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Abstract: In the context of road transportation, detecting road surface irregularities, particularly
potholes, is of paramount importance due to their implications for driving comfort, transportation
costs, and potential accidents. This study presents the development of a system for pothole detection
using vibration sensors and the Global Positioning System (GPS) integrated within smartphones,
without the need for additional onboard devices in vehicles incurring extra costs. In the realm of
vibration-based road anomaly detection, a novel approach employing convolutional neural networks
(CNNs) is introduced, breaking new ground in this field. An iOS-based application was designed for
the acquisition and transmission of road vibration data using the built-in three-axis accelerometer and
gyroscope of smartphones. Analog road data were transformed into pixel-based visuals, and various
CNN models with different layer configurations were developed. The CNN models achieved a
commendable accuracy rate of 93.24% and a low loss value of 0.2948 during validation, demonstrating
their effectiveness in pothole detection. To evaluate the performance further, a two-stage validation
process was conducted. In the first stage, the potholes along predefined routes were classified based
on the labeled results generated by the CNN model. In the second stage, observations and detections
during the field study were used to identify road potholes along the same routes. Supported by
the field study results, the proposed method successfully detected road potholes with an accuracy
ranging from 80% to 87%, depending on the specific route.

Keywords: road pothole detection; deep learning; convolution neural network; smartphone sensors;
mobile application

1. Introduction

The increasing urban population has led to a significant rise in the number of vehicles
on the roads, resulting in various road surface irregularities, with road potholes being
a significant concern. In Turkey, according to the 2022 data from the Turkish Statistical
Institute (TUIK), 5229 people lost their lives in traffic accidents, and 288,696 people were
injured, with approximately 2.1% of these accidents being attributed to vehicles and around
0.4% to road factors [1]. Although a small fraction of accidents is directly linked to road
conditions, the impact is substantial, considering the loss of life and injuries involved.
Road potholes alone are reported to contribute to about 50% of accidents caused by road
defects (see Table 15 in [2]). Furthermore, road potholes can have adverse effects on
vehicles, causing deformations in tires and suspensions. Some vehicle defects leading
to traffic accidents may also be attributed to road potholes (see Table 16 in [2]). Road
irregularities not only challenge drivers during transportation but also negatively affect the
travel experience for passengers, including those who are ill, pregnant, or elderly. Therefore,
early detection of road defects/potholes is crucial, both for reducing fatalities, injuries, and
financial losses caused by traffic accidents and for ensuring balanced vehicle operation and
improved travel quality.

In the literature, various studies have been conducted to assess road conditions au-
tomatically for identifying road potholes and other road irregularities. These studies can
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generally be categorized into two main approaches. Firstly, there are vision-based ap-
proaches that employ various imaging methods to capture road defects, including potholes,
through image processing analysis [3]. Secondly, there are vibration-based approaches
where various types of motion sensors collect vehicle vibration data to detect road anoma-
lies, involving the use of thresholding, machine learning (ML), and dynamic time warping
(DTW) techniques [4].

In 3D reconstruction studies within the scope of road imaging, road data, including
pavement distress, have been collected by automatically identifying road surface irregulari-
ties using cameras and laser scanners [5]. Additionally, road conditions have been assessed
through stereovision cameras and laser scanners, resulting in a 3D model of road defects [6].
In contrast to the high cost of the first two methods, low-cost kinetic sensors, such as Kinect
sensors, have been used to obtain 3D road pavement distress data [7]. Moreover, some stud-
ies based on road imaging methods have been transformed into commercial products like
Automatic Road Analyzer (ARAN) [8] and Road Measurement Data Acquisition System
(ROMDAS) [9], which are used for road quality assessment.

Regarding pothole detection studies in the vision-based approach, potholes have been
detected using 2D image processing techniques, spectral clustering, and color images [10].
Furthermore, color images cropped from high-speed camera videos have been used to au-
tomatically segment potholes [11,12]. High-speed 3D reconstruction has provided real-time
and cost-effective 3D road defect data [13], and an LiDAR-based pavement distress detec-
tion method has been proposed [14], extracting the 3D road surface using a combination
of 3D point cloud modeling and 2D image processing algorithms [15]. In addition, some
studies based on road imaging methods have employed image detection using support
vector machines (SVM) [16] and deep convolutional neural networks (DCNN) [17,18] to
identify road cracks.

Using smartphone sensors, pothole detection has been performed based on thresh-
olding approaches [19,20], machine learning techniques [21], data mining algorithms [22],
support vector machine (SVM) methods [23], dynamic time warping (DTW) techniques [24],
and machine learning (ML) with a sensor-equipped vehicle [25] to monitor road surfaces
and detect potholes. When examining the studies on road surface monitoring and pothole
detection, it can be observed that deep learning (DL) methods with deep-learning-based
image processing have been employed [17,18] in vision-based studies. However, consider-
ing vibration-based studies, it is observed that machine learning (ML) methods [23,25] and
artificial neural networks (ANN) [26] are predominantly utilized.

