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Abstract: The quality assurance of bulk medicinal materials, crucial for botanical drug production, ne-
cessitates advanced analytical methods. Conventional techniques, including high-performance liquid
chromatography, require extensive pre-processing and rely on extensive solvent use, presenting both
environmental and safety concerns. Accordingly, a non-destructive, expedited approach for assessing
both the chemical and physical attributes of these materials is imperative for streamlined manufactur-
ing. We introduce an innovative method, designated as Squeeze-and-Excitation Residual Network
Combined Hyperspectral Image Analysis (SE-ReHIA), for the swift and non-invasive assessment of
the chemical makeup of bulk medicinal substances. In a demonstrative application, hyperspectral
imaging in the 389–1020 nm range was employed in 187 batches of Salvia miltiorrhiza. Notable
constituents such as salvianolic acid B, dihydrotanshinone I, cryptotanshinone, tanshinone IIA, and
moisture were quantified. The SE-ReHIA model, incorporating convolutional layers, maxpooling
layers, squeeze-and-excitation residual blocks, and fully connected layers, exhibited R2

c values of
0.981, 0.980, 0.975, 0.972, and 0.970 for the aforementioned compounds and moisture. Furthermore, R2

p
values were ascertained to be 0.975, 0.943, 0.962, 0.957, and 0.930, respectively, signifying the model’s
commendable predictive competence. This study marks the inaugural application of SE-ReHIA for
Salvia miltiorrhiza’s chemical profiling, offering a method that is rapid, eco-friendly, and non-invasive.
Such advancements can fortify consistency across botanical drug batches, underpinning product
reliability. The broader applicability of the SE-ReHIA technique in the quality assurance of bulk
medicinal entities is anticipated with optimism.

Keywords: hyperspectral image; Salvia miltiorrhiza; squeeze-and-excitation residual network; process
analysis technology; intelligent process analysis

1. Introduction

The efficacy of Chinese patent drugs hinges significantly on the integrity of the raw
materials, predominantly bulk medicinal materials, employed in their formulation. Ensur-
ing rigorous quality control of these raw materials is paramount to ascertain the reliability
of the final products. Though high-performance liquid chromatography (HPLC) has been
acknowledged for its routine utility in quality assessment, its limitations cannot be over-
looked. Notably, preliminary sample pretreatment before HPLC is time-intensive, and
the HPLC analytical process mandates the use of considerable volumes of potentially haz-
ardous organic solvents, including acetonitrile and methanol, challenging the principles of
green chemistry. Advancements in process analytical technology (PAT) proffer alternative
methodologies for evaluating the quality metrics of bulk medicinal materials.

Of these, hyperspectral image analysis (HSI) emerges as a novel PAT instrument
gaining traction amongst pharmaceutical researchers. The potential of HSI in medicinal
material identification has been demonstrated; for instance, Sandasi et al. discerned three
analogous Echinacea species employing HSI in conjunction with chemometric classification
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modeling, thereby achieving accurate identification in commercial formulations [1]. Fur-
thermore, Vermaak et al. presented an expedited strategy to differentiate I.anisatum and
I.verum dried fruits, employing HSI and analytical techniques such as principal component
analysis and partial least squares discriminant analysis [2]. While there are instances of
quantitative HSI applications, such as in predicting free fatty acid concentrations in stored
chia seeds using near-infrared HSI combined with chemometrics [3] and in determining the
composition of herbal tea mixtures [4], investigations focusing on quantitative applications
of HSI remain sparse.

Distinct from conventional images, the hyperspectrum emanating from hyperspectral
instruments represents a data cube. This not only encapsulates the essence of the image
but also extends into the spectral dimension. Conventional extraction methods pertinent
to panchromatic or multispectral imaging are not congruent with hyperspectral image
processing. In a noteworthy endeavor, Huang et al. introduced a hyperspectral imaging
technique coupled with a one-dimensional convolutional neural network (1D-CNN) model,
achieving near-perfect precision and sensitivity [5]. Furthermore, Rodrige et al. presented
an innovative sliding window variographic image analysis technique [6], underlining the
imperative to conceive novel information extraction paradigms tailored to the unique
properties of hyperspectral images.

