexNet used techniques that might
look ordinary currently, such as the ReLU activation function and dropout regularization
which had a major impact on the overall accuracy of the network.

After this, infinite possibilities emerged regarding the architecture of a CNN, but a few
of them stood out. In 2014, the University of Oxford proposed the Visual Geometry Group
(VGG) [3]. Even though it was a very simple architecture comprised of 3 × 3 convolutional
filters, it could achieve a much greater depth of up to 19 layers. This way, it could learn
more complex information. Next, ResNet [4] introduced the concept of skip connections by
creating shortcuts in the architecture. This way it could be trained networks with dozens
of layers. Another important feat was the bottleneck architecture, which implemented
1 × 1 convolutional layers before and after bigger filter layers. This method reduced the
computation cost and guaranteed the training of deeper CNNs without significant issues.
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In 2015, Olaf Ronneberger, Philipp Fischer, and Thomas Brox presented the U-Net
architecture [5], an innovative and symmetrical CNN oriented for pixel classification. The
scope of the study was biomedical image segmentation but, since then, U-Net has been
adapted for use in a multitude of semantic segmentation tasks such as handwriting, medical
observations, industry automation, and satellite image segmentation, a domain where the
overall study purpose, deforestation monitoring, falls within. Another reason for choosing
U-Net over other architectures is its ability to work with fewer images and poor annotation.
As will be seen in the next chapter, the dataset used for the U-Net training has no labels
and consists only of ground truth samples. As stated before, manually labeling the dataset
requires time and effort and was not an option. Instead, an automatic method was desired
to be implemented.

2. Related Work

Even though most of the researchers use CNNs for image annotation through transfer
learning augmented with other techniques [5–8], several studies regarding this approach
can give an overall understanding of the state-of-the-art and the main directions. These
studies will be further described in this section, while the conclusions will be compared
with our proposed method. In [9], an unsupervised annotation method is proposed for
evaluating the snow cover level of roads. The images are collected using 500 open-access
traffic cameras installed in Montreal and include different urban areas and snow levels.
Four classes are defined as follows: clear, light-covered, medium-to-heavy-covered, and
plowed surface. The images undergo a couple of preprocessing steps before being fed to
the clustering algorithm. First, the dataset is converted to grayscale. Next, Contrast Limited
Adaptive Histogram Equalization (CLAHE) [10] is applied to accentuate the contrast
between key details. In the last step, the dataset is binarized so that the details containing
snow will be all white and the rest, such as clear roads or cars, will be black. After the
preprocessing, a U-shaped convolutional autoencoder (CAE) is used for feature extraction.
Its results are flattened and fed into a clustering algorithm based on a detection method
called Louvain [11], which outputs clusters that can represent the same defined class. By
calculating the cosine matrix of all cluster centers, these are grouped so they will fit the
desired classes. In the end, the results are compared against a density-based clustering
method, HDBSCAN [12], using four metrics: modularity, coverage, performance, and
Dunn’s index. These results outperformed HDBSCAN in all metrics except performance.

The absence of reliable cable object datasets and labels urged for another interesting
study that is described in [13]. The study not only generates labels, it also generates input
images based on a well-known method from the film industry named chroma-key. First,
videos are taken of the target cables over a green background, moving them or changing
their places for diversity. Next, using the hue range of the background, the target objects
are separated. In the end, various background images can be inserted, augmenting the
dataset. Knowing the initial label of the target object, the users do not have to manually
annotate every new image or video frame. The main issue of this technique is choosing the
background so that it does not color interfere with the target object and alter the training.
In this case, green wires and a green initial background are not suited. By applying
this method, 28,584 images are generated from 3176 labeled images. Each of the labeled
images is randomly overlapped over one of the 15 background images. After that different
augmenting techniques are applied such as flipping, shifting, or rotating so that eight new
virtual images are generated. In the end, the dataset is tested by feeding it into two deep
learning networks: DeeplabV3+ [14] initialized with ResNet 101, and HRNet [15] initialized
with ImageNet. Ninety percent of the generated dataset was used for training and the
rest for validation. Sixty manually labeled images were used for testing. For accuracy
evaluation, the Dice coefficient was calculated. Both the two networks obtained reliable
scores of 0.935 and 0.925.

Even though the methods are applied in the medical and microscopic fields, a very
recent study from 2023 addressing automated labeling is presented in [16]. The paper
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attempts to label the Digital Image of Bacterial Species (DIBaS) dataset, which is comprised
of 660 images of bacteria. This dataset is frequently used for classification or detection
problems in its respective fields, but it has never been used for semantic segmentation
before. To obtain the desired goal, a three-step process is implemented. In the first step, the
traditional K-means algorithm is performed to obtain centroids for each bacteria species.
This was possible due to the staining and uniformity through each species of bacteria. In
the second step, Otsu’s thresholding is applied for images containing bacteria similar in
color to the background. This method finds an optimal value to obtain a binary image, or
to segment the foreground from the background, by minimizing the variance inside the
clusters. The third step consists of the morphological closing operation to reduce noise or
artifacts such as small gaps within groups of bacteria. The downside of this step was the
manual analysis of the closing window, mainly because bacteria species have different sizes.
After obtaining the pixel-labeled DIBaS dataset, it was fed into a ResUNet++ network [17],
which is a modified U-Net architecture. The accuracy of the F1 score was computed for
each of the 33 species. Most of them had around 97% accuracy, with an overall of 95%. In
addition, the confusion matrix showed that due to the similarity in dispersion and shape of
bacteria, specific species were misclassified and had worse scores.

A widely held notion regarding U-Net is that its effectiveness is contingent upon its
distinctive U-shaped architecture, and numerous models inspired by U-Net have been
introduced. Regarding the other topic of our study of cost reduction, since its release in 2015,
the U-Net model has been constantly modified and trained to enhance accuracy, simplify
the architecture, or reduce computational resources. For example, in [18], a low-cost U-Net
model called LCU-Net was presented for image segmentation of microorganisms. The
paper proposed the same architecture shape as U-Net but augmented with concatenate
operations and Inception-V3 [19]. Because the traditional U-Net model is limited to one
receptive field of a sigmoid function, the blocks were built using various-size convolutional
filters applied on the input and concatenated at the end of each block. Unfortunately, this
method increased the number of parameters and each of the convolutional filters of N × N
was replaced with two convolutional filters of 1 × N and N × 1. To decompose even
further, the Inception approach was utilized by replacing higher-grade convolutional filters
with pairs of lower grades. For instance, a 5 × 5 convolutional filter has the same receptive
field as two 3 × 3 convolutional filters. Additionally, after each convolutional layer, batch
normalization was added, and after each decoder block, a convolutional transpose layer was
inserted. The architecture accuracy was tested against the Environmental Microorganism
Dataset 5th Version (EMDS-5). The model not only outperformed the original U-Net but
also significantly reduced the memory requirement, decreasing it from 355 MB to 103 MB.
The evaluation metrics used were Dice, Jaccard, Recall, Accuracy, Precision, and VOE.
Except for the last two, all four increased compared with the original U-Net model.

A more recent study of simplifying the U-Net model [20] focused on reducing the
complexity of the decoder part. This approach was established by partially deactivating
the encoder and decoder blocks and comparing the accuracy with the full structure. The
experiment emphasized that training only the encoder obtained comparable results with
the full model while using only the decoder for training dropped the performance. The
architecture of the intuitively named Half-UNet is composed of five encoder blocks and
one decoder block, which aggregates every skip connection through upsampling to the
original image size. It is worth noting that the aggregation is done not by concatenation,
which requires more computation, but by addition, which helps with the information under
each dimension. The model also introduced the ghost module for every block convolution.
The ghost model is described in [21] but concisely, it reduces the computation resources
by generating half of the feature maps through depthwise separable convolutions. The
proposed method was evaluated by computing the Dice coefficient for mammography, lung
nodule, endocardium, and epicardium identification. For the endocardium and epicardium,
a Half-UNet had better scores and for the first segmentation tasks, the results were similar.
Overall, the model reduced the total number of U-Net parameters by almost 150 times.
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3. Main Contributions

Even though the previously described methods addressed the proposed topics and
described useful techniques, they are not well suited for satellite imagery semantic seg-
mentation and have their downfalls such as artificial data generation, user interventions,
or supervised algorithms as a starting point. The main contributions of this article can be
drawn concerning its two objectives:

• Automatic pixel labeling without any human supervision. This paper proposed a fully
unsupervised Gaussian Mixture Model (GMM) technique to label each pixel in one of
two classes: forest or no-forest, without any other supervised training, or pre-trained
network as a backbone. Compared with other studies, the dataset used is comprised
of its own aerial imagery recorded with modern in-house capabilities. This generated
a generous real-life dataset which bypasses the need for data augmentation. To prove
the success of the GMM technique, the ground truth and its corresponding labels were
tested against several U-Net architectures to prove its utility and the utility of the
method. The paper showed that the labels were accurate enough so that the U-Net
could learn from them and predict good accuracy results without human intervention.

• Reduced U-Net model complexity. Most of the real-life deployments of trained AI
models are done in harsh conditions or with very poor hardware capabilities, not
to mention the need for fast analyses and predictions. The study conducts tests on
simplified U-Net models and obtained similar high-accuracy results while reducing
the complexity of the model by 60 times in the best scenario. It is well known that
satellite or aerial imagery is composed of vast amounts of pixels due to their field of
view (FOV) and high resolution [22]. In conjunction with traditional imagery such as
traffic, objects, or writings, semantic labeling takes exponentially more time. Reducing
the complexity also reduced the average computation time, resulting in the proposed
method labeling and predicting thousands of square kilometers in a reasonable time.

4. Dataset and Study Area

Numerous open-source satellite or aerial images can be readily accessed for download
on the internet, including platforms like Sentinel or Landsat. However, this research opted
to employ a distinct set of aerial images provided by the Geospatial Defense Intelligence
Agency (AIGA), an entity under the Ministry of National Defense responsible for support-
ing troops with geospatial information. This agency utilizes a state-of-the-art airborne
digital photogrammetric system known as ADS80, manufactured by Leica Geosystems.
The ADS80 system is installed on a specialized cartographic airplane to capture the images.
The acquisition process employs a passive push-broom technique, capturing the visual
spectrum (RGB) and the near-infrared band (NIR) in four bands, each with an 8-bit radio-
metric resolution. Despite its inability to record data on other bands such as SWIR [23] or
SAR [24], the primary advantage is its high spatial resolution, which may vary depending
on the flight altitude but is typically utilized for 50 cm output. Another significant bene-
fit is the clarity of the images, indicating that there are no cloud formations captured in
them. This outcome is a result of conducting the flights under clear skies and favorable
weather conditions.

After processing the raw data, and considering the institution’s objectives, the images
were organized in tiles of 10 km by 10 km. For each tile, two distinct types of products
were composed using the four available bands: RGB and CIR (color infrared). RGB images
depicted the natural scenery as perceived by the human eye, while CIR images, also called
false colors, presented a stack of red, green, and near-infrared bands. The utilization of CIR
images proves highly beneficial, as they offer precise and valuable information about the
natural environment. For example, brighter infrared regions signify denser and healthier
vegetation, while man-made objects are depicted using tones of blue or green.

Taking into consideration the segmentation purpose of the study, AIGA provided four
tiles of 100 km2 each recorded near Targu-Mures city of Romania, an area abundant in
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forests, but also mixed with other land cover classes such as settlements, crops, grazing
lands, or roads. Two samples of the provided data are shown in Figure 1.
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Figure 1. Samples of the aerial imagery. (a) RGB image; (b) CIR image.

Given that both RGB and CIR images share common red and green bands, a prepro-
cessing step is essential to eliminate repetitive data while preserving relevant information.
Initially, the RGB images were split into three distinct bands. Then, from the CIR images,
only the first band, which represents near-infrared, was extracted. Subsequently, all four
extracted bands were combined and saved as separate array files, resulting in the creation
of new RGBN images. Additionally, the file format was converted from TIFF to NumPy
extension to facilitate further analysis and manipulation.

In the end, four 20.000× 20.000× 4 arrays were created. The previous work presented
in [25] was applied to construct the final dataset. In the previous study, various scenarios
were tested and it was found that the best input dimensions for a two-class GMM clustering
were 4000 × 4000 × 4. The four arrays were cut into 25 smaller areas, resulting in a
100 4-band image dataset.

5. Methodology
5.1. Overall Algorithm Diagram

This paper proposed a Gaussian Mixture Model [26] approach for semantic labeling of
the 100 aerial images dataset, before training U-Net architectures for forest classification. As
shown in Figure 2, the GMM algorithm was augmented with several techniques to enhance
the computed labels such as calculating information criteria, merging classes, and filtering
the output images. After the GMM was computed, the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) scores were calculated to validate the optimal
number of clusters. Next, the resulting clusters were merged to form only the two classes
of the study: forest and no-forest. After filtering the results, the Davies-Bouldin index was
used to select the most reliable images and their labels to be the foundation of the U-Net
training, validation, and testing dataset. The rest of the unchosen GMM results remained
unlabeled data which can be used for prediction and visual interpretation in the future.
In the end, the labeled dataset was sliced and fed into 19 convolutional layers and 4 skip
connections architectures. Each of these steps is further detailed.
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5.2. GMM Clustering

The starting point of this step was the previous work where meaningful parameter
tuning was performed. Regarding the number of bands, the study proved that the near-
infra-red band improved the unsupervised clustering. It is worth noting this is not an
obvious remark because in aerial imagery there was plenty of healthy vegetation, not just
forest, and this can interfere with the clustering. Several tests were conducted concerning
the input dimension for the GMM algorithm. The input dimension is important because
this determines how closely or distantly the algorithm “perceives” the ground truth that
you intend to present. For a two-class clustering, the best results with an accuracy of 92.22%
were the 4000 × 4000 4 band inputs.

Taking all of the above into consideration, the present study proposes a more extensive
implementation that addresses one remaining issue. Even though the final purpose is to
identify two classes, and the forest indeed is dominant in the dataset, finding more clusters
within the data was implemented. The image chosen for training and finding the centers
of the clusters is depicted in Figure 3a. It contained major land covers such as forests,
orchards, settlements, crops, bare lands, irrigation channels, or roads. On the right, it was
observed that the forests have the highest NIR intensity which will be an important factor
during clustering.
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Figure 3. GMM training image. (a) RGB image; (b) CIR image.

The GMM algorithm was modified to search for two to ten clusters. In Figure 4, the
clustering results are shown for each number of components, the first one being the ground
truth. The colors representing each cluster were chosen randomly and eccentrically for
a better visual experience. While the two-cluster segmentation was unable to properly
identify the forest, the rest of the iterations had decent results. Unfortunately, starting with
the 6th iteration, the results become granulated and the target classes were too mixed. In
some areas, the forest was even represented in four distinct colors, which is far from reality.
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Figure 4. Results of GMM-based clustering.

To further analyze the best scenario, the AIC [27] and BIC [28] scores were imple-
mented. These two are widely employed criteria for model selection in clustering, aiding
in identifying the optimal number of clusters within a dataset. Grounded in information
theory principles, these criteria strike a balance between model fit and model complexity,
facilitating the determination of the most suitable clustering solution. This solution is also
proposed in [29] where the appropriate GMM number of clusters was decided to identify
the driving style of car drivers.

The primary distinction between AIC and BIC lies in their treatment of the trade-off
between goodness-of-fit and complexity. AIC adheres to the maximum likelihood principle
and penalizes models with a substantial number of parameters relative to the data size.
On the other hand, BIC, similar to AIC, takes into account the number of parameters but
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imposes a more rigorous penalty on models with a larger number of parameters. Let L be
the maximum likelihood function, k be the number of the parameters in the model, and N
be the number of points. Then AIC and BIC had the following formulas:

AIC = 2k− 2ln(L) (1)

BIC = kln(N)− 2ln(L) (2)

The maximum likelihood [30] of a model corresponds to the set of parameters that
maximizes the likelihood function which is calculated as a function that quantifies the
probability of the observed data given the model’s parameters. In our case of GMM
clustering, the Gaussian likelihood function was implemented in (3), where yi are the
real targets and ŷi are the predicted targets, but there are other functions such as Poisson
or Bernoulli.

log(L) = −N
2

log(2π)− N
2

ln (σ 2)− ∑N
i=1(yi − ŷi)

2

2σ2 (3)

In Figure 5 the evolution for every clustering scenario is presented, dealing with
such large image results in large calculated values. Even though the two charts might
look identical, the Y axis was divided by 108 for the virtue of plotting. In theory, the best
scenario is the one with the lowest AIC or BIC score, but in semantic aerial imagery, this can
lead to never-ending processes and overfitting. To obtain the balance between performance
and accuracy, we applied the principle of the Elbow method, which states that the optimal
number of clusters is the point where the within-cluster sum of squares decreases more
slowly, or, in our case, the AIC and BIC scores. It is obvious from the graphics that from
six to ten, the differences were smaller, so the question was whether four or five clusters
were the better approach. Comparing the two results from Figure 5, it can seen that the
algorithm identified a fifth distinct cluster. The agricultural land was clustered in three
parts, instead of two, depending on its texture and cover, and the forest was segmented
into the same two clusters. Taking all of the above into consideration, it was established
that four is the optimal number of clusters.
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5.3. Clusters Augmentation

For the next step of the workflow, we predicted the four clusters for the whole 100-
image dataset using the centers calculated by the GMM. Also, these outputs were collapsed
into two classes, one that represented the forest and the other that represented any other
entities present in the image. For this, the forest texture must be observed closely. Due to
the different heights of the trees in the forest, shadows were generated, and a large portion
of the pixels were darker and were grouped in a different cluster, making the forest pixel
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values not uniform. Figure 6 emphasizes this issue by illustrating a forest sample (a) and
its corresponding clusters (b) from the training image.
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Figure 6. Forest sample. (a) Ground truth; (b) Clusters.

These two clusters describing forests were merged, while the other two describing
crops, bare lands, or settlements were also collapsed into one class. Another important
feature of the forest’s texture is the mixture of deciduous and conifer tree species. Working
with images from a high-altitude area, the conifers, which have a brighter NIR footprint,
were predominant. On the other hand, deciduous or withered trees found inside large
forest areas, having a lower NIR footprint, were clustered as barren land or grassland.
This created small voids inside forest areas as shown in Figure 7b. To address this issue
properly, two filtering steps were applied to the merged images: a median filter and a
closing filter, both utilizing a 9-pixel kernel. The median filter was mainly applied to reduce
overall noise and various artifacts present in the image. The closing filter was constructed
from two operations [31]. The first was dilation, which produced the maximum value if
at least one pixel within the kernel possessed this value. In our case, this was the forest
because the color values used for representing the two classes were (34, 139, 34) and (0, 0, 0).
Consequently, dilation expanded the forest area. On the other hand, the erosion operation
worked in the opposite direction. It eroded the boundaries of the foreground object, which
aided in removing the mentioned holes.
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Considering the fundamental need for precise labels for the supervised training, the
next step of the algorithm was analyzing the clusters’ dispersions from two points of view,
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compactness, and separation. While compact clusters are desired, they should also be well-
separated from each other. The mathematical tool suitable for this is the Davies–Bouldin
index which takes into account both the intra-cluster dispersion (how compact the data
points are within a cluster) and the inter-cluster distance (how far apart clusters are from
each other). The index has the following formula:

DB = − 1
N

N

∑
I=1

maxj 6=i(
σi + σj

d
(
ci, cj

)) (4)

where ci is the center of cluster i and d
(
ci, cj

)
is the distance between the centers of clusters

i and j. After calculating the index for all 100 images, the best 16 were selected to become
labels of forest and no-forest areas. The lower the index, the better the clustering result.

Due to the 4000 × 4000 × 4 dimensions of the images, these could not be fed entirely
into the architecture. The dimensionality was also a problem regarding the labels because
semantic segmentation labeled every pixel instead of an entire image. Taking into consid-
eration that the U-Net commonly requires square powers of two to be fed, the 16 images
were cut into 128 × 128. For practicality, the pixels from 3841 to 4000 were discarded,
resulting in 900 samples per image and a total of 14,400 samples composed of the ground
truth and their labels. The other 84 unselected images were also split, but without the
two-class segmentation, and treated as unlabeled data. From the 14,400 samples, 10.000
were used for training and validation, and 4400 for testing. Conventionally, 10% of the
dataset was used for testing, but the desire was to obtain correct, meaningful results, and
have a better understanding of the model generalization. In object classifications, having
a too-small dataset might pose some problems, but for semantic classifications, every
pixel is a learnable feature for the model. Figure 8 illustrates several training samples and
their labels.
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6. The Original U-Net Architecture

Since its release in 2015, the U-Net architecture has gained widespread popularity
as a CNN mainly employed for image semantic segmentation purposes. We chose this
architecture over others for several reasons. The U-Net employs an Encoder-Decoder
architecture, comprising two main paths. The encoder path systematically reduces the
spatial dimensions of the input image, thereby extracting higher-level features. On the
other hand, the decoder path restores the encoded features by upsampling, leading to an
enhanced segmentation mask with refined spatial resolution. This unique architecture
enables the network to grasp both the broader context information and intricate local details
during the learning process.
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The original complex architecture is composed of one input layer, four encoder
blocks, one bridge block, four decoder blocks, four skip connections, and one output
layer (Figure 9). It uses the ReLU (Rectified Linear Unit) activation function for all the
layers in the model, except the last one, which obviously, needed a sigmoid function [32].
At the end of the encoding path, a dropout layer is used to prevent overfitting.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

enables the network to grasp both the broader context information and intricate local 
details during the learning process. 

The original complex architecture is composed of one input layer, four encoder 
blocks, one bridge block, four decoder blocks, four skip connections, and one output layer 
(Figure 9). It uses the ReLU (Rectified Linear Unit) activation function for all the layers in 
the model, except the last one, which obviously, needed a sigmoid function [32]. At the 
end of the encoding path, a dropout layer is used to prevent overfitting. 

 
Figure 9. U-Net architecture. 

Each encoder block consists of two convolutional layers and one max-pooling layer. 
The convolutional layer uses a 3 × 3 kernel and is not padded, but in our study, we 
implemented zero padding. In this way, the input dimensions are kept the same 
throughout the model. The number of feature maps doubles, starting with 64 for the first 
block, and up to 512 for the fourth block. The max-pooling layer is applied at the end of 
each encoder block to reduce the number of parameters and computation time and to 
retain only the most prominent information of the feature maps. Moving forward, the 
linkage to the decoder is done through the bridge block composed only of two 
convolutional layers of 1024 feature maps. 

On the other hand, the decoder aims to recover the spatial resolution of the input by 
having one upsampling layer at the start of each block. This layer has a size of 2 × 2, 
translating to doubling the width and height of the previous layer, and it also uses zero 
padding, instead of no padding. Next is the concatenation layer which implements the 
skip connection technique. The incorporation of skip connections facilitates the decoder 
in utilizing feature maps from earlier encoder layers, ensuring the preservation of spatial 
information and mitigating the vanishing gradient problem. These connections play a 
critical role in achieving accurate segmentation by allowing the network to combine low-
level and high-level features, thereby aiding in precise boundary delineation. The 
concatenation layer merges one convolution from the encoder block with the previous 
upsampling. In the end, two convolutional layers with the same number of feature maps, 
but backward are added. The overall diagram of an encoder (a) and a decoder (b) block is 
depicted in Figure 10. Finally, the output layer operates on the features obtained from the 
decoder. In essence, it functions as a convolutional layer with a single feature map and a 
1 × 1 kernel. It condenses these features into a single-channel binary segmentation mask, 
which can be interpreted as a probabilistic map. By applying the sigmoid activation 
function, the pixel intensities are transformed into probabilities. The ultimate output is a 

Figure 9. U-Net architecture.

Each encoder block consists of two convolutional layers and one max-pooling layer. The
convolutional layer uses a 3 × 3 kernel and is not padded, but in our study, we implemented
zero padding. In this way, the input dimensions are kept the same throughout the model. The
number of feature maps doubles, starting with 64 for the first block, and up to 512 for the
fourth block. The max-pooling layer is applied at the end of each encoder block to reduce
the number of parameters and computation time and to retain only the most prominent
information of the feature maps. Moving forward, the linkage to the decoder is done through
the bridge block composed only of two convolutional layers of 1024 feature maps.

On the other hand, the decoder aims to recover the spatial resolution of the input
by having one upsampling layer at the start of each block. This layer has a size of 2 × 2,
translating to doubling the width and height of the previous layer, and it also uses zero
padding, instead of no padding. Next is the concatenation layer which implements the
skip connection technique. The incorporation of skip connections facilitates the decoder
in utilizing feature maps from earlier encoder layers, ensuring the preservation of spatial
information and mitigating the vanishing gradient problem. These connections play
a critical role in achieving accurate segmentation by allowing the network to combine
low-level and high-level features, thereby aiding in precise boundary delineation. The
concatenation layer merges one convolution from the encoder block with the previous
upsampling. In the end, two convolutional layers with the same number of feature maps,
but backward are added. The overall diagram of an encoder (a) and a decoder (b) block
is depicted in Figure 10. Finally, the output layer operates on the features obtained from
the decoder. In essence, it functions as a convolutional layer with a single feature map
and a 1 × 1 kernel. It condenses these features into a single-channel binary segmentation
mask, which can be interpreted as a probabilistic map. By applying the sigmoid activation
function, the pixel intensities are transformed into probabilities. The ultimate output is
a segmentation mask that represents the likelihood of each pixel belonging to either of
the classes.
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7. Non-Structural Hyperparameters Tuning

The multitude of hyperparameters of a CNN can be divided into two groups. The
structural hyperparameters are the ones presented during the previous architecture descrip-
tion: number of convolutional layers, number of kernels, kernel size in each convolution,
activation functions, and pooling sizes. On the other hand, the optimizer, the learning rate,
the batch size, the number of epochs, and the loss function, constitute the non-structural
hyperparameters and need specific tuning for our purpose.

In the case of U-Net used for segmentation tasks, the loss function evaluates how well
the predicted segmentation mask aligns with the true segmentation mask for a set of input
images. It measures the dissimilarity between the probability distribution of the predicted
pixel values and the corresponding actual binary labels. There are various choices, but the
best fit for the scope of the study is binary cross-entropy. This is calculated for each pixel
using the following formula:

LL = − 1
N

N

∑
i=1

yi(log (p(yi)) + (1− yi)log(1− p(yi)) (5)

where yi is the true binary label and p(yi) is the predicted probability of the sigmoid.
Optimizers hold significant importance within the training process as they steer the

parameter updates. Their role involves dictating the magnitude of parameter adjustments
based on computed gradients of the loss function concerning these parameters. These
gradients serve as indicators of the optimal direction in which the parameters should be
modified to minimize the error. In essence, optimizers orchestrate the intricate dance of
parameter fine-tuning by intelligently scaling the steps taken toward the optimal solution.
They ensure that the model converges toward a more accurate representation of the desired
output, aligning its predictions with the actual target values as the training progresses.

Fortunately, in [33], extensive work was presented to classify the best optimizers for
brain tumor segmentation. The best results were obtained using Adaptive Moment Estima-
tion (ADAM) [34], which we also implemented over the Stochastic Gradient Descent (SGD)
found in the original U-Net study. ADAM optimization integrates the advantages of two
other optimization techniques, Momentum, and RMSProp, yielding an enhanced approach.
The Momentum algorithm employs past gradients to alleviate optimization fluctuations,
whereas RMSProp adjusts the learning rate based on recent gradient magnitudes. ADAM
optimization elevates these concepts by introducing an exponential moving average of
both gradients and their squares, dynamically fine-tuning the learning rates. In practical
terms, ADAM optimization computes ongoing averages of gradients and squared gradients



Sensors 2023, 23, 8991 13 of 20

for each model parameter. These averages are harnessed to compute parameter updates
during training. In a nutshell, ADAM works as follows:

1. Calculate the gradient ∇θ J(θ);
2. Update biased first moment estimate:

mt+1 = β1mt + (1− β1)∇θ J(θ) (6)

3. Update biased second moment estimate:

vt+1 = β2vt + (1− β2)
(
∇θ J(θ))2 (7)

4. Correct bias in the first and second moment:

m̂t+1 =
mt

1− βt
1

(8)

v̂t+1 =
vt

1− βt
2

(9)

5. Update the parameters:

θ = θ− ∝
m̂t+1√

v̂t+1 + ε
(10)

where J(θ) is the loss function, ∝ is the learning rate, β1 = 0.9 and β2 = 0.999 decay rates
kept constant in our study, and ε a very small number to prevent division by zero.

In tuning the rest of the hyperparameters, one must consider the computation power.
The machine used was a 7th generation i7 with a 3.8 GHz maximum frequency, 32 Gb
DDR4 memory, and 4 Gb GDDR5 nVidia GeForce GTX 1050 Ti laptop. Unfortunately, these
are not state-of-the-art resources. To tackle the issue, the batch size, which determines the
number of samples processed in one forward and backward pass during each training
iteration, was set to the maximum possible. This was achieved by constantly increasing it
until the system returns an OOM (Out of Memory) error. For this analysis, we also set the
model to compute only one epoch and monitored the computation time. The learning rate
used was 10−5 but it was not relevant to this step analysis. The results are shown in Table 1.
They are comparable because an identical seed was used to randomize the dataset. The
largest batch size accepted by the GPU was 16, which also had the best computation time.

Table 1. Computation time for multiple batch sizes.

Batch Size 2 4 8 16

Time (s) 1502 1112 805 520

Having such good initial accuracies, we concluded the rest of the tuning to be done on
10 epochs of micro training and only the best-found scenario to be iterated, if necessary,
for more epochs. Establishing the batch size and optimizer took us toward the next
hyperparameter, the learning rate. The chosen learning rate holds the potential to impact
the generalization proficiency of the trained model when applied to unfamiliar data. Should
the learning rate be excessively elevated, the model might excessively conform to the
training data, impeding its ability to generalize effectively when confronted with novel
data. There is a consensus to train models using these negative powers of 10. Opting for an
appropriate learning rate enables a harmonious equilibrium to be reached, enabling the
model to appropriately fit the training data while mitigating the risk of overfitting. This
can be observed in Figure 11, where the training and validation accuracies for the most
common four learning rates are presented: 10−2, 10−3, 10−4, and 10−5. The best score was
achieved for a learning rate of 10−4, which obtained the highest validation accuracy of
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0.9951. The validation accuracy was also maintained closer to the training accuracy through
all 10 epochs. The 10−2 learning rate badly underperformed, obtaining accuracies around
0.56, while the 10−3 learning rate had more scattered validation accuracy values compared
to the training graph. In the end, the 10−5 learning rate was slower in converging than
10−4, having lower accuracy scores for both the training and validation datasets.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 20 
 

 

the model to appropriately fit the training data while mitigating the risk of overfitting. 
This can be observed in Figure 11, where the training and validation accuracies for the 
most common four learning rates are presented: 10−2, 10−3, 10−4, and 10−5. The best score 
was achieved for a learning rate of 10−4, which obtained the highest validation accuracy of 
0.9951. The validation accuracy was also maintained closer to the training accuracy 
through all 10 epochs. The 10−2 learning rate badly underperformed, obtaining accuracies 
around 0.56, while the 10−3 learning rate had more scattered validation accuracy values 
compared to the training graph. In the end, the 10−5 learning rate was slower in converging 
than 10−4, having lower accuracy scores for both the training and validation datasets. 

 
Figure 11. Cont.



Sensors 2023, 23, 8991 15 of 20Sensors 2023, 23, x FOR PEER REVIEW 15 of 20 
 

 

 

 
 

Figure 11. Training histories for different learning rates. 

8. Results 
8.1. U-Net Model Downscaling 

Having all the non-structural hyperparameters set for the original U-Net model, we 
established the starting point of the architecture downscaling, by subsequently reducing 
the number of kernels present in each convolution layer by half. Several were created 
while maintaining the doubling and symmetrical rules of the U-Net model. The 
complexity of each block (number of kernels per convolution layer) and the trainable 
number of parameters are described in Table 2. 

Table 2. Downscaling scenarios. 

Scenario No. 1 of 6 2 of 6 3 of 6 4 of 6 5 of 6 6 of 6 
Encoder 1 64 32 16 8 4 2 
Encoder 2 128 64 32 16 8 4 
Encoder 3 256 128 64 32 16 8 
Encoder 4 512 256 128 64 32 16 

Bridge 1024 512 256 128 64 32 
Decoder 1 512 256 128 64 32 16 
Decoder 2 256 128 64 32 16 8 
Decoder 3 128 64 32 16 8 4 
Decoder 4 64 32 16 8 4 2 

Figure 11. Training histories for different learning rates.

8. Results
8.1. U-Net Model Downscaling

Having all the non-structural hyperparameters set for the original U-Net model, we
established the starting point of the architecture downscaling, by subsequently reducing
the number of kernels present in each convolution layer by half. Several were created
while maintaining the doubling and symmetrical rules of the U-Net model. The complexity
of each block (number of kernels per convolution layer) and the trainable number of
parameters are described in Table 2.

Following the training of each scenario with the predefined hyperparameters, the eval-
uation process involved two key aspects: computation time and the accuracy of predictions
on the testing dataset. The accuracy of predictions was compared against the performance
of the original U-Net model (first scenario) to gauge the extent of any significant deviations.
The outcomes of these assessments are outlined in Table 3. The “total time” metric signifies
the duration required to predict all 4400 images, while the “average time” metric exposes
the computation time for a single image. The last column emphasizes the decrease in time
from the initial scenario. The original scenario obtained a 0.99688 accuracy and it took, on
average, 0.14 s to successfully make a prediction. Going further, the next three downscaling
scenarios of the model had similar accuracies with a much faster computation time. A



Sensors 2023, 23, 8991 16 of 20

meaningful decrease in accuracy was spotted in the fifth scenario, which had 16 times fewer
feature maps on every convolution layer than in the first scenario.

Table 2. Downscaling scenarios.

Scenario No. 1 of 6 2 of 6 3 of 6 4 of 6 5 of 6 6 of 6

Encoder 1 64 32 16 8 4 2
Encoder 2 128 64 32 16 8 4
Encoder 3 256 128 64 32 16 8
Encoder 4 512 256 128 64 32 16

Bridge 1024 512 256 128 64 32
Decoder 1 512 256 128 64 32 16
Decoder 2 256 128 64 32 16 8
Decoder 3 128 64 32 16 8 4
Decoder 4 64 32 16 8 4 2

Total kernels 6848 3424 1712 856 428 214
Trainable parameters 31,032,321 7,760,385 1,941,249 485,889 121,761 30,585

Table 3. Overall downscaling evaluation.

Scenario Testing Acc. Total Time (s) Average Time (s) Decrease (%)

1 0.99688 626.51 0.14239 -
2 0.99669 468.05 0.10637 25.29
3 0.99678 383.17 0.08708 38.84
4 0.99601 354.36 0.08054 43.44
5 0.99141 347.35 0.07894 44.56
6 0.99139 323.95 0.07362 48.29

Because the testing dataset had 4400 samples, the overall calculated differences could
have been reduced or could falsely emphasize discrepancies. To further analyze the
simplified models’ performances, we also monitored the memory usage, accuracy, and
computation time for a single random image and illustrated them in Table 4. Compared
with the original model’s fairly large memory usage of 650 Mb, the next three downscaling
scenarios performed at a similar accuracy, but with lower resource consumption. The last
two scenarios also had good results, but the accuracy continued to decrease without a
significant memory improvement. It can also be seen that scenarios 4 to 6 had a memory
usage decrease of around 95% while maintaining high accuracy.

Table 4. One sample downscaling evaluation.

Scenario Time (s) Acc. Mem. Usage (Mb) Decrease (%)

1 0.09373 0.99610 650.7 -
2 0.06247 0.99548 177.3 72.75
3 0.06246 0.99377 55.7 91.44
4 0.06249 0.99280 28.5 95.62
5 0.04686 0.98950 24.9 96.17
6 0.04684 0.98364 22 96.62

For a better understanding of the study improvements, all the performance results
for all the downsized scenarios are portrayed in Figure 12, where all the values represent
percentages of the initial scenario. The chart has two vertical axes, the accuracy and time
are projected on the left, while the memory is projected on the right. It is important to
notice the accuracy maintained high percentages while the time and memory percentages
constantly decreased up to the point where the model computed twice as fast and used
only 3.38% of the initial memory.
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8.2. Comparison with Related Work

Even though there were different datasets and segmentation purposes, a couple of
comparisons can be made with the related work presented at the beginning of the paper.
The comparison was done in two directions regarding the purposes of this study. The work
described in [13,16] can be correlated with obtaining high-accuracy classification models
without manual data labeling. On the other hand, the work described in [18,20] focused on
reducing U-Net memory needs and parameters, while maintaining its accuracy.

In Table 5, the F1 score is presented for each of the studies. The chroma-key method
was evaluated using two deep learning networks, DeepLabV3+ and HRNet, while the
semi-automatic DIBaS dataset labeling was tested through ResUNet++, which is a U-Net
model using deep residual learning. For our study, we computed the F1 score for the fourth
and sixth scenarios, because the fourth was the most balanced and the sixth had the lowest
accuracy. Our proposed method had better results by a margin. We suspect this was a
consequence of an abundant dataset and an enhanced clustering phase. Unfortunately,
ResUNet++ had low results regarding the F1 score, even though it had an overall accuracy
of 0.95. Because the study segmented more than 30 classes of bacteria, some of the species
had a high grade of similarity or arrangement, increasing the false positives and decreasing
the F1 score. Our study bypassed this issue of multi-class segmentation by aggregating
similar classes to isolate the one of interest.

Table 5. F1 score comparison.

Model DeepLabV3+ HRNet ResUNet++ Scenario 4 Scenario 6

F1 score 0.935 0.925 0.77 0.996 0.991

A more precise comparison can be assessed regarding the complexity of the proposed
method. The memory usage and total number of parameters and filters of LCU-Net, Half-
UNet, and our scenarios are presented in Table 6. Even though LCU-Net had the same
number of blocks and filtering increments (16 to 256 and back) as the third scenario, due to
the implementation of the Inception approach, the total number of filters and parameters
was much higher. On the other hand, Half-UNet had 6 blocks with 64 kernels each because
it deactivated 3 of the 4 decoder blocks, resulting in only 212.576 parameters. Except for the
second scenario, our proposed method had better cost-reduction results. The third scenario
managed to use only 55.7 Mb compared with 103.5 Mb of LCU-Net and 137.3 Mb of Half-
UNet. Regarding the average time, this measure can be highly affected by the hardware
resources. No data was presented for Half-UNet but LCU-Net predicted the results on
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average in 0.15 s using an Intel(R) Core(TM) i7-8700 CPU with 3.20 GHz, 32 Gb RAM, and
Nvidia GeForce RTX 2080 8Gb. Our workstation had a similar CPU and memory, but a
4 Gb video card, and due to the lower number of parameters, obtained results below 0.10 s.

Table 6. Complexity comparison.

Model Filters Mem. Usage (Mb) Average Time (s) Parameters

LCU-Net [18] 5392 103.5 0.15 3469.393
Half-UNet [20] 768 137.3 - 212.576

1 (U-Net) 6848 650.7 0.142 31,032.321
2 3424 177.3 0.106 7760.385
3 1712 55.7 0.087 1941.249
4 856 28.5 0.081 485.889
5 428 24.9 0.079 121.761
6 214 22 0.074 30.585

9. Conclusions

This work addressed a common issue of neural network training, the lack of labeled
data, and the downfalls of obtaining it. To tackle the problem, this paper studied the use
of the Gaussian Mixture Model technique for automatic data labeling and implemented a
workflow for obtaining consistent data for supervised training. The method was applied
for a current issue, deforestation monitoring, by semantical segmenting forests on aerial
imagery. The dataset was used to train a conventional 9-block U-Net model for algorithm
assessment. Benefiting from the dataset’s quality, the resulting training, validation, and
testing accuracies were notably high. The non-structural hyperparameters such as the
learning rate, the optimizer, or the batch size had uncommon flexibility, proving the prior
GMM clustering enhanced the supervised training even more. The model achieved a
validation accuracy of 0.9951, and a testing accuracy of 0.9969 only by micro-training for
10 epochs.

Additionally, the study addressed the problem of resources and computation time
of CNN model predictions. A trained architecture needs to output precise results and
consume as few resources as possible to be suitable in a real-life environment. The original
U-Net model has 31.032.321 parameters and 6848 kernels. Even though it obtains a high
accuracy, other satisfactory accuracies can be reached with less complexity. For this, six
simplified U-Net models were trained and used for prediction. This study showed that the
initial accuracy had insignificant decreases while consuming much less memory. The most
balanced scenario was the fourth, which had an 8-kernel first encoder block and a 32-kernel
bridge. Compared with the original model, the scenario not only managed to predict
the testing dataset two times faster (56.56%), with almost no overall accuracy decrease,
but it used only 4.38% of the initial needed memory. The last two scenarios also showed
that the U-Net model can be simplified even further for harsh computational power if
the accuracy decrease tolerance is higher. Even though the decrease in accuracy was not
high, the improvement in time (≈5%) or memory (≈1%) from the fourth scenario was not
meaningful. Compared with related work, our proposed scenarios outperformed them in
both accuracy and cost reduction categories. The F1 score comparison is fairly volatile, but
the GMM clustering on abundant data proves the point of enhanced accuracy. Concerning
the complexity, we can assume that reducing the number of filters while keeping the
original U-Net architecture can potentially have better results than implementing other
techniques such as ghosting or inception to diminish the number of parameters.

In conclusion, we can strongly affirm that the GMM method helps in data labeling
and augmentation, and computation resource reduction for supervised training, and future
analyses using smaller datasets or lower-resolution sensors should be made to further
research its utility. Regarding the hyperparameters optimization, this study showed that an
856-kernel U-Net model has a desirable accuracy and decreases memory usage by 95.62%,
obtaining in the process a low-cost model for semantic segmentation.
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