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Abstract: Effective response strategies to earthquake disasters are crucial for disaster management in
smart cities. However, in regions where earthquakes do not occur frequently, model construction
may be difficult due to a lack of training data. To address this issue, there is a need for technology
that can generate earthquake scenarios for response training at any location. We proposed a model
for generating earthquake scenarios using an auxiliary classifier Generative Adversarial Network
(AC-GAN)-based data synthesis. The proposed ACGAN model generates various earthquake sce-
narios by incorporating an auxiliary classifier learning process into the discriminator of GAN. Our
results at borehole sensors showed that the seismic data generated by the proposed model had
similar characteristics to actual data. To further validate our results, we compared the generated IM
(such as PGA, PGV, and SA) with Ground Motion Prediction Equations (GMPE). Furthermore, we
evaluated the potential of using the generated scenarios for earthquake early warning training. The
proposed model and algorithm have significant potential in advancing seismic analysis and detection
management systems, and also contribute to disaster management.

Keywords: earthquake early warning; borehole-seismometer; seismic sensor; virtual seismic scenarios;
Generative Adversarial Network

1. Introduction

Advancements in digital conversion and storage technology for earthquake records
have prompted an upsurge in the utilization of artificial intelligence (AI) for earthquake
analysis. A range of Al-driven models demonstrates high performance in analytics within
their trained parameters. However, accurately analyzing the non-stationary seismogram
for earthquakes remains a challenge. Even for earthquakes with similar magnitudes and
epicenters, there is a difference in the wave time series of each event [1]. Therefore, the
Al-based model for earthquake analysis encounters limitations in perfectly identifying
patterns in seismographic signals [2].

Recently, many researchers have swiftly developed Al models focused on the detection
and analysis of seismic data. It's recognized that AI methodologies are more efficient than
traditional empirical analysis methods conducted by humans [3]. This field is rapidly
advancing, with machine learning (ML) [4-6], Convolutional Neural Networks (CNNs) [7],
multi-feature fusion CNN [8], Recurrent Neural Networks (RNNs) [9], and attentive mod-
els [10] being widely implemented. However, since deep learning models solve given
tasks by finding latent features in large amounts of data, their effectiveness may be neg-
ligible in environments with insufficient data. Thus, the piecemeal application of these
models to new, untrained environments for earthquake predictive analytics has inherent
limitations [11,12].
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Generative Adversarial Networks (GANSs) that can generate data have been used as a
solution to data shortages [13-15]. GANs were first introduced by Ian et al. [16] and have
been widely used in image processing. In earthquake research, GAN has been applied
and employed to augment the data of seismograms [17]. For instance, Zefeng Li et al. [18]
trained to simulate the signal detection in earthquake early warning (EEW) by learning
the characteristics of first-arrival P waves using GANs and Random Forests. This method,
however, only focuses on generating the initial P waves. The SeismoGen [19] aims to
generate artificial seismograms akin to earthquakes, yet questions remain about their
similarity to reality seismic characteristics. Li et al. [20] attempted to enhance the precision
of P-wave and S-wave generation using a conditional GAN. Additionally, Wu et al. [15]
leveraged it to address the scarcity of recorded seismic waves in earthquake detection
research based on MEMS data. As Al continues to advance, various attempts are underway
to simulate seismic waves. However, it is crucial to consider the diverse characteristics
inherent in the waveform when generating seismic wave.

The waveforms allow us to infer a multitude of characteristics associated with seismic
activity processes. These waveforms provide critical information for estimating aspects
such as the energy level of the source (i.e., amplitude, frequency), the hypocenter (i.e., phase
arrival time, polarization), and geological effects (i.e., attenuation, spectral content) [21-25].
Recently, the application of physics-informed machine learning (PIML) has demonstrated
significant advancements [26,27], especially in suppressing overfitting in dynamic systems
through the use of dynamic equilibrium equations. However, generating a comprehen-
sive time-window waveform that accurately encapsulates these complex characteristics
continues to pose a challenge, considering the multifaceted factors involved.

In addressing the question of whether we can produce artificial waves by incorpo-
rating various physical factors inherent in seismograms, this study navigates through
two primary limitations: (1) the complexity of the geological conditions that pose chal-
lenges in labeling [28], and (2) the existing imbalance in data distribution across different
labeling groups [29]. Additionally, the effectiveness of current models is often limited
to specific regions, as dictated by their training data, which presents challenges in areas
with low seismicity [17,30]. This backdrop underscores the need for novel approaches in
applying Generative Adversarial Networks (GANSs) in seismology. Our study unfolds
in distinct stages to address these challenges. Initially, we explore a method to generate
artificial seismic waves using a minimal set of seismic features, focusing primarily on the
source and the path. We aim to reproduce an artificial wave that mirrors the epicenter
distance in terms of the arrival time of the Phase and the attenuation of amplitude. This ap-
proach is pivotal in developing earthquake scenarios that can significantly enhance disaster
management strategies.

In this study, we pursued a method for generating artificial seismic waves based on
a minimal set of seismic features, with the primary considerations being the source and
the path. We tried to produce an artificial wave for the epicenter distance that mimics
the arrival time of the Phase and the attenuation of amplitude. Our aims were to develop
earthquake scenarios that could contribute to effective disaster management [31]. To
achieve this, we focused on two main aspects: simulating waveforms that closely resemble
actual earthquake events and verifying the accuracy of these generated scenarios. By
adopting this two-pronged approach, our study contributes a novel perspective to the field
of seismic analysis and presents potential advancements in both theoretical understanding
and practical applications in disaster preparedness and response.

2. Selection of GAN

Generative Adversarial Networks (GANSs) are a deep learning model composed of
two opposing networks—a generator and a discriminator—that is used for unsupervised
learning [16]. In the training process of GAN, the generator constantly generates fake data,
and the discriminator learns to distinguish real data from fake data. By learning while
competing with itself, the generative model generates more and more realistic data, and
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vice versa, allowing it to better distinguish between real and fake data. Ultimately, the
generator aims to become a generative model that generates fake data similar to real data.
The goal of GANs is to create a model that can generate new data that is similar to the real
data distribution, which has applications in various fields, such as image synthesis and
speech recognition. The equation used for this is referred to as a loss function and is shown
in Equation (1).

minmaxV (D, G) = By, 10§ D(x)|+Ex. o log(1 - D(G()] ()

where the symbol ‘E’ refers to the expected value, x ~ p;,,(x) is the distribution of real
dataset x, and z ~ p;(z) is a randomly assumed probability distribution (e.g., uniform
distribution, gaussian distribution). The generator G(z) tries to deceive the discriminator
D(x) by making D(G(z)) = 1in order to minimize the loss value of the model. On the other
hand, D aims to maximize the loss value of the model by making D(x) =1 for actual data x
and D(G(z)) = 0 for fake data generated by G(z). Ideally, the GAN'’s learning mechanism
ends when the discrimination probability of the discriminator converges to 50%.

Although GANSs have the ability to generate realistic samples, we cannot control which
samples are created [32]. Conditional GAN(CGAN) allows you to control which data the
GAN will generate. To consider seismic characteristics, CGAN can be used. CGAN that
utilizes label information during the training process is expanded by incorporating the label
information into both the generator and discriminator [33]. The CGAN- based algorithm is
of similar characteristics to conventional ground-motion, where specific conditions (i.e.,
attenuation relationship for peak amplitude based on epicenter distance and site condition)
are input into the model [34,35]. Because it is difficult to control sampling, CGAN simply
generates random shapes of data from random samples that are considered only conditional
input data.

Auxiliary classifier GAN (ACGAN) is a variant of CGAN that incorporates random
noise and class label information, where the discriminator is composed of two classifiers
that classify real/fake and class [36]. ACGAN improved the performance of CGAN by
adding auxiliary classifier learning to discriminate data classes. The auxiliary classifier
helps the model generate more realistic samples by determining which class the added
condition belongs to in the generator [36]. To reflect the characteristics of magnitude and
epicenter distance on seismic waveforms, we propose the virtual earthquake generation
model based on ACGAN, as shown in Figure 1. Although conventional ACGAN models
generally use discrete class labels as conditions, we used continuous information such as
earthquake magnitude and epicenter distance as conditions in our proposed model. There-
fore, we tried to develop the ACGAN to be able to simulate true earthquakes by accurately
measuring an earthquake, which decreases as the recording point becomes further from the
epicenter for the same-scale earthquake. We expected that the proposed model could be
designed to simulate true earthquakes and achieve a more accurate representation of earth-
quake characteristics by an auxiliary classifier. The loss function of the proposed model is
as follows:

Lb = ~Fyrp, 9108 DY) — By (o) log(1 — D(G(zly))] @

Le = ~E. p,(z[log D(G(z|y))] = E~p,(z)[log P(C = ¢|G(z]y))] ®)

where the symbol ‘E’ refers to the expected value, Lp and Lg correspond to the loss
function of the discriminator of the ACGAN model and the loss function of the generator,
respectively. Lp is identical to the loss function of the discriminator part except for the
generator of the GAN. In contrast, L refers to the loss function of the generator of ACGAN,
and c (or ‘C’) in the Equation (3) is related to the ‘class’ (i.e., earthquake magnitude M;, and
epicenter distance R). Thus, {—E._,_(.)[log P(C = c|G(z]y))]} represents the probability
that the fake sample belongs to a given class. L is a new loss function in addition to the
basic CGAN architecture.
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Figure 1. A schematic diagram illustrating AC-GAN models for synthesis earthquake.

3. Training Data

The digitally recorded earthquake data could be utilized for conducting earthquake
hazard assessments based on statistical and probabilistic estimates. A prime example
is Ground Motion Prediction Equations (GMPEs). GMPEs offering empirically simple
solutions predict ground motion based on statistical and probabilistic methods [37,38]. Em-
pirical models, like GMPE, depend on both the amount and quality of the data. Therefore,
the models might exhibit varied optimized functions depending on factors such as event
frequency, magnitude, and source location. Notably, diverse observation conditions also
make it difficult to optimize normalized models.

This study considers the foundational theory of the GMPE. The GMPE identifies
three primary effects: (1) source effects, which are related to the characteristics of the
earthquake’s energy and origin (i.e., magnitude, focal mechanism, depth, and stress drop);
(2) path effects, which concerns the seismic wave’s path from the earthquake source to
the observation site (i.e., distance, attenuation, local geological structure); (3) site effects,
which are linked to the unique conditions of the location where the ground motion is
predicted (i.e., soil or shallow layer conditions, geological features, and topography). Of
these, the attenuation of seismic waves is determined by the amount of energy released at
the epicenter distance [39]. For site effects, amplification or de-amplification is contingent
on local characteristics and could not be categorized as an attenuation function.

Based on these physical features, we proposed the concept illustrated in Figure 2.
The seismic record is influenced by location characteristics such as geology, geometry, and
depth [40—43]. Although surface sensors register all three effects, borehole sensors are
largely unaffected by the site effect [43]. Therefore, we exclusively used borehole sensors to
minimize variance due to site effect and focus solely on attenuation. These concepts have
already been cited as important in research on the Korean Peninsula [44].

This study utilizes kik-net data (https://www.kyoshin.bosai.go.jp, accessed on
30 July 2020) and Korea Meteorological Administration (KMA) data (http://necis.kma.go.
kr/, accessed on 31 March 2022) as its basic dataset. The seismic records used in this study
were collected only at borehole sensors from 1997 to 2021.

The data contains source information (i.e., Origin Time, Latitude, Longitude, Depth,
and Magnitude) and Station information (i.e., Station Code, Station Latitude, Station
Longitude, Station Height, Record Time, Sampling Frequency, Direction, and Scale Factor).
Therefore, we were able to configure labeling when applying GAN. In this study, we
grouped the data based on the important functions of local magnitude (M) and Epicenter
distance (R, unit is km). Table 1 summarized the amount of data applied in this study.


https://www.kyoshin.bosai.go.jp
http://necis.kma.go.kr/
http://necis.kma.go.kr/

Sensors 2023, 23, 9209

50f12

Surface Sensor

T

Site Effect

Borehole
Sensor

Source Effect

==,
-
- Sa

-
D 7 Path Effect

Sem”

Figure 2. Schematic of seismic wave propagation and seismometer locations: the red box highlights
the sensors utilized in ACGAN learning.

Table 1. Waveform set used for training.

Magnitude R<20 20<R<40 40 <R<60 60 <R <80 80 <R<100 100 <R<120 Total
3< M <4 6360 12,868 13,248 9718 3764 2534 48,492
4<M; <5 2473 6856 11,096 13,815 11,320 10,918 56,478
5<Mp <6 336 899 1605 2509 3261 3751 12,361
Total 9169 20,623 25,949 26,042 18,345 17,203 117,331

A total of 117,331 datasets were used for training, which were organized into seismic
waveforms with two horizontal and one vertical component. However, the R and M could
not be further refined due to the data imbalance. The lack of data for M; > 5 and R < 40 km
hindered the convergence of the loss function during ACGAN training.

4. Results and Validation

The developed program in this study can generate seismic waves. We verified this by
generating a three-component (i.e., twice horizontal and vertical) seismogram based on the
set magnitude and target separation distance. The generating data format is mini-SEED.
However, our program can only generate less than 120 km from the epicenter due to the
training data set.

Figure 3 illustrates the seismic waveforms generated by our model for four randomly
chosen input noise signals, categorized into six different epicenter separation bins. The
generated data exhibit a diverse range of patterns while adhering closely to the fundamental
time series seismic wave shape. The lack of a regular pattern in the input data is an
advantage, as it enables the model to generate a wide variety of data. Additionally, the
difference in P-S arrival time is being simulated, which confirms the superiority of the
seismogram generation.

Additionally, we designed a program to generate artificial seismic waves based on
the KMA borehole-type seismic network. The verification for the final version focused
on the attenuation of seismic waves, which was based on actual earthquake locations.
Table 2 proposes a total of 10 events used for the verification. Waveform comparisons were
excluded, as a perfect simulation of seismic waves generated by virtualization is impossible,
and time-varying acceleration characteristics may differ.
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Figure 3. Generated artificial horizontal seismic waveforms using proposed GAN model.

Table 2. Validation scenario for earthquake cases.

Event Region in  Event Time (UTC)

Case No. South Korea yy-mm-dd Time Latitude (°)  Longitude (°) My
1 Sangju 2020-01-29 15:52:52 36.59 128.12 3.20
2 Milyang 2019-12-29 15:32:08 35.56 128.90 3.45
3 Goesan 2022-10-28 23:27:49 36.88 127.88 4.12
4 Donghae 2019-04-19 02:16:43 37.88 129.54 4.27
5 Gyeongju 2016-09-19 11:33:58 35.74 129.18 4.50
6 Pohang 2018-02-10 20:03:03 36.08 129.33 4.60
7 Ulsan 2016-07-05 11:33:03 35.51 129.99 5.00
8 Gyeongju 2016-09-12 10:44:32 35.77 129.19 5.10
9 Pohang 2017-11-15 05:29:31 36.11 129.37 5.40

Figure 4 presents the results for the Gyeongju earthquake that occurred on 12 September
2016. It specifically illustrates the simulated attenuation performance of the initial P-wave
and juxtaposes this simulation with the regression curve for a depth of 20 m, as presented in
the study by Cho et al. [45]. This comparison effectively demonstrates that the attenuation
of peak acceleration (Pa) and peak displacement (Pd) is well captured by the simulation.
In Figure 5, it focuses on the Pohang earthquake, which occurred on 15 November 2017.
This figure undertakes a comparative analysis of the attenuation for maximum acceler-
ation within rock parameters, specifically using Ground Motion Prediction Equations
(GMPE) for bedrock as proposed by Jang et al. [44]. Notably, the amplitude attenua-
tion displayed in Figure 5 exhibits characteristics that align closely with those predicted
by the statistical estimation model. This similarity underscores the effectiveness of the
GMPE model in replicating real-world seismic data characteristics, thereby reinforcing the
potential of these models in seismic analysis. Figures 4 and 5 collectively provide signifi-
cant insights into the seismic attenuation characteristics for these two major earthquakes.
They highlight the capability of current modeling techniques in replicating and predict-
ing seismic wave behaviors, which is crucial for enhancing earthquake preparedness and
response strategies.
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Figure 5. Comparison of attenuation relationship based on GMPE between record data and generated
artificial waveforms.

The objective of this study, using ACGAN, was to create earthquake scenarios in
areas of low seismicity. So, we verified possible the simulation of early warnings utilizing
the proposed program. For our simulations, we used ElarmS 3.0 [46], which has been
optimized in previous studies [45]. The produced waveforms were transitioned to tankfiles
and tested with the simulation tool proposed by Lim et al. [47].

Figure 6 shows the results of inputting the scenarios of Table 2 into ElarmS3.0 with
a generated scenario wave set. The resulting errors in magnitude, location, and time of
earthquake occurrence are summarized in Table 3. Figure 6 presents a comparative analysis
of source information, specifically the epicenter, magnitude, and event origin time, using
both the ElarmS and the Antelope systems (version 5). ElarmS utilizes only the initial
P-wave to determine the source information, and the results of the GAN are inputted here.
Antelope [48], on the other hand, uses the initial P-waves and S-waves from real event
records to determine the source information, which tends to be close to the true values. This
figure aims to showcase the effectiveness of generative waves. Thus, the comparison aids
in understanding the reliability and potential limitations of the GAN system for earthquake
early-warning event detection and analysis.

The magnitude error was found to be up to 0.67, which is an acceptable range of
error given the range of magnitudes labeled during fine-grained training. The location
error was up to 3.7 km, and the time error was up to 1.41 s. The error in the analysis with
artificial seismic waves was not significant, and it was confirmed that the P-S time was well
simulated. Therefore, it is confirmed that our model can be used for the verification of early
earthquake warnings based on the attenuation characteristics of P-wave and maximum
acceleration, and a good simulation of P-S arrival time.
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magnitude form nS (number of stations) and nT (number of Triggering points). The gray star denotes

the calculation of source information before reaching a specific convergence phase in the analysis.
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Table 3. Magnitude, Location, Occurrence Time Error between Real and Virtual Earthquakes by
ElarmS (Earthquake early warning System) simulation experiments.

Time Error Location Error

Case No. Event Region in South Korea Magnitude Error

(s) (km)
1 Sangju +0.11 1.64 —0.05
2 Milyang +0.40 3.73 —0.07
3 Goesan —0.04 1.64 —0.41
4 Donghae —0.57 3.04 —0.02
5 Gyeongju +0.51 3.14 +0.37
6 Pohang +0.73 0.61 +0.44
7 Ulsan —0.57 2.99 +0.67
8 Gyeongju +0.75 223 +0.05
9 Pohang +1.41 3.34 +0.56

5. Limitation
5.1. Data Limitations

This study was restricted to drilled stations and epicenters within 120 km, and only
light and medium earthquakes (3.0 < M| < 6.0) were considered, with amplitude attenua-
tion trends confirmed. The site effect was not trained, and for estimating IM at a specific site
surface, passive methods such as transfer functions or one-dimensional ground response
analysis (Kwak et al. [49]) should be used.

5.2. Study Limitations

Manual preprocessing for seismic training and validation is complex and requires
global, unified rules. The number of Al-generated seismic data for each seismic event
is still limited, and more data for comparison/validation is needed for greater statistical
reliability. The variance (regression error) of Al-generated earthquakes can be useful for
handling outlier data, whereas a smaller variance is beneficial for generating data that
better simulates amplitude decay. The optimized loss function of the GAN model can
partially control this variance. Finally, GAN models are technically challenging to train in
Al requiring significant computational resources and expertise.

6. Conclusions

In conclusion, this study has successfully utilized AC-GAN, an advanced artificial
intelligence technology, to generate virtual earthquake data for the Korean Peninsula. The
model used was an improved version of GAN that accurately reflects the characteristics of
real seismic waves and was trained with a large amount of seismic observation records.
The generated earthquake data was undistorted and responded appropriately to changes
in input samples and epicenter distance. By inputting the virtual earthquake data into the
ElarmS earthquake early warning system, the time, location, and magnitude of the earth-
quake source were simulated with high accuracy. This technology can be utilized for virtual
earthquake simulation exercises specific to the Korean Peninsula and can supplement
actual earthquake history by creating scenarios of earthquakes that can potentially occur in
the region. This study could use important technology for earthquake preparedness and
risk management in the Korean Peninsula.

Given the specific nature of the data used to train our GAN models, their applicability
may not extend to all scenarios. Therefore, it is essential to integrate them with traditional
interpretation methods for predicting seismicity that reaches the surface. Through refining
and effectively combining these learning methods, we can enhance our ability to predict the
impact of various earthquakes. Additionally, although the characteristics of the earthquakes
we have analyzed primarily focus on the P-S phase (i.e., IM and Amplitude of wave), it
is crucial to also consider a broader range of factors, such as stress drop, wave tails, and
the clustering features of seismic waves. Developing a GAN model that can accurately
simulate these aspects will further advance our earthquake analysis capabilities.
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