Herein, we introduce an avant-garde approach, termed squeeze-and-excitation resid-
ual network combined hyperspectral image analysis (SE-ReHIA), devised for the non-
invasive and swift determination of quality markers in bulk medicinal materials. The
underpinning of the SE-ReHIA method rests on the melding of residual networks (ResNets)
and squeeze-and-excitation networks (SE-Nets), both of which epitomize recent advance-
ments in image recognition. ResNets tactically tackle the vanishing gradient issue by
incorporating direct shortcut connections, thus circumventing potential impediments of
intermediate layers [7]. Conversely, SE-Nets hone in on accentuating salient features while
concurrently downplaying non-essential ones through the judicious use of global pooling
succeeded by adaptive weights [8,9]. Squeeze-and-excitation (SE) blocks were success-
fully utilized for diabetic retinopathy (DR)-related biomarker detection [10] and android
malware detection [11].

Exemplifying this methodology, Salvia miltiorrhiza (SM)—lauded for its multifarious
therapeutic benefits including cardiovascular protection [12,13], anti-inflammatory [14],
antitumor [15], antioxidative [16], antifibrotic [17], and antidiabetic properties [18]—was
chosen. Hyperspectral images from 187 SM batches were sourced via a hyperspectral
imaging apparatus. In adherence with the Chinese Pharmacopoeia (CHP) guidelines, SM’s
moisture content could not breach the 13.0% threshold, with specified contents of key com-
pounds [19]. Using HPLC-DAD and a rapid moisture analyzer, we ascertained the content
profiles of these pivotal compounds across SM batches. Consequently, a quantitative cali-
bration model rooted in SE-ReHIA was sculpted to deduce the content of the quintessential
components. To rigorously benchmark SE-ReHIA, alternative models including partial
least squares regression (PLSR), support vector machine regression (SVMR), and radial
basis function neural networks (RBFNN) were also created.

The novelty of the SE-ReHIA method lies in the following three points. First, the SE-
ReHIA method was initially proposed for the nondestructive and rapid determining of the
chemical composition of Salvia Miltiorrhizae. Second, the predictive ability of SE-ResNet
is superior to that of PLSR, SVMR and RBFNN. Third, the Rp2 values of the five quality
attributes are all above 0.9300.

2. Materials and Methods
2.1. Chemicals and Reagents

Standardized compounds, encompassing salvianolic acid B, dihydrotanshinone I,
cryptotanshinone, and tanshinone IIA, were procured from Sichuan Weikeqi Biological
Technology Co. (Sichuan, China). All aqueous solutions were prepared utilizing distilled
water from a Milli-Q Reagent Water System (Millipore, MA, USA).
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A generous donation from Zhengda Qingchunbao Co. (Zhejiang, China) provided
eight batches of SM samples. In addition to this, SM samples from diverse regions were
acquired: Sichuan Province (4 batches), Yunnan Province (4 batches), Shanxi Province
(22 batches), Anhui Province (23 batches), Henan Province (58 batches), and Shandong
Province (68 batches). An exhaustive list of the 187 SM batches is presented in Table S1. All
samples underwent rigorous authentication under the expert guidance of Prof. Ping Wang,
Zhejiang University of Technology. Corresponding voucher specimens have been curated
and securely archived in the herbarium of the College of Pharmaceutical Sciences at the
Zhejiang University of Technology.

2.2. Hyperspectral Images Acquisition

For each acquired batch, segments of Salvia miltiorrhiza were methodically positioned
in a matrix configuration on a Teflon plate, adhering to a pattern of 6 segments per row
and 5 segments per column, as depicted in Figure 1.
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Figure 1. Hyperspectral images system (a) and samples of Salvia miltiorrhiza (b).

The imaging process employed a Lambda-Nir hyperspectral camera (Wuxi Spectrum
Vision Technology Co., Wuxi, China), capturing at intervals of precisely 5.38 nm within
the visible and near-infrared spectrum, ranging from 380 nm to 1064 nm. This spanned a
total of 128 distinct bands and operated at a spectral resolution of 10 nm. In an endeavor to
preserve the fidelity of the captured images, dimensions were meticulously set at 800 pixels
in width by 703 pixels in height. Subsequent empirical evaluations ascertained that an
optimal camera configuration comprised an exposure duration of 2.3 ms and a designated
40 cm gap between the camera lens and the sample substrate. Utilizing these optimized
settings, high-quality hyperspectral images were acquired for all 187 batches of Salvia
miltiorrhiza.

2.3. Hyperspectral Image Correction

In order to counteract the potential perturbations introduced by dark currents, uneven
light distribution, and the extended operation of heat-generating instruments, a standard-
ized whiteboard calibration procedure was employed. Specifically, an image of a calibration
whiteboard was captured for reference. Simultaneously, a calibration image was procured
with the camera lens cover in place, providing a blackboard calibration counterpart. These
calibration images were subsequently integrated into the HSI system’s intrinsic image
acquisition software, ensuring the accurate calibration of reflectivity across the spectrum of
acquired hyperspectral images.
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2.4. HPLC Analysis

All Salvia miltiorrhiza (SM) batches underwent pulverization using a specialized Chi-
nese medicine pulverizer, and were subsequently sieved through a 50-mesh filter. An exact
weight of 0.5 g of the resultant powdered sample was meticulously combined with 25 mL
of a mixed solvent, characterized by an 80:20 (v/v) ratio of methanol to water. This mixture
was subjected to ultrasonic extraction for a duration of 40 min. Post-extraction, the solution
was centrifuged at a speed of 13,000 rpm for 5 min. The ensuing supernatant, after filtration
through a 0.22 µm membrane, was readied for HPLC injection.

HPLC analysis was conducted using the Agilent 1260 HPLC system (Agilent Technolo-
gies, California, USA), a comprehensive system encompassing a binary pump, a sample vial
injector, a column oven, and a diode array detector (DAD). The chromatographic separation
was performed on a Waters XBridge C18 column (4.6 × 250 mm, 5 µm) maintained at a
temperature of 35 ◦C. The employed mobile phases comprised (A) 0.1% formic acid in
water (HCOOH-H2O) and (B) acetonitrile. The linear gradient elution was methodically
structured: 0–15 min with a transition from 90% to 60% of (A); 15–19 min adjusting from
60% to 36% of (A); and finally, 19–32 min transitioning from 36% to 10% of (A). The system
operated at a flow rate of 1.0 mL/min. The detection wavelength for the compounds sal-
vianolic acid B, dihydrotanshinone I, cryptotanshinone, and tanshinone IIA was uniformly
set at 288 nm.

2.5. Method Validation

Precise amounts of salvianolic acid B, dihydrotanshinone I, cryptotanshinone, and
tanshinone IIA, each weighing 1 mg, were separately solubilized in methanol to generate
standard stock solutions. Subsequent dilutions of these stock solutions yielded working so-
lutions at specified concentrations. The linearity criterion, indicative of the proportionality
between a compound’s peak area and its concentration over the stipulated range, necessi-
tates a correlation coefficient (R2) of no less than 0.9990. Analytical signals for the quartet
of compounds exhibited intensities approximately thrice that of the baseline noise at the
limit of detection (LOD) and a magnitude about tenfold at the limit of quantitation (LOQ).
Intra-day precision was ascertained through sextuple samplings over a single day, whereas
inter-day precision was evaluated through tripartite samplings over three sequential days.
To assess reproducibility, a parallel setup of six samples was established for uninterrupted
injection analysis. Time-based stability analysis of the samples was performed at intervals
of 0, 2, 4, 8, 16, and 24 h. The method’s recovery rate was determined utilizing the standard
addition method, with the recovery percentage calculated using the formula: Recovery (%)
= [(amount identified − initial amount)/amount augmented] × 100%.

2.6. Moisture Determination

A swift analytical method for quantifying moisture content in SM was developed. Each
batch of SM was subjected to milling processes to achieve a powdered consistency, followed
by sieving through a 20-mesh standard. An aliquot of this SM powder was assessed for
its moisture content to serve as a reference, adhering to the specifications laid out by the
second method of moisture determination as indicated in CHP [18]. Subsequently, an
exhaustive set of factorial experiments were conducted to optimize the parameters of the
rapid moisture analyzer. The established conditions comprised a heating temperature of
105 ◦C, a sample mass of 3 g, and a discrimination time of 40 s. Operating under these
conditions, moisture content was ascertained for 187 distinct SM batches. For each batch,
duplicate measurements were taken, with the average of the two serving as the definitive
moisture content.

2.7. Establishment of PLSR Model

In an effort to evaluate the predictive accuracy of the refined SE-ResNet model, a
PLSR calibration model was established for the quantification of the same analytes. Within
the framework of the PLSR model, various spectral preprocessing techniques, alongside
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feature band filtering algorithms, were investigated. The preprocessing methodologies
assessed encompassed Savitzky–Golay smoothing and the first derivative. Meanwhile, the
feature band filtering methodologies explored included competitive adaptive reweighted
sampling (CARS), the successive projections algorithm, and the uninformative variable
elimination technique.

2.8. Establishment of SVMR and RBFNN Models

Support vector machine regression (SVMR) was conducted in high-dimensional space
by using the Vapink loss function, which consists of empirical error and regularization
terms. SVR was applied to the average spectral data and five chemical composition values.
The prediction function was trained to predict the five chemical composition values of
the sample, where the average spectral data of the ith sample represented jth chemical
composition values of the ith sample.

In the architectural domain of radial basis function neural networks (RBFNN), a
trilayered structure is evident: an introductory layer, a concealed intermediary layer, and
a conclusive output layer. The primary role of the introductory layer is to facilitate the
propagation of input vectors towards the intermediary hidden layer. This concealed layer is
fundamentally composed of an array of radial basis function units, represented as bk. Each
constituent of this hidden layer exemplifies an individual radial basis function, equipped
with a distinct center position and delineated width. Intriguingly, the input data set
undergoes a transformation mediated by the Gaussian function, intrinsically defined by its
center cj and breadth rj. Such a radial basis function (RBF) is instrumental in computing
the Euclidean distance between a given input vector (x) and the respective center of the
radial basis function (cj).

2.9. Establishment of SE-ResNet Model

For building a quantitative calibration model for the contents of four active compounds
and moisture, the SE-ResNet algorithm was applied. An SE block is a computational unit
which can be built upon a transformation Ftr mapping an input X ε RH’×W’×C’ to feature
maps U ε RH×W×C. Taking Ftr to be a convolutional operator and using V = [v1, v2, . . ., vc]
to denote the learned set of filter kernels, where vc refers to the parameters of the c-th filter.
Then the outputs as U = [u1, u2, . . ., uc],

uc = vc × X = ∑c′

s=1 vs
c × xs (1)

where here × denotes convolution, vc = [v1
c , v2

c , . . ., vc′
c ], X = [x1, x2, . . ., xc’] and uc ε RH×W.

vs
c is a 2D spatial kernel representing a single channel of vc that acts on the corresponding

channel of X.
The schematic representation of the SE-ResNet model under consideration can be

found in Figure 2. This model comprises various components, starting with an input
layer followed by a convolutional layer and a subsequent batch normalization layer. In
the convolutional structure of this model, distinct SE-ResBlocks are utilized: thrice for
SE-Res1Block, fourfold for SE-Res2Block, twenty-three times for SE-Res3Block, and thrice
for SE-Res4Block. The initial convolutional layer that the hyperspectral data encounters
is characterized by hyperparameters: a filter window dimension of 7 × 7, a stride of 2,
and a padding value of 3. Post this, the data are directed to a maxpooling layer, with
convolution parameters being a filter window of 3 × 3, stride of 2, and padding value of 3.
Subsequently, the data transit through two fully connected layers. On entry to the primary
fully connected layer, there is a reduction in neuron count from 2048 to 256, culminating in
an output neuron count of 5 in the subsequent fully connected layer.
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2.10. Assessment of the Established Models

All models were created for regression analysis, and the performance of the estab-
lished models was evaluated by the calculation of the root mean square error (RMSE)
and correlation coefficient according to Equations (2) and (3). They can be divided into
root mean square error of calibration (RMSEC), root mean square error of cross-validation
(RMSECV), the root mean square error of prediction (RMSEP), correlation coefficient of
calibration (R2

c ), correlation coefficient of cross-validation (R2
cv), and correlation coefficient

of prediction (R2
p).

RMSE =

√
∑N

i=1(ĉi − ci)
2

n
(2)

R2 = 1− ∑N
i=1(ĉi − ci)

2

∑N
i=1(ĉi − ci)

2 (3)

where ci is the actual result for sample i, ĉi is the estimated value by model for the sample i,
n is the number of samples, and ci is the mean of the actual results for samples.

The accuracy of the calibration model was evaluated by R2
c , R2

cv, and R2
p, whereas the

precision of the model was assessed using RMSEC, RMSECV and RMSEP. Additionally,
the residual prediction deviation (RPD) and relative error range (RER) were calculated to
evaluate the reliability, robustness, and predictive capability of the regression models. RPD
was calculated according to Equation (4). RER was defined in Equation (5).

RPD =
DPcal

RMSEP
(4)

RER =
Ymax −Ymin

RMSEP
(5)

where DPcal is the standard deviation of the calibration set, Ymax is the maximum value of
quality attributes, and Ymin is the minimum value of quality attributes.

An RPD value below 1.5 suggests limited utility of the model. A range of 1.5 < RPD < 2.0
is indicative of the model’s capability to discriminate between high and low values. RPD
values falling within 2.0 and 2.5 suggest an approximate predictive potential. A range between
2.5 and 3.0 is demonstrative of the model’s commendable predictive proficiency, while an
RPD exceeding 3 is emblematic of superior predictive performance. Additionally, larger RER
values are directly proportional to enhanced predictive capacity.
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3. Results
3.1. Quantitation of Effective Ingredients

The reliability and precision of the HPLC-DAD method in determining the content of
the aforementioned active compounds in Salvia miltiorrhiza (SM) samples is unequivocally
substantiated by the analysis of 187 distinct batches. The intrinsic UV absorption character-
istics of these compounds make them readily detectable by the DAD system. Their unique
chemical structures, as depicted in Figure 3, further accentuate their significance in the
pharmacological spectrum of SM.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 13 
 

 

RPD values falling within 2.0 and 2.5 suggest an approximate predictive potential. A range 
between 2.5 and 3.0 is demonstrative of the model’s commendable predictive proficiency, 
while an RPD exceeding 3 is emblematic of superior predictive performance. Addition-
ally, larger RER values are directly proportional to enhanced predictive capacity. 

3. Results 
3.1. Quantitation of Effective Ingredients 

The reliability and precision of the HPLC-DAD method in determining the content 
of the aforementioned active compounds in Salvia miltiorrhiza (SM) samples is unequivo-
cally substantiated by the analysis of 187 distinct batches. The intrinsic UV absorption 
characteristics of these compounds make them readily detectable by the DAD system. 
Their unique chemical structures, as depicted in Figure 3, further accentuate their signifi-
cance in the pharmacological spectrum of SM. 

 
Figure 3. The chemical structures of four investigated analytes. 

Rigorous analysis of all 187 samples was undertaken and, for illustrative purposes, a 
representative HPLC chromatogram is exhibited in Figure 4. 

 
Figure 4. Representative HPLC chromatograms of sample solution (A) and standard solution (B). 

Figure 3. The chemical structures of four investigated analytes.

Rigorous analysis of all 187 samples was undertaken and, for illustrative purposes, a
representative HPLC chromatogram is exhibited in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 13 
 

 

RPD values falling within 2.0 and 2.5 suggest an approximate predictive potential. A range 
between 2.5 and 3.0 is demonstrative of the model’s commendable predictive proficiency, 
while an RPD exceeding 3 is emblematic of superior predictive performance. Addition-
ally, larger RER values are directly proportional to enhanced predictive capacity. 

3. Results 
3.1. Quantitation of Effective Ingredients 

The reliability and precision of the HPLC-DAD method in determining the content 
of the aforementioned active compounds in Salvia miltiorrhiza (SM) samples is unequivo-
cally substantiated by the analysis of 187 distinct batches. The intrinsic UV absorption 
characteristics of these compounds make them readily detectable by the DAD system. 
Their unique chemical structures, as depicted in Figure 3, further accentuate their signifi-
cance in the pharmacological spectrum of SM. 

 
Figure 3. The chemical structures of four investigated analytes. 

Rigorous analysis of all 187 samples was undertaken and, for illustrative purposes, a 
representative HPLC chromatogram is exhibited in Figure 4. 

 
Figure 4. Representative HPLC chromatograms of sample solution (A) and standard solution (B). Figure 4. Representative HPLC chromatograms of sample solution (A) and standard solution (B).

This illustration clearly shows that the quartet of active constituents achieved baseline
separation, thereby enabling their accurate quantification. Prior to the exhaustive testing
of the SM samples, the robustness and reliability of the HPLC method were subjected to
meticulous validation. Further insights into the interconnectedness of the five analyzed
attributes were garnered through Pearson correlation analysis, and the derived coefficients
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were systematically recorded in Table S2. Notably, the most prominent correlation, with
a coefficient of 0.64, was discerned between the concentrations of cryptotanshinone and
tanshinone IIA, while other quality attributes displayed negligible correlations.

Detailed linearity data, as outlined in Table 1, reveal that the r2 values for the linearity
equations corresponding to salvianolic acid B, dihydrotanshinone I, cryptotanshinone,
and tanshinone IIA were impeccably close to 1, with values of 0.9998, 1.000, 1.000, and
1.000, respectively. Delving deeper into the method’s precision, Table 2 indicates that the
intra-day and inter-day variations of the HPLC-DAD procedure were limited to 0.84%
and 0.97%, respectively. The repeatability of the method, gauged by the relative standard
deviation (RSD), was less than 0.83%. Recovery rates, a crucial metric for method validation,
oscillated between 96.1% and 101.6%. Collectively, these metrics stand testament to the
HPLC method’s superior sensitivity and accuracy, making it an exemplary tool for the
quantitative determination of the quartet of active ingredients in SM.

Table 1. Calibration curves, correlation coefficients, linearity ranges, LOD, and LOQ of the HPLC
method.

Analytes Calibration Curves r2 Linear Ranges
(µg/mL)

LOD
(µg/mL)

LOQ
(µg/mL)

Salvianolic acid B y = 7860.2x − 600.99 0.9998 13.420–2680 4.0260 13.420
Dihydrotanshinone I y = 30,582x − 2.6289 1.0000 0.218–30 0.0654 0.218

Cryptotanshinone y = 22,343x − 6.7114 1.0000 0.350–125 0.1050 0.350
Tanshinone IIA y = 17,460x + 3.8458 1.0000 0.437–240 0.1311 0.437

Table 2. Precision, repeatability, stability, and recovery of the HPLC method (n = 6).

Analytes
Precision Repeatability

(RSD%)
Stability
(RSD%)

Recovery (%, Mean/RSD)

Intra-Day Inter-Day Low Medium High

Salvianolic acid B 0.56 0.97 0.83 1.40 100.277 (0.33) 97.7829 (1.83) 98.1958 (1.23)
Dihydrotanshinone I 0.54 0.48 0.62 0.22 98.3369 (1.35) 100.410 (1.42) 99.5800 (0.52)
Cryptotanshinone 0.52 0.32 0.54 0.49 99.2654 (1.42) 96.0864 (1.23) 99.5132 (1.21)

Tanshinone IIA 0.84 0.32 0.50 0.43 98.8544 (1.83) 100.417 (1.53) 101.561 (0.68)

Detailed linearity data, as outlined in Table 1, reveal that the r2 values for the linearity
equations corresponding to salvianolic acid B, dihydrotanshinone I, cryptotanshinone,
and tanshinone IIA were impeccably close to 1, with values of 0.9998, 1.000, 1.000, and
1.000, respectively. Delving deeper into the method’s precision, Table 2 indicates that the
intra-day and inter-day variations of the HPLC-DAD procedure were limited to 0.84%
and 0.97%, respectively. The repeatability of the method, gauged by the relative standard
deviation (RSD), was less than 0.83%. Recovery rates, a crucial metric for method validation,
oscillated between 96.1% and 101.6%. Collectively, these metrics stand testament to the
HPLC method’s superior sensitivity and accuracy, making it an exemplary tool for the
quantitative determination of the quartet of active ingredients in SM.

3.2. Measurement of Moisture Content

Before undertaking a hyperspectral quantitative analysis for the moisture content of
SM, it is imperative to establish a dependable reference method. Moisture determination
for all 187 batches of SM samples was conducted utilizing a rapid moisture analyzer.
The obtained results elucidated that the moisture content within the SM samples ranged
between 5.7% and 8.5%.

3.3. Division of Training Sets and Test Sets

During systematic evaluation, the 187 SM samples were stratified into training (calibra-
tion) sets and test sets employing the Kennard–Stone algorithm, maintaining a ratio of 4:1.
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Within this framework, the training sets were composed of 149 samples, while the test sets
comprised the subsequent 38 samples to validate the proposed model. Table 3 delineates
the content ranges for both the training (calibration) and test sets pertaining to the five
analytes under investigation. It is noteworthy that the content distribution across both data
sets exhibited uniformity, thereby facilitating the development of a model characterized by
stability and robustness.

Table 3. Content ranges of five investigated analytes in different data sets.

Analytes
Training Set Test Set

Min Max Mean Min Max Mean

Salvianolic acid B 0.223 2.064 1.231 0.333 1.733 1.118
Dihydrotanshinone I 0.001 0.064 0.007 0.002 0.014 0.006

Cryptotanshinone 0.005 0.184 0.031 0.008 0.048 0.027
Tanshinone IIA 0.009 0.136 0.053 0.012 0.083 0.049

Moisture content 0.057 0.085 0.071 0.059 0.082 0.069

3.4. Performance of PLSR Model

In the realm of hyperspectral data analysis, preprocessing is often deemed an indis-
pensable step prior to PLSR model development. However, upon meticulous evaluation
of various preprocessing techniques, this study primarily resorted to the first derivative
coupled with Savitzky–Golay smoothing methods. Astonishingly, the modeling outcomes
derived from unprocessed raw data exhibited superior predictive capacities. Further-
more, when juxtaposing the outcomes of the successive projections algorithm and the
uninformative variable elimination algorithm, the spectral bands delineated by the CARS
algorithm proved to be more efficacious for modeling. A comprehensive display of the
performance metrics of PLSR models integrated with diverse preprocessing techniques and
band selection methodologies is provided in Table S3.

The model formulated utilizing the raw data, as filtered by the CARS algorithm, dis-
played the paramount R2

c and R2
cv values. Specifically, the R2

c and R2
cv values for salvianolic

acid B, dihydrotanshinone I, cryptotanshinone, tanshinone IIA, and moisture content were
discerned to be 0.281, 0.365, 0.026, 0.004, 0.009, 0.029, 0.019, 0.024, and 0.449, 0.672, in
respective order. Moreover, the corresponding RPD metrics for these quality attributes
within the PLSR framework were documented to be 1.254, 1.002, 1.015, 1.012, and 1.746,
each of which was discernibly less than 2. Simultaneously, the RER values associated
with these attributes were established to be −11.801, −0.107, 9.944, −1.494, and −0.031,
respectively. These statistics unambiguously corroborate the limited predictive acumen of
the PLSR model in this specific context.

3.5. Performance of SVMR and RBFNN Models

In Table S4, we present the analytical outcomes from both the support vector machine
regression model (SVMR) and the radial basis function neural networks model (RBFNN).
The R2

c and R2
p values for the quantification of salvianolic acid B, dihydrotanshinone I,

cryptotanshinone, tanshinone IIA, and moisture content were observed to be suboptimal.
Figures S1 and S2 depict the correlation plots contrasting the predicted outcomes from
both SVMR and RBFNN with the experimentally determined values. Upon inspection, a
discernible correlation between the modeled predictions and the empirical measurements
appears to be absent.

3.6. Performance of SE-ResNet Model

The predictive efficacy of the refined SE-ResNet calibration model is delineated in
Table 4. To provide a lucid comparative analysis between the algorithms, only the optimal
results of the PLSR model are tabulated. The R2

c values for salvianolic acid B, dihydrotanshi-
none I, cryptotanshinone, tanshinone IIA, and moisture content were discerned to be 0.981,
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0.980, 0.975, 0.972, and 0.970, respectively, while the R2
cv values were observed to be 0.975,

0.943, 0.962, 0.957, and 0.930, in respective order. Additionally, the RMSEP values for these
components were ascertained to be 0.017, 0.028, 0.019, 0.024, and 0.031, respectively. Con-
currently, the RPD metrics for salvianolic acid B, dihydrotanshinone I, cryptotanshinone,
tanshinone IIA, and moisture content within the SE-ResNet framework were documented
as 6.324, 4.188, 5.130, 4.822, and 3.780, respectively. Furthermore, RER values associated
with these five quality parameters of the SE-ResNet model stood at 108.294, 2.250, 9.421,
5.292, and 0.903, respectively. Both the RPD and RER metrics testify to the superlative
predictive prowess of the SE-ResNet model. The synergistic integration of ResNets with
SE-Nets fosters an augmented performance, facilitating the acquisition of more discerning
features whilst simultaneously curtailing the parameters and computational demands.

Table 4. Comparison between the performance of the SE-ResNet and PLSR models.

Algorithms Analytes
Calibration Validation

RER RPD
R2

c RMSEC R2
p RMSEP

SE-ResNet Salvianolic acid B 0.980 0.110 0.975 0.017 108.294 6.324
Dihydrotanshinone I 0.980 0.013 0.943 0.028 2.250 4.188

Cryptotanshinone 0.975 0.015 0.962 0.019 9.421 5.130
Tanshinone IIA 0.972 0.018 0.957 0.024 5.292 4.822

Moisture content 0.970 0.020 0.930 0.031 0.903 3.780
PLSR Salvianolic acid B 0.281 0.137 0.365 −0.156 −11.801 1.254

Dihydrotanshinone I 0.003 0.163 0.004 −0.591 −0.107 1.002
Cryptotanshinone 0.009 0.014 0.029 0.018 9.944 1.015

Tanshinone IIA 0.019 0.218 0.024 −0.085 −1.494 1.012
Moisture content 0.449 0.318 0.672 −0.913 −0.031 1.746

The correlation plots juxtaposing the predictions rendered by the SE-ResNet model
against the empirical measurements are elucidated in Figure 5. Models demonstrating
elevated R2

c , R2
cv, and R2

p values inherently possess commendable predictive capabilities.
Remarkably, all these metrics for the SE-ResNet model surpassed the 0.93 threshold. This
implies that the model not only manifests an impeccable fit but also boasts high fidelity in
prediction, underscored by its pronounced correlation and minimized error magnitude.
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4. Discussion

PLSR is a common machine learning algorithm. Before we used the HSI data of the
sample for PLSR modeling, we first developed a mask, selected the region of interest,
calculated the average data, and performed Savitzky–Golay smoothing and first-order
derivative preprocessing operations. We attempted to establish the PLSR model with the
preprocessed data. However, the PLSR model is not suitable for a non-linear data set. The
recorded data set by the HSI system in the reflectance mode is non-bilinear. So, the recorded
spectra should first be transformed into absorbance mode for further analysis. However, in
the present study, the PLSR as a linear model was applied to model a non-bilinear data set.
We consider this to be the reason why the PLSR models were so inaccurate.

Therefore, we established the SVMR model and RBFNN model, but the results were
still not ideal. The performance of the SVMR and RBFNN models are displayed in Table S4.
The correlation diagrams of the results predicted by the SVMR and RBFNN models and
real measured values are shown in Figures S1 and S2.

Pearson correlation was conducted to analyze the correlation between the five at-
tributes investigated. The correlation coefficient is displayed in Table S2. The highest
correlation coefficient, 0.64, is achieved between the contents of cryptotanshinone and
tanshinone IIA. The correlations between other quality attributes are very weak.

In the present investigation, a novel methodology termed squeeze-and-excitation
residual network combined hyperspectral image analysis (SE-ReHIA) was introduced
for the concurrent assessment of quality attributes intrinsic to bulk medicinal materials.
Specifically, the concentrations of salvianolic acid B, dihydrotanshinone I, cryptotanshinone,
tanshinone IIA, and moisture were concurrently ascertained in Salvia miltiorrhiza (SM). The
constructed model exhibited commendable predictive capabilities, positioning SE-ReHIA
as a robust contender to the conventionally employed, labor-intensive HPLC approach.
The SE-ReHIA method is discernibly more time-efficient, ecologically considerate, and
preserves sample integrity. Moreover, the inherent capacity of the HSI system for real-
time assessment bolsters its relevance within the preliminary material vetting phase of
pharmaceutical manufacturing. Such integrations could considerably uplift batch-to-batch
consistency, fortifying the reliability and uniformity of pharmaceutical products. It is
noteworthy to mention that, in our survey of the literature, this research marks the inaugural
application of the SE-ReHIA technique in the quality determination of SM. Our findings
underscore the potential of HSI as a swift diagnostic tool for the projection of active
ingredient concentrations and moisture levels in SM. However, more samples should be
incorporated into the model for its application to real scenarios. In the future, the data
of new samples will be added and the model re-trained. Prospective studies could pivot
towards dissecting compositional dynamics of SM throughout its processing life cycle
and during extended storage, further refining the quality assurance paradigms for bulk
medicinal materials.

5. Conclusions

Our work demonstrates that SE-ReHIA is a viable alternative to the cumbersome HPLC
method. It is faster, more environmentally friendly, and non-destructive. The HSI system is
a quality control method that enables on-line detection, making it highly applicable in the
raw material screening production line of botanical drugs. Its implementation can greatly
enhance the consistency of drug batches, ensuring the stability of botanical drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23239345/s1, Figure S1: Correlation diagram of predicted val-
ues by SVMR model and measured values of bioactive compounds and moisture content; Figure S2:
Correlation diagram of predicted values by RBFNN model and measured values of bioactive com-
pounds and moisture content; Table S1: Sample list of 187 batches of Salvia miltiorrhiza; Table S2:
Correlation coefficients between the five quality attributes; Table S3: The performance parameters of
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PLSR algorithms with different band selection methods; Table S4: The performance parameters of
SVMR and RBFNN algorithms.

Author Contributions: Conceptualization, Y.T.; methodology, J.B.; software, J.Z.; validation, J.B. and
J.Z.; formal analysis, J.B.; investigation, J.B.; data curation, J.Z.; writing—original draft preparation,
J.B.; writing—review and editing, J.Z.; visualization, Y.T.; supervision, Y.T.; project administration,
Y.T.; funding acquisition, Y.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Natural Science Foundation of Zhejiang Province, grant
number Y21H280036 and the Horizontal Scientific Research Project, grant number KYY-HX-20220295.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the anonymous reviewers for their invaluable
suggestions that helped improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A.M. Hyperspectral Imaging and Chemometric Modeling of Echinacea—A Novel

Approach in the Quality Control of Herbal Medicines. Molecules 2014, 19, 13104–13121. [CrossRef] [PubMed]
2. Vermaak, I.; Viljoen, A.; Lindström, S.W. Hyperspectral imaging in the quality control of herbal medicines—The case of neurotoxic

Japanese star anise. J. Pharmaceut. Biomed. 2013, 75, 207–213. [CrossRef] [PubMed]
3. Cruz-Tirado, