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Abstract: Hydrogen has emerged as a promising carbon-neutral fuel source, spurring research and
development efforts to facilitate its widespread adoption. However, the safe handling of hydrogen re-
quires precise leak detection sensors due to its low activation energy and explosive potential. Various
detection methods exist, with thermal conductivity measurement being a prominent technique for
quantifying hydrogen concentrations. However, challenges remain in achieving high measurement
sensitivity at low hydrogen concentrations below 1% for thermal-conductivity-based hydrogen sen-
sors. Recent research explores the 3ωmethod’s application for measuring hydrogen concentrations
in ambient air, offering high spatial and temporal resolutions. This study aims to enhance hydrogen
leak detection sensitivity using the 3ω method by conducting thermal analyses on sensor design
variables. Factors including substrate material, type, and sensor geometry significantly impact the
measurement sensitivity. Comparative evaluations consider the minimum detectable hydrogen
concentration while accounting for the uncertainty of the 3ω signal. The proposed suspended-type
3ω sensor is capable of detecting hydrogen leaks in ambient air and provides real-time measurements
that are ideal for monitoring hydrogen diffusion. This research serves to bridge the gap between
precision and real-time monitoring of hydrogen leak detection, promising significant advancements
in the related safety applications.

Keywords: 3 omega method; gas thermal conductivity; hydrogen concentration; minimum detection
concentration

1. Introduction

International climate agreements have spurred active research and development in
renewable and clean energy sources, primarily motivated by the need to curb fossil fuel
usage and mitigate greenhouse gas emissions. Hydrogen, an environmentally friendly
fuel, has garnered substantial attention for its capacity to replace fossil fuels and emit only
water vapor upon combustion, rendering it a notable carbon-neutral alternative. Hydrogen
serves as both a heat source, replacing conventional fossil fuels, and a direct electricity
generating source through fuel-cell technology. It is imperative to advance technologies
for liquefaction and storage of substantial hydrogen quantities to facilitate the widespread
adoption of hydrogen [1–3]. However, handling hydrogen requires vigilance, as even
minor leaks into the atmosphere can lead to explosions due to hydrogen’s low activation
energy. Hence, developing precise hydrogen leak detection sensors takes precedence in
establishing safety measures for hydrogen usage [4–7].

Various methodologies for detecting hydrogen leakage into the atmosphere have been
proposed. These methodologies leverage a spectrum of measurement principles with
unique advantages and limitations contingent upon specific operational conditions. The
pinnacle of precision in hydrogen leak detection is achieved through gas chromatography
or mass spectrometry [6]. However, it is essential to note that these sophisticated instru-
ments primarily find their niche within controlled laboratory settings, rendering them less
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amenable to real-time and on-site measurement. In practice, the prevailing techniques for
hydrogen sensors pivot on the principles of electrochemistry and catalysis [6–10]. These
methodologies demonstrate remarkable sensitivity within the low hydrogen concentration
range, spanning from hundreds to thousands of parts per million (ppm). Nevertheless, it is
imperative to recognize that these techniques tend to exhibit signal saturation as hydrogen
concentrations reach few percent. Consequently, supplementary sensor methodologies
are often concurrently employed for precisely quantifying hydrogen concentrations over
1% [6].

Thermal conductivity measurement is a widely adopted technique for quantifying
hydrogen concentrations in the field of research and experiments. Hydrogen’s thermal
conductivity exceeds that of air by seven times at standard room temperature. This distinc-
tive attribute allows for determining hydrogen concentrations by measuring the thermal
conductivity of a mixture of air and hydrogen [11]. The thermal conductivity sensor has a
comparatively lower degree of operational constraints when compared to electrochemical
or catalytic-type sensors, which necessitate the presence of oxygen for their functionality.
The advantages of the thermal conductivity sensors encompass swift response time and
minimal power consumption. It also exhibits enhanced stability and reproducibility due to
its inherent simplicity, coupled with the sensor’s resistance to contamination, a prevalent
limitation in other sensor technologies [12].

Nevertheless, challenges in selectivity may arise when dealing with gases such as He,
CH4, CO, characterized by higher thermal conductivities than air. Thermal conductivity
sensors show diminished measurement sensitivity with moisture and humidity within the
sample gas at elevated temperatures [13]. Additionally, temperature correction may be
necessary, and the measurement accuracy tends to decrease at low hydrogen concentrations
below 1%. Despite these considerations, the thermal conductivity sensors remain the
preeminent choice for precise hydrogen concentration measurements within experimental
and engineering systems [6].

Electrochemical or catalytic sensors are typically the primary choice for hydrogen
leak detection. While effective at signaling the presence of hydrogen, these sensors have
limitations in assessing criticality in the field, especially when hydrogen levels are near
the lower explosive limit of 4%. Moreover, they cannot confirm whether hydrogen con-
centrations are consistently below this threshold, making it challenging to take precise
corrective actions. Consequently, there is an urgent need to develop thermal conductivity
sensors with enhanced sensitivity and superior spatial and temporal resolution, particu-
larly for detecting hydrogen concentrations in the sub-percent range. Achieving this goal
necessitates sensitivity enhancement designs to lower the minimum measurable hydrogen
concentration to below 1%.

Recent research has explored the application of the 3ω method for measuring hy-
drogen concentrations in ambient air [11–14]. The 3ω method, widely used for thermal
conductivity measurements, extends its versatility beyond thin films and substrates to
encompass liquids and gases [15,16]. Utilizing 3ω sensors opens the door to sub-micron
spatial resolution and time constant below a few ms. Furthermore, it can eliminate the need
for conventional processes such as sample drying and pre-conditioning, which typically
involve temperature adjustments and are common in conventional hydrogen sensors.

In this research, we performed a thermal analysis on the sensor design variables to re-
duce the minimum detectable hydrogen concentration in ambient air using the 3ω method.
We employed theoretical calculations to determine measurement signals influenced by
factors such as substrate material, type, and sensor geometry, which significantly impact
thermal conductivity measurement sensitivity. Additionally, we conducted a comparative
evaluation, considering the measurable minimum hydrogen concentration while consider-
ing uncertainty errors affecting the 3ω signal. The 3ω sensor proposed in this study can
detect hydrogen leaks in ambient air and provide real-time measurements of hydrogen con-
centrations suitable for monitoring of hydrogen diffusion. This advancement holds great
promise for enhancing safety measures and optimizing hydrogen-related applications.
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2. Thermal Modeling of 3ω Sensors

The 3ω method measures the temperature amplitude and phase lag in response to
alternating current (AC) applied to a microheater. This method enables the determination
of the thermal properties of the surrounding medium by fitting the measured data with the
theoretical equation. A metal microheater is deposited and patterned onto a substrate in a
typical 3ω sensor configuration, as illustrated in Figure 1. When an AC is applied to this
microheater, the temperature oscillates following a sine wave pattern. By comparing the
amplitude of the temperature oscillation and the phase lag relative to the original AC signal
with theoretical equations, it becomes possible to calculate thermal properties such as the
thermal conductivity or thermal diffusivity of the substrate. The theoretical expression
governing the temperature oscillation of the microheater is as presented in the equation
below [17]:

∆T =

.
Q
πl

∫ ∞

0

1
γ
× sin2(xb)

(xb)2 dx (1)
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Here, ∆T represents the temperature oscillations of the microheater, and
.

Q is the
generated heat flux. l, 2b, ω, and x correspond to the microheater’s length, width, angu-

lar frequency, and integration variable, respectively. γ can be expressed as k
√

x2 + i 2ω
α ,

where k and α denote the thermal conductivity and thermal diffusivity of the substrate,
respectively. The temperature oscillations of the microheater are in the form of a complex
number with amplitude and argument representing temperature amplitude and phase lag,
respectively [18]. One of the most significant advantages of the 3ω method is its ability
to achieve very high spatial resolution by adjusting the thermal penetration depth (TPD)
based on the AC frequency. TPD refers to the physical distance over which temperature
oscillations generated by the heater are transmitted into the substrate. It can be expressed
as

√
(α/2ω). For instance, in the case of a SiO2 substrate, at AC frequencies ranging from a

few Hz to kHz, TPD can vary from several hundred nanometers to a hundred micrometers.
Thus, the thickness of the substrate to be measured is determined based on the frequency
range, allowing for precise spatial resolution control. This capability facilitates thermal
analysis of ultra-thin films or localized regions within samples [19,20].

When dealing with fluid samples, conducting measurements using the bi-directional
3ωmethod is feasible. This approach employs a metal microheater, deposited on a substrate
with well-known thermal properties [15,21]. However, it is imperative to operate assuming
that the measured fluid remains static, without any convective heat transfer effects, such as
natural convection. Figure 2 illustrates this configuration, with the microheater sandwiched
between the sample gas and the sensor substrate. The temperature oscillations can be
expressed as in the following equation [20].

∆T =

.
Q
πl

∫ ∞

0

1
γ + γgas

× sin2(xb)

(xb)2 dx (2)
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The subscript “gas” denotes the sample gas layer’s properties. With the equation
mentioned above, applying the 3ωmethod has become feasible for the thermal analysis
of various gases, where microheater deposition through semiconductor processes was
impossible. As mentioned earlier, for air, the TPD is typically less than a few tens of
micrometers, contrasting with the SiO2 substrate. Consequently, it is possible to accurately
measure the thermal conductivity and hydrogen concentration in gas mixtures, such as air,
using the 3ωmethod with just samples with thicknesses exceeding ~0.1 mm [18].

Several crucial considerations come into play when utilizing the bi-directional 3ω
method for gas measurement. The thermal conductivity of gases, excluding cases like
hydrogen and helium, generally falls below ~0.1 W·m−1·K−1, one or more orders of
magnitude lower than that of typical 3ω sensor substrates like SiO2. Selecting a substrate
with higher thermal resistance is essential to enhance sensitivity in measuring such low
thermal conductivity samples. For example, we consider a 3ω sensor on a SiO2 substrate
for measuring the thermal conductivity of a gas with 1/10 of the thermal conductivity
compared to the substrate. The heat generated by the microheater flows through the
substrate and the gas in a parallel thermal resistance circuit, as shown on the right side of
Figure 2. Because the thermal resistance of the substrate is one-tenth that of the gas side,
most of the heat generated in the microheater flows to the substrate. Consequently, the
sensitivity to the thermal conductivity of the gas, and thus the measurement accuracy for
changes in hydrogen concentration, is diminished [11].

To enhance the measurement sensitivity and accuracy of a gas sample, the thermal
resistance of the substrate must be increased to a level comparable to that of the gas sam-
ple. One approach is to use materials such as polymers (e.g., polyimide) with thermal
conductivities approximately one-fifth of that of SiO2 as the substrate of the 3ω sensor.
Alternatively, for an even more significant enhancement, etching can remove the substrate
entirely, leading to a suspended microheater structure. In the case of a suspended sensor,
heat generated by the microheater flows equally to both the upper and lower sides occu-
pied by gas, necessitating the addition of a factor of 2 in the denominator of Equation (1).
The configuration of a suspended sensor offers the most sensitive and accurate measure-
ment of the thermal conductivity of gas and is expected to provide the lowest detectable
hydrogen concentrations.

In this study, the design parameters of the 3ω sensor were analyzed to assess the
minimum detectable hydrogen concentration in the air. Various configurations of 3ω
sensors were considered, including SiO2 and polyimide substrates and suspended-type
sensors. SiO2 and polyimide substrates were assumed to have a thickness of 500 µm.
Additionally, to compare the measurement sensitivity according to the width of the micro-
heater, calculations were conducted for microheater widths of 4, 10, and 40 µm. Among
the design parameters of the 3ω sensor, the sensor width is known to have the most sig-
nificant impact on measurement sensitivity, excluding the substrate type. [11] Hydrogen
concentration in air ranged from 0% to 20% mole fraction (mf) for the sample gas. AC
frequencies for the microheater were calculated from 0.1 to 100 Hz. Table 1 summarizes the
calculation parameters.
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Table 1. Calculation parameters and conditions used for the detection of hydrogen in air.

Parameter Condition and Range

Substrate type SiO2, polyimide substrates and suspended sensors
Microheater width 4, 10, and 40 µm

AC frequency 0.1~100 Hz
Hydrogen mole fraction in air 0~20%

All substrate and mixture gas properties were assumed to be constant regardless
of temperature variation. The thermal conductivity of the mixture gas as a function of
hydrogen concentration was calculated using the thermal conductivity correlation equation
proposed by Mathur for binary gas mixtures [22]. Furthermore, air and hydrogen were
treated as ideal gases, and their densities and specific heat capacities were determined as
weighted averages based on mole fraction and mass fraction, respectively. The densities
were calculated by multiplying the volume fractions with the individual densities of
air, 1.16 kg·m−3, and hydrogen, 0.0808 kg·m−3. The specific heat capacity of dry air
at room temperature was 1.007 kJ·kg−1·K−1 and hydrogen’s specific heat capacity was
14.31 kJ·kg−1·K−1. These values were averaged by their respective mass fractions to obtain
specific heat values as a function of concentration. The thermal conductivity and thermal
diffusivity of the mixture gas as a function of hydrogen concentration are depicted in
Figure 3. For the substrate materials, SiO2 and polyimide were assumed to have thermal
conductivities of 1.2 and 0.17 W·m−1·K−1, and thermal diffusivities of 7.2 × 10−7 and
1.1 × 10−7 m2·s−1, respectively.
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Figure 3. Properties of hydrogen and air mixture depending on hydrogen concentration (mf),
(a) thermal conductivity and (b) thermal diffusivity.

3. Calculation Results

This section presents the results of temperature amplitude calculations for 3ω sensors,
considering the substrate material and type, AC frequency, the width of the microheater,
and hydrogen concentration. Figure 4 shows the results of temperature amplitude and
phase lag calculations as a function of AC frequency and hydrogen concentration when a
10 µm wide microheater on a SiO2 substrate is used. As observed in Figure 4, the sensitivity
of the SiO2 substrate sensor to changes in hydrogen concentration is notably low. There is
some distinction in temperature amplitude concerning hydrogen concentration, particularly
at low frequencies, near 0.1 Hz. However, there is a single curve in the case of phase
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lag, indicating no discernible difference in the calculated values with varying hydrogen
concentrations. As mentioned in the thermal resistance analysis, this behavior suggests
that the thermal resistance difference between the SiO2 substrate and the gas mixture is
significant, resulting in a lack of difference in signals concerning hydrogen concentration.
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Figure 4. Calculation results of (a) temperature amplitude and (b) phase lag depending on AC
frequency and hydrogen concentration for 10 µm width 3ω sensor on a SiO2 substrate.

To determine the minimum detectable concentration of hydrogen, we focused on
analyzing the temperature amplitude signal rather than the phase lag. It is widely known
that the typical measurement uncertainty for temperature amplitude in the 3ωmeasure-
ments is around 2% [23]. Assuming a measurement uncertainty of 2% for the temperature
amplitude, we established a criterion for detecting the minimum hydrogen concentration.
Specifically, we considered hydrogen concentrations where the temperature amplitude (∆T)
deviates by more than 2% from the amplitude calculated for pristine air (∆T0%). In other
words, we calculated the hydrogen concentration at which the temperature amplitude
ratio, ∆T/∆T0%, averages less than 0.98 across the frequency range of 0.1 to 100 Hz. We
deemed this concentration to be the minimum detectable hydrogen concentration using
the 3ω sensor.

Next, we present the calculated temperature amplitude ratios for different substrate
types. Figure 5 illustrates the temperature amplitude ratios for sensors with a 10 µm width,
considering SiO2, polyimide substrates, and suspended-type sensors. In all calculations,
significant variations in temperature amplitude concerning hydrogen concentration are
observed at low frequencies below 1 Hz. Furthermore, it is noteworthy that for SiO2 sensors,
which exhibit the lowest measurement sensitivity among all substrates, the temperature
amplitude only deviates by 2.3% or less, even up to a maximum hydrogen concentration
of 20%. In contrast, polyimide substrates and suspended sensors show differences of
12% and 48%, respectively. Among these, the suspended-type sensor displays the highest
measurement sensitivity regarding hydrogen concentration, followed by the polyimide
and SiO2 substrate sensor.
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Figure 5. Calculation results of temperature amplitude ratio depending on AC frequency and hydro-
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Figure 6 illustrates the calculated results of the temperature amplitude ratios concern-
ing hydrogen concentration and AC frequency when varying the microheater width for the
3ω sensor based on a polyimide substrate. The width of the microheater ranges from 4, 10,
and 40 µm. In terms of sensor width, it is apparent that the temperature amplitude ratio
does not vary significantly compared to the substrate type. However, as the sensor width
decreases, an observable increase in sensitivity to hydrogen concentration occurs. Addi-
tionally, it is noteworthy that when the sensor width is 4 µm, the change in temperature
amplitude ratio concerning frequency was relatively small compared to that observed with
larger widths.
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Conversely, as the width increases, a significant drop in sensitivity at higher frequen-
cies (above 10 Hz) becomes evident. Figure 7 presents the calculated results of temperature
amplitude ratios concerning the microheater width for suspended sensors. The sensor
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width has a minor impact on hydrogen measurement sensitivity for the suspended-type
sensor. Notably, a sensor width of 4 µm shows a slight improvement in sensitivity to
hydrogen concentration compared to broader width configurations for all substrate types.
Furthermore, compared to polyimide substrate sensors, there is a relatively small change
in sensitivity to frequency for a suspended sensor.
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A standard photolithography technique can achieve a metal microheater with a 4 µm
width via the semiconductor process. However, for sensor widths exceeding ~40 µm,
an alternative approach, such as employing a shadow mask during the metal deposition
process to simultaneously pattern the metal, can significantly simplify the sensor fabrication
process. In light of this, when creating a 3ω sensor on a polyimide substrate, it is advisable
to fabricate it with the conventional photolithography process whenever possible. This
approach allows for a narrower microheater patterning, maximizing the measurement
sensitivity. On the other hand, in the case of suspended sensors, where the difference in
hydrogen measurement sensitivity based on sensor width is negligible, fabrication using
a shadow mask should provide sufficient sensitivity. This choice streamlines production
while still meeting the necessary sensitivity requirements.

4. Minimum Detectable Hydrogen Concentration

In the previous section, we calculated the temperature amplitude and temperature
amplitude ratio for 3ω sensors under varying conditions. We considered factors such as
the substrate material, type, microheater width, and AC input frequency. It was observed
that as the thermal resistance of the substrate increased, the minimum detectable hydrogen
concentration decreased. Although the effect was smaller than that of substrate thermal
resistance, narrower microheater widths were associated with improved hydrogen mea-
surement sensitivity. Assuming a measurement uncertainty of 2% for the temperature
amplitude ratio, we can use the previous calculations to determine the minimum detectable
hydrogen concentration. Figure 8 illustrates the calculated minimum hydrogen concentra-
tions in the air that can be detected for the different substrate types and microheater widths
of the 3ω sensor.
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Figure 8. Minimum detectable hydrogen concentration depending on substrate types and sen-
sor width.

For the SiO2 substrate, the minimum detectable hydrogen concentration was above
18%. To detect a difference in signal compared to pristine air without hydrogen, the thermal
conductivity of the mixed gas of air and hydrogen should be at least 0.043 W·m−1·K−1.
Designing microheaters with smaller widths is advantageous, but it was challenging to
observe significant differences in the minimum hydrogen detection concentrations between
4 µm and 40 µm sensors, which were 18% and 21%, respectively. On the other hand, when
using a polyimide substrate sensor, it is expected that researchers are able to detect the
minimum hydrogen concentration, which is the explosion limit, at around 3–4%. Finally,
the suspended sensor, which has the lowest minimum detectable hydrogen concentration,
is expected to measure hydrogen concentrations from 0.3% and 0.35%.

Two additional considerations can be made apart from substrate type and microheater
width to reduce the minimum detectable hydrogen concentration further. As observed in all
previous results, the sensitivity to hydrogen concentration measurements was higher at low
AC frequencies. Therefore, setting the fitting range of temperature amplitude measurements
to 10 Hz or less could increase the sensitivity to hydrogen concentration measurements
and lower the minimum detectable concentration. Furthermore, it is possible to reduce the
uncertainty of temperature amplitude measurements by taking longer time averages at
low frequencies in the 3ω sensor and applying low-frequency noise reduction techniques.
Suppose these measures are assumed to reduce the temperature amplitude measurement
uncertainty to the 1% level. In that case, the minimum hydrogen detection concentrations
for SiO2, polyimide, and suspended sensors with a 4 µm microheater width will decrease
to 9.2%, 1.4%, and 0.14%, respectively. In other words, in the case of suspended-type
sensors, the minimum detectable hydrogen concentration can be improved to 1400 ppm,
comparable to that achieved with electrochemical and catalytic-based hydrogen sensors.
These sensor offers high spatial resolution and can be used as non-invasive detectors for
various safety applications.

5. Conclusions

This paper analyzed the application of 3ω sensors for hydrogen concentration measure-
ment in air mixture. To derive sensor designs sensitive to hydrogen concentrations below
the lower flammability limit of 4%, we considered low thermal conductivity substrates
and suspended-type 3ω sensors. Theoretical calculations were performed to compute and
compare the temperature amplitudes of 3ω sensors based on hydrogen concentration, AC
frequency, and microheater width. Assuming a 2% uncertainty in temperature amplitude
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measurement for 3ω sensors, suspended-type sensors exhibited the best performance, with
at least 0.3% hydrogen concentration detection capabilities. As the thermal resistance of
the substrate decreases, polyimide and SiO2 substrate-based 3ω sensors are predicted to
achieve minimum hydrogen detection concentrations of 3% and 18%, respectively. By nar-
rowing down the range for AC frequency fitting in thermal conductivity and implementing
low-frequency noise reduction, it is anticipated that the measurement uncertainty of 3ω
signals can be reduced to 1%. In such a scenario, suspended sensors are expected to achieve
detection levels as low as ~1400 ppm, comparable to those achieved with electrochemi-
cal hydrogen sensors. This study highlights the potential of thermal-conductivity-based
hydrogen sensors for detecting hydrogen leaks with high spatial resolution and accuracy
compared to conventional techniques.
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