A method for recognizing time series data composed of accelerometer signals from
the DeepSense framework was proposed [27]. The results of the proposed method in the
study were also compared with CNN. DeepSense was recommended as a method that
integrates CNN and recurrent neural network (RNN) to leverage local interactions among
similar mobile sensors, adapted for applications focusing on time series data processing
in mobile sensing [28]. As seen, in the first study aiming to recognize road surfaces using
deep learning, integrated convolutional and recurrent layers that utilize data in a time
series format were used.

In the literature, it is observed that convolutional layers are used in the context of
road surface recognition, particularly when vibration-based data are evaluated within
time series. However, no CNN study has been found that transforms road vibration data
into pixels. In this study, a novel method was developed to detect road potholes using
convolutional neural network techniques by transforming vibration-based data obtained
from smartphone sensors into pixels.

To demonstrate the originality of this study, a detailed review of studies that employ
vehicle-generated road vibration data to detect road potholes along a road route is provided
in Section 2. The methodology used, including data collection, preparation, and processing
of vibration data collected from smartphones along the route, is presented in Section 3.
Section 4 outlines the development, training, and validation of the novel convolutional
neural network model. Finally, Section 5 presents the comparative results of road pot-
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hole detection using the developed CNN model, validated through test outcomes and
field studies.

2. Literature Review

Vibration-based approaches used to detect road potholes rely on evaluating vibrations
obtained through motion sensors (accelerometer, gyroscope, etc.) on the road surface.
A vehicle behaves differently when encountering road irregularities such as potholes,
cracks, or speed bumps, and this behavior can be captured through vibrations. In studies
conducted using mobile devices, road surface irregularities are commonly detected from
road vibration data using the threshold method. Detection is based on the road vibration
data exceeding a predefined threshold value, indicating surface irregularities. However,
to minimize the impact of varying environmental conditions, dynamic thresholding is
preferred over a fixed threshold approach. For road surface monitoring using dynamic
thresholding, a Gaussian-model-based mining algorithm was proposed [29]. Various de-
tection components utilizing smartphone sensors, including accelerometers, microphones,
GSM radios, and/or GPS sensors focus on detecting potholes, speed bumps, braking, and
honking. Pothole detection primarily focuses on accelerometer data processing, while
some studies have used both accelerometer and gyroscope data, including the vehicle’s
average speed, to obtain road roughness using the fast Fourier transform (FFT) method [30].
Another approach involves deriving the parameters of the International Roughness Index
(IRI) model from GPS and accelerometer data [31]. A system was proposed that verifies
road anomalies using smartphone sensor data against vehicle sensor data, classifying them
based on their features [32]. Additionally, a system that uses both smartphone sensors and
a gyroscope/accelerometer-equipped wireless controller for z-axis algorithms was sug-
gested [33]. For nearly real-time detection and classification of road surface abnormalities,
a hybrid method combining threshold-based and ML approaches was recommended [34].

Another widely used method for detecting road defects is machine learning. To allow
computers to classify road vibration data, a model must be trained on a prepared dataset.
This method enables the classification of road vibrations to identify potholes [21]. Using
smartphone sensors, an SVM algorithm was proposed to eliminate speed, gradient, and
drift effects from sensor signals and classify road segments [35]. Three-axis accelerometers
and gyroscopes in smartphones were used with a decision tree classifier to classify road
segments and create models [36]. An early warning system was suggested that uses an
SVM algorithm to detect both speed bumps and poor road conditions [37]. For road
surface classification, a comparison was made between an SVM, hidden Markov model
(HMM), and residual network (ResNet), with ResNet performing the best [38]. Pothole
classification was achieved with high accuracy using SVM, and a k-means algorithm
was used to distinguish between potholes and speed bumps [39]. An algorithm for road
surface recognition using a smartphone acceleration sensor was proposed, optimized
by a fuzzy logic inference machine and a Gaussian background model (GBM) [40]. A
random forest method was suggested for pothole classification based on features extracted
from acceleration signals obtained from smartphones [41]. Hybrid approaches combining
threshold-based and ML methods have also been employed [34].

Different studies in the literature also exist where road defects have been detected
using machine learning without the use of smartphones. Using an Internet of Things
(IoT) sensor, various machine learning models (logistic regression (LR), SVM, k-nearest
neighbors (KNN), naive Bayes (NB), decision tree (DT), random forest (RF), and ensemble
voting) were compared in terms of their performance under different parameters, and it
was determined that random forest was the best model for pothole detection [42]. The use
of ML techniques and an IoT platform was recommended for the detection of speed bumps,
humps, and potholes [43].

In addition to threshold- and machine-learning-based methods, dynamic time warping
has been used to detect road defects using smartphone sensors [24]. A system was proposed
that provides real-time alerts to drivers using FastDTW and SVM to detect driving events
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and road abnormalities [44]. For the detection of potholes on road surfaces, a DTW-based
separation algorithm for road vibration signals with higher sensitivity was suggested [45].
SVM, HMM, and residual networks (ResNet) were compared for road pavement and
non-pavement classification, while KNN and DTW methods were evaluated for anomaly
detection [38]. Since this study uses the ResNet method, it features a deep-neural-network-
based approach.

A system was proposed for vehicle tracking, heterogeneous human activity recogni-
tion, and biometric motion analysis using motion sensors with smartphones based on the
Unified Deep Learning framework, which combines convolutional and recurrent neural net-
works [28]. While the study did not focus on road surface issues, it compared the results of
the DeepSense framework for three different applications based on data collected through
mobile device sensors over time. Another study referencing this approach proposed a
DeepSense framework for road surface recognition using time series data collected with
a smartphone. Additionally, the method’s performance was demonstrated to be superior
when compared to CNN, NN, SVM, and random forest (RF) classifiers [27]. To improve
the accuracy of human activity recognition, a CNN deep learning model was created and
recommended by comparing CNN and RNN methods [46].

In a study focused on examining the convolutional kernel size, an original convo-
lutional neural network architecture was proposed, aiming to discover patterns of ac-
celerometer signals for human activities in each axis within the layers that constitute the
network [47]. A novel approach for organizing time series data from smartphone sensor
signals for human activity recognition (HAR) was recommended, using a CNN-based
classifier [48]. For HAR, both 1D and 2D CNNs were used with inertial signals, and their
performances were compared with each other and with SVM, KNN, and MLP methods [49].
A unique shallow CNN with a C3 block was suggested for sensor-based HAR, where all
channels in the same layer have extensive interaction to capture distinctive features in raw
sensor data [50]. An augmented multichannel convolutional neural network (AMC-CNN)
model was proposed to better explore feature patterns in time series and enhance the
capability of HAR [51]. To improve the accuracy of human activity recognition (HAR), a
novel approach called convolution ternary (HAR-CT) was proposed, which enhances a
CNN using the trained ternary quantization (TTQ) approach [52].

For sensor-based human activity recognition (HAR), a multilayer hybrid architecture
was designed using CNNs and long short-term memory (LSTM) [53]. Human activity
predictions using smartphone accelerometers were compared to results obtained using the
LSTM technique [54].

3. Methodology and Experimental Design

Road vibration data were obtained using smartphone sensors for the purpose of iden-
tifying road potholes through deep learning. The process of data collection, preprocessing,
the creation of the deep learning model, and the detection of road potholes were followed
sequentially. To ensure the continuous execution of these processes, an original methodol-
ogy was developed in this study (Figure 1). The proposed methodology consists of two
main steps: (A) conducting the experimental design, and (B) implementing deep learning.
To make the methodology more understandable, the application of these two fundamental
steps will be addressed in five stages. These stages are as follows: (1) development of the
mobile application, (2) collection of road vibration data, (3) preparation of road vibration
data through preprocessing, (4) development and validation of the convolutional neural
network model, and (5) prediction of road potholes using the CNN model and field valida-
tion. While the first two stages form the experimental design (A), the steps related to the
implementation of deep learning (B) will be examined under separate headings.
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Figure 1. Workflow of the proposed methodology.

3.1. Experimental Design
3.1.1. Development of Mobile Application

In the initial stage of the experimental design, which is the first phase of the proposed
methodology, decisions were made regarding the functions of the smartphone application
to collect road vibration data, the determination of the sensors to be used, and the creation
of a database. A mobile application was developed for collecting road pothole vibration
data, compatible with the Apple iOS platform and usable with iPhone and iPad devices. In
this study, an Apple iPhone 7 device, manufactured by Apple Inc. in California, USA, with
Apple A10 Fusion processor and 2 GB LPDDR4 RAM was used for data collection. The
sensors used for road pothole detection in smartphones included a 3-axis accelerometer,
gyroscope, A-GPS, GLONASS-enabled GNSS, and network. While the 3-axis accelerometer
and gyroscope were used to detect road vibrations, the GNSS receiver ensured the recording
of collected road vibration data as coordinates and the identification of pothole locations.
Internet (network) connection on mobile devices enhanced location accuracy and enabled
dynamic map loading. Since the vibration data from these sensors were continuously
recorded, all data were stored in a local database within the mobile device. For this
purpose, the Realm database [55] was used, which is advantageous in terms of performance
compared to many other databases (Sqlite, CoreData, etc.). In the created database, three
tables, named Sensor, Pothole, and Session, were designed to store road vibration data
obtained from sensors, pothole information, and session data (Figure 2). The developed
mobile application was designed to have functions for real-time collection of road vibration
data, marking and saving potholes, monitoring and transferring all collected data types,
and adjusting parameters related to the data collection process.

Figure 2. Road vibration data structure.



Sensors 2023, 23, 9023 6 of 19

3.1.2. Data Acquisition

Three significant factors, such as environmental conditions, including weather, road
conditions, and vehicle operation parameters, like tire pressure and vehicle speed, can be
considered in the collection of road data. In this study, during the data acquisition (first
phase) and model testing (second phase), the environmental conditions remained consistent
with a dry day, on a dry asphalt road, and a maximum vehicle speed of 50 km/h, with
the same vehicle driver. Both the training and testing of the CNN model were conducted
under these environmental conditions.

Using the developed mobile application, road vibration data and road potholes were
detected and recorded under unique sessions along a predefined route using a Ford Fiesta
vehicle (Figure 3). Two smart mobile devices were used during the process of collecting
road data: one fixed in the vehicle, and the other handheld by the driver’s assistant. The
two mobile devices were paired via a QR code through the mobile application, enabling
data synchronization and time alignment. The operations performed to collect road data
and the functions of the developed mobile application during the process of data collection
are detailed below.

Figure 3. Data acquisition process in the vehicle using smartphone sensors and mobile application.

The operations conducted to collect road vibration data and the functions of the
developed mobile application are as follows (Figure 4):

• Acquisition of road vibration data: Smartphone sensor data were recorded at the
desired frequency, and the route was tracked on a map during recording, ensuring
equal time intervals for data collection. This step was automated with the first mobile
device fixed in the vehicle (Figure 4a).

• Marking road potholes: Initially, the smartphone recording the road vibration data
was paired with a QR code. Then, while the vehicle was in motion and passed over
road potholes, the driver’s assistant manually marked the potholes to indicate their
locations. This step was performed using the second mobile device handheld by the
driver’s assistant (Figure 4b).

• Viewing/listing/exporting recorded sensor and marked road pothole data: Data
recorded on both devices were exported in CSV format (Figure 4c).

• Monitoring/specifying/modifying application features: The application included features
such as adjusting data collection frequency, device information, etc. (Figure 4d).
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(a) Recording road vibration (b) Marking road pothole (c) Listing/exporting data (d) Setting application

Figure 4. Mobile application interfaces.

3.2. Data Acquisition and Preparing

When considering the data collection phase, Google Colab [56] was chosen due to its
advantages in organizing and processing data in deep learning. Python, the most widely
used language in both academic and commercial applications, was employed [57]. Along
the designated route, road vibration and pothole data were collected in six different sessions,
with approximately 100 data points per second (frequency = 100 Hz), totaling about 2 h in
length and 246 MB in size. The road vibration data include attributes such as Timestamp,
Latitude, Longitude, Acceleration (Acc(xyz)), and Angular Velocity (Gyro(xyz)), while the
pothole data include attributes such as ‘PotholeID’, ‘PotholeLatitude’, and ‘PotholeLongi-
tude’. Two separate database tables, one for road vibration and one for pothole data, were
created. To streamline the processing time, unnecessary features were removed from the
data that would not be used in the deep learning phase. During the data preparation phase,
road vibration and pothole data were organized using different methods.

Although the smartphone sensor was set to a 100 Hz frequency via the mobile appli-
cation, there was approximately a 10–15% deviation in the data resolution. This indicates
that the collected data were not uniformly spaced over time, suggesting a nonuniform
or nonhomogeneous distribution within a unit of time. These raw data, which have a
resolution of 85–90 data/s and uniform time intervals, were interpolated to have uniform
time intervals at 100 data/s but with some data loss. When these interpolated data were
used, small changes in the data curve were observed. To eliminate these discrepancies and
increase the resolution to 1000 data/s, the vibration data were subjected to interpolation
(Figure 5). As a result, the data had 1000 data/s resolution, equal time intervals (10 ms),
and lossless. Different resolutions of these data are compared in Figure 5 for clarity, and
for illustrative purposes, only one component, namely, Acc(y), from six road vibration
data components is taken as an example. Although this results in an increase in data size,
transforming the data into pixel-based images enables the training of the CNN model.
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(a) (b)

Figure 5. Road vibration data processing. (a) Nonuniformly spaced raw data component (85–90 data/s)
and uniformly interpolated but lossy data component (100 data/s); (b) nonuniformly spaced raw
data component (85–90 data/s) and uniformly interpolated final data component (1000 data/s).

The term ‘road pothole data’ differs in meaning from ‘road vibration data’. ‘Road
vibration data’ consist of analog signals obtained from smartphone sensors, while ‘road
pothole data’ is solely a digital signal indicating the presence of a pothole, meaning ‘there
is a pothole here’. Therefore, the second type of data will be treated as ‘marked road
pothole data’. The marked pothole data were organized and merged with vibration data
without temporal shifts using the QR code method, creating a binary dataset. To convey
the characteristics of potholes at different periods accurately to the deep learning stage,
the digital signal defining marked pothole data was not represented as an instantaneous
signal but, rather, as a periodic step function. By setting the pothole period to 4 s during
the examination of the binary dataset, all marked potholes on the road could be transferred
to the next stage without loss. The road vibration data, consisting of 3-axis acceleration
Acc(xyz) and 3-axis angular velocity Gyro(xyz) signals, and the 4 s pothole region (red
area) are shown to be matched (Figure 6). Thus, within the binary dataset, the road pothole
region is labeled as ‘Pothole’, while the other regions are labeled as ‘Non-Pothole’, making
the road vibration and pothole data ready for deep learning.

Figure 6. Road vibration data (acceleration Acc(xyz) and angular velocity Gyro(xyz) signals) and
pothole region (red area).
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4. Training and Validating of Convolutional Neural Network Model

Convolutional neural networks, a specialized type of ANN, are one of the most
popular and successful approaches for classification and pattern recognition [58]. Unlike
traditional machine learning methods, CNNs automatically extract visual features by
sliding locally trained filters over input images [58]. The CNN architecture comprises input,
convolutional, pooling, fully connected layers, and classified output layers. Convolution
and pooling layers perform feature extraction, while the fully connected layer is responsible
for classification [59]. In this study, original multicomponent analog road vibration data
were transformed into an input visual matrix for the CNN model, as seen in Figure 7. Thus,
the road vibration data consisting of 3-component Acc(xyz) and Gyro(xyz) were converted
from time-variable analog signals to pixel-based (6 × 4000 pixels) images. Transforming
analog road vibration data into the CNN model is a unique feature of this study.

Figure 7. Convolutional neural network detecting road potholes.

4.1. Model Training and Validating

Different models with varying numbers of layers and parameter values were devel-
oped to detect road potholes using a CNN-based approach in the study (Table 1). Initially, a
simple model with fewer layers and parameters but good results (Model 1) was developed
to serve as the basis for complex models. The number and sizes of layers were gradually
adjusted to obtain more advanced models (Models 2–5). Each model was first improved in-
dividually, and then a higher-level model with more layers and parameters was developed.
Among these models, Model 5, with its layer sizes and parameters detailed in Figure 8,
exhibited the highest performance. Additionally, the total number of parameters of the
convolutional neural network layers according to the models is given in Table 2. It is worth
noting that Model 5 had a relatively low number of parameters despite its high number
of layers.

Figure 8. Convolutional neural network model layers and parameters for Model 5.
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Table 1. Convolutional neural network models, layers, and parameters.

Model
Name Layer Types Number of

Layers

Model 1
Conv(16,(2,2)) – ReLU
Conv(32,(2,2)) – ReLU
Flatten - Dense(64) – ReLU – Dense(1) – Sigmoid

5

Model 2
Conv(16,(2,2)) – ReLU – Dropout(0.1)
Conv(32,(2,2)) – ReLU – Dropout(0.1)
Flatten– Dense(64) – ReLU – Dropout(0.5) – Dense(1) – Sigmoid

5

Model 3

Conv(16,(2,2)) – ReLU – l2(0.0001) – Dropout(0.3)
Conv(32,(2,2)) – ReLU – l2(0.0001) – Dropout(0.3)
Conv(32,(2,2)) – ReLU – l2(0.0001) – Dropout(0.3)
Flatten – Dense(64) – ReLU – Dropout(0.5) – Dense(1) – Sigmoid

6

Model 4

Conv(32,(3,3)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(3,3)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(3,3)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(3,3)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Flatten – Dense(64) – ReLU – Dropout(0.5) – Dense(1) – Sigmoid

11

Model 5

Conv(32,(5,5)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(5,5)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(5,5)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Conv(64,(5,5)) – ReLU – l2(0.0001) – MaxPooling – Dropout(0.3)
Flatten – Dense(64) – ReLU – Dropout(0.5) – Dense(1) – Sigmoid

11

Table 2. Total number of parameters of convolutional neural network models.

Model Name Parameter Count

Model 1 32,753,905
Model 2 32,753,905
Model 3 24,563,985
Model 4 6,236,801
Model 5 6,401,153

As can be seen from the evaluations above, hyperparameters such as the number
of epochs, batch size, learning rate, optimization function, activation function, and train–
validation data distribution variables were determined as hyperparameters in the convolu-
tional neural network model. A total of 10 experiments were conducted during the training
phase by changing the hyperparameter values differently in the five CNN models (Table 3).
It can also be observed from this table which experiment corresponds to which model. Data
were divided into two different datasets (432 and 1132 samples) for use in the training
phase. It was observed that the size of the data in the dataset affects both the processing
time and performance, and as the number of layers of the model increased, the 1132-sample
dataset was used to achieve high performance. In addition, these datasets were divided
into two for training and validation processes, and two different training/validation ratios
(80/20 and 70/30) were used.

By examining the accuracy and loss curves in the experiments, hyperparameters
were adjusted to avoid ‘overfitting’ or ‘underfitting’. In experiments based on sub-models
(Exp No: 1–3), the batch size was generally 32, which yielded good results except for one
exception (Exp No: 5). However, in experiments based on upper models, this value was
mostly 64 (Exp No: 7–9), and in the last experiment (Exp. No: 10), it was 128, which resulted
in higher performance. Although the Adam and SGD optimization functions were used in
only one or two experiments, it was found that the RMSprop optimization function yielded
the best results with fewer epochs. When the RMSprop optimization function was used,
a learning rate of 0.01, 0.001, and 0.0005 provided the best results in those experiments.
However, in experiments based on high-layer models (Exp No: 9–10), learning rates of
0.001 and 0.0005 achieved the best results.



Sensors 2023, 23, 9023 11 of 19

Table 3. Hyperparameter values of experiments.

Experiment
Number Model Name Data Count Data Split Batch Size Optimization

Function
Learning

Rate Epock Count

1 Model 1 432 80/20 32 Adam 0.001 28
2 Model 1 432 80/20 32 SGD 0.001 30
3 Model 1 432 80/20 32 RMSprop 0.001 24
4 Model 2 432 80/20 32 RMSprop 0.01 27
5 Model 2 1132 80/20 16 RMSprop 0.001 25
6 Model 3 1132 80/20 32 RMSprop 0.001 25
7 Model 3 1132 80/20 64 RMSprop 0.001 35
8 Model 4 1132 70/30 64 RMSprop 0.0005 31
9 Model 4 1132 70/30 64 Adam 0.0005 35

10 Model 5 1132 70/30 128 RMSprop 0.001 36

The results corresponding to the hyperparameter values of the experiments listed in
Table 3 for training (train) and validation are provided in Table 4. The models marked with
(*) in Table 4 and the experiments based on them (Exp. No: 3, 5, 7, 9, 10) are shown with
both training and validation accuracy and loss change curves in Figure 9. Considering
these results, the previous evaluations will be expanded upon with additional details.

Table 4. Training and validation results of experiments.

Exp. Number Model Name Training Validation
Accuracy (%) Loss Accuracy (%) Loss

1 Model 1 98.93 0.0589 86.21 0.4333
2 Model 1 94.92 0.1981 81.66 0.4707
3 Model 1 * 100.00 0.0138 85.06 0.8016
4 Model 2 94.17 0.1513 89.66 0.5036
5 Model 2 * 98.94 0.0710 87.67 0.6554
6 Model 3 92.00 0.1569 87.22 0.3349
7 Model 3 * 93.90 0.1282 88.11 0.3639
8 Model 4 96.85 0.1029 90.00 0.3614
9 Model 4 * 97.24 0.1183 89.12 0.3575
10 Model 5 * 97.08 0.0924 93.24 0.2948

* It was chosen because it corresponds to the experiment that yielded the most successful result within the model
with the same name.

(a) Exp. 3 (Model 1 *)
(Acc: %85, Loss: 0.80)

(b) Exp. 5 (Model 2 *)
(Acc: %88, Loss: 0.66)

(c) Exp. 7 (Model 3 *)
(Acc: %88, Loss: 0.36)

(d) Exp. 9 (Model 4 *)
(Acc: %89, Loss: 0.36)

(e) Exp. 10 (Model 5)
(Acc: %93, Loss: 0.29)

Figure 9. Accuracy and loss variation curves of experiments (for training and validation).

In experiments based on Model 1 (Exp. No: 1–3), training was conducted using the
Adam, SGD, and RMSprop optimization algorithms. Despite achieving a high accuracy rate,
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these experiments resulted in increased loss values, indicating overfitting. After numerous
experiments, it was determined that the RMSprop optimization function provided the best
results with fewer epochs. Subsequent training sessions used the RMSprop optimization
algorithm based on this experience. In Experiment 2, based on Model 2, a dropout layer
was added to reduce overfitting. With the same data size, validation accuracy reached up
to 89.66%. However, in order to decrease the loss value and further improve performance,
data augmentation was applied, increasing the dataset size to 1132 samples. Nevertheless,
the performance of Experiment 5 did not improve, and validation accuracy decreased,
indicating overfitting.

In experiments based on Model 3, the number of convolutional layers and dropout
rates were increased, and a regularization term was added in an attempt to prevent overfit-
ting and enhance performance. Experiment 6 achieved a performance of 87–88% accuracy,
maintaining the previous performance level while mitigating overfitting. Upon realizing
that increasing the number of layers did not have a direct positive effect on performance
and that the training time increased due to an increase in parameters, a pooling layer was
added to reduce the number of calculated parameters and computation costs. Experiments
based on Model 4 and 5 were conducted by adding a pooling layer (refer to Table 1). Ad-
ditionally, the data distribution for training/validation was changed to 70–30 instead of
80–20 (refer to Table 3).

In Experiment 9, during training, a validation accuracy of approximately 89% and a
loss value of 0.3575 were achieved. In Experiment 10, based on Model 5, by increasing the
kernel size of the convolutional layer, the highest validation accuracy of 93.24% and the
lowest loss value of 0.2948 were achieved. As a result, the experiment based on Model 5,
denoted as Experiment 10, with the highest performance rate, will be referred to as the
‘Proposed Model’ (hyperparameters used in Experiment 10) to adhere to the nomenclature
in the literature, especially since the term ‘model’ is used in the title.

4.2. Model Testing

In the test dataset, road potholes were denoted as ‘Predicted Pothole’ (‘PredPothole’)
and enumerated with ‘PotholeNo’. The responses provided by the recommended CNN
model for each route were obtained as predicted values (pv) within the range of ‘0’ to
‘1’. Along each route, if the predicted value returned ‘1’, it unequivocally corresponded
to ’Pothole’, and if it returned ‘0’, it signified ‘Not Pothole’. Consequently, road potholes
were identified and labeled as either ‘Pothole’ or ‘Not Pothole’, depending on whether the
predicted value approached ‘1’ or ‘0’, respectively, when the predicted value was within
the range ‘0’ to ‘1’. When the predicted value fell within this range, and the threshold value
was set at ‘0.5’, it was anticipated that the closer the predicted value was to ‘1’, the more
likely it would be to indicate ‘Pothole’, while as it diverged, it would indicate ‘Not Pothole’.
For ‘PredPotholes’ corresponding to predicted values that fell below the accepted threshold
value of ‘0.5’ and for values within the condition of 0.5 6 pv 6 1, they were automatically
labeled as ‘Not Pothole’ and ’Maybe Pothole’, respectively. The ’Maybe Pothole’ label was
temporarily assigned as interim labeling, and potholes exhibiting this characteristic will
be physically examined in the field, ultimately being labeled as either ‘Pothole’ or ‘Not
Pothole’. Consequently, the proposed CNN model, utilizing road vibration data collected
as input via a mobile device within the vehicle, is capable of detecting and labeling all
potholes along the road route during any given journey.

Secondly, road potholes identified using the proposed CNN model were further
verified through fieldwork, and they were labeled as ‘Pothole’, ‘Not Pothole’, or ‘Maybe
Pothole’. The predicted value (pv) falls within the range of 0.5 6 pv 6 1 for ‘Maybe Pothole’
labeled ‘PotholeNo’. These were meticulously examined in the field, and a threshold
value of ’0.95’ was determined to distinguish between ‘Maybe Pothole’ and ‘Pothole’.
Consequently, ‘PotholeNo’s within the range of 0.5 6 pv < 0.95 were mostly categorized as
‘Not Pothole’, with a few exceptions, such as those related to pedestrian crossing lines, etc.
Hence, they were labeled as ‘Not Pothole’. On the other hand, ‘PotholeNo’s with predicted
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values in the range of 0.95 6 pv 6 1.0 were categorized as ‘pothole’, indicating that they
were, indeed, potholes.

5. Results and Discussion
5.1. Predicted and Observed Results

In order to accurately conduct the testing of the proposed CNN model, entirely new
test road routes were determined (Figure 10). To assess the success of the test results
most accurately, a two-stage validation process was implemented. In the first stage, road
potholes on the routes were classified based on the labeled results produced by the CNN
model, while in the second stage, road potholes were identified through field observations
and detections along the route. A total of 187 data points were collected from the three
specified test routes for the testing of the CNN model, and the results obtained from the
model were validated through fieldwork.

(a) Route1 (1.3 km) (b) Route2 (2 km) (c) Route3 (3 km)

Figure 10. Routes defined for testing and field validation.

No detailed examination was conducted for the data labeled as ‘Not Pothole’, while
for other data, two types of labeling were determined based on the prediction results
obtained from the two-stage validation and testing process: (A) those labeled as ‘Pothole’
for prediction values within the range 0.95 6 pv 6 1.0, and (B) those labeled as ‘Not Pothole’
for prediction values within the range 0.5 6 pv < 0.95. Furthermore, new situations and
detected pothole values were determined through field inspections: (C) observed potholes
through fieldwork, (D) observed bumps through fieldwork, and (E) the accuracy rates of
potholes predicted through the two-stage process, which are considered as false potholes
(Table 5).

Table 5. Predicted and field-observed results of pothole detection based on test routes.

Route
Name

Predicted by Model Field-Observed Prediction Acc.

Pothole
(0.95 6 pv 6 1)

Not Pothole
(0.5 6 pv < 0.95) Pothole Bump Conflict Ratio Pct (%)

State A B C D E (C+D)/A

Route1 29 9 22 3 4 25/29 86.2
Route2 24 3 15 6 1 21/24 87.5
Route3 15 4 8 4 2 12/15 80.0

pv: Predicted value.

Table 5 presents the potholes predicted by the proposed model, potholes observed in
the field, and the prediction accuracy of the model based on three test routes. The potholes
predicted by the model (A) were confirmed by individual field observations (C). Some of
the differences between them are due to the identification of bumps observed in the field (D)
and erroneous predictions (E). The accuracy of the model in prediction is approximately in
the range of 80–90% for all three routes, calculated using the number of potholes confirmed
in the field (C).



Sensors 2023, 23, 9023 14 of 19

This study aimed to detect road potholes and, under the definition of ‘pothole’, it
included road irregularities such as cracks, fissures, asphalt sinkholes, and manhole cover
sinkholes, while excluding speed bumps. When evaluated within this framework, it was
observed that the model also detected some speed bumps as potholes. Field inspections
confirmed that some of these speed bumps have effects on vehicles similar to potholes,
leading the developed model to perceive them as potholes. The values obtained from three
test routes (D) are presented in Table 5. In addition, very few ‘Potholes’ labeled as such did
not turn out to be any potholes or speed bumps in their field observations (E).

In field observations and examinations, it was determined that some of the indexes
labeled as ‘Potholes’ were actually not potholes but, rather, speed bumps. Since the same
situation was observed and confirmed in all three routes, the number of speed bumps was
added to Table 5. When the results obtained from the CNN model’s prediction values and
field inspections are considered, it can be seen that the results can be classified into six
different situations. For all these situations, the model’s road graphics and images obtained
from field inspections are presented in Figure 11 based on the route and ‘PotholeNo’.

(a) State O: Not Pothole, Route 1, PNo: 12 (b) State O: Not Pothole, Route 2, PNo: 15 (c) State A: Pothole, Route 3, PNo: 22

(d) State A: Pothole, Route 1, PNo: 9 (e) State A: Pothole, Route 2, PNo: 7 (f) State D: Pothole, Route 1, PNo: 56

(g) State B: Not Pothole, Route 2, PNo: 10 (h) State B: Not Pothole, Route 2, PNo: 46 (i) State E: Not Pothole, Route 1, PNo: 34

Figure 11. Vibration data, pothole imagery, and location for major pothole states.

• Situation O: Prediction value: 0 6 pv < 0.5, labeled as ‘Not Pothole’, and field
observations confirmed the absence of potholes.

• Situation A (C): Prediction value: 0.95 6 pv 6 1.0, labeled as ‘Pothole’, and field
observations confirmed the presence of potholes.

• Situation A (C): Prediction value: 0.95 6 pv 6 1.0, labeled as ‘Pothole’, and field
observations confirmed the presence of manhole covers with a pothole appearance.

• Situation D: Prediction value: 0.95 6 pv 6 1.0, labeled as ‘Pothole’, and field observa-
tions revealed speed bumps instead of potholes.
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• Situation B: Prediction value: 0.5 6 pv < 0.95, labeled as ‘Not Pothole’, and field
observations confirmed the presence of features such as pedestrian lane markings and
road ridges, but no potholes.

• Situation E: Prediction value: 0.5 6 pv < 0.95, labeled as ‘Not Pothole’, and field
observations confirmed the absence of any potholes.

5.2. Discussion

It is evident that deep learning, specifically the CNN technique, can be used effec-
tively in the detection of road potholes based on the proposed methodology and model.
Furthermore, observations were made by comparing the detection of road irregularities
such as speed bumps, pedestrian lane markings, and others present on the road during
fieldwork. Despite the fact that the vibration data collected from the road during the
model’s training phase were labeled solely as ‘Pothole’ and ‘Not Pothole’, it was also noted
that the model sometimes perceived speed bumps as potholes, particularly in certain cases
(Table 5). In other words, some speed bumps on the road were predicted as potholes by the
model, albeit at a low rate. Since the study did not set out to identify and classify other
road irregularities, including speed bumps, it is concluded that the proposed CNN model
is successful in detecting potholes. However, we aim to further develop the proposed
method in future studies to include the identification and classification of road irregularities
beyond potholes.

The acquisition of the proposed CNN model in this study was based on the training
and testing processes conducted under the same environmental conditions (weather, road,
and vehicle operation). However, it is considered beneficial to investigate the extent
to which the developed CNN model for pothole detection can maintain the same level
of success under varying environmental conditions in future studies. Additionally, the
development of a new CNN model to include different environmental conditions can be
revealed in future research.

In contrast to image-based approaches that focus on road surface images, this study
proposed a vibration-based method for collecting road data, specifically emphasizing only
the road vibrations collected from the contact area where the vehicle’s tires touch the road
surface. The CNN model, which detects potholes by learning from road vibrations, will
not be able to detect road potholes when the vehicle’s tires do not make contact with
them. Hence, it is considered that using the proposed method in a crowd-based mobile
application can ensure that the entire road area comes into contact with the tires.

6. Conclusions

In the context of road anomaly detection, studies generally prefer vision-based and
vibration-based approaches. In the former, both ML techniques and CNNs, DL methods,
are commonly employed, while the latter predominantly relies on thresholding and ma-
chine learning methods. Furthermore, when examining studies related to HAR based on
vibration-based approaches, it is observed that CNN techniques are extensively utilized in
these studies as well [47–52].

In this study, all road data were transformed into pixel-based images, enabling the
utilization of a convolutional neural network as a deep learning technique for the detection
of road potholes. Therefore, this study proposed a novel CNN model. Under the topic of
“Road Surface Recognition”, successful outcomes were achieved by using vibration-based
road data collected via smartphone sensors, particularly in the detection of road potholes.

Within the scope of the proposed method, vibration data from a three-component
sensor integrated with a smartphone (Acc(xyz) and Gyro(xyz)) were converted from analog
signals into pixel-based images. Five different CNN models with varying layer numbers
and dimensions were developed, and a total of ten experiments were conducted. The CNN
model achieved a maximum accuracy rate of 93.24% and a minimum loss value of 0.2948
during validation.
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In this study, the validation of the proposed CNN model on three selected test routes
was carried out in two stages, including fieldwork. When the accuracy rate in detecting road
potholes on test routes was confirmed through fieldwork, it was observed that the accuracy
reached approximately 80–90% on two of the routes. Additionally, the study evaluated
each of the six different prediction scenarios separately by considering the fieldwork results
in conjunction with the CNN model’s predictions.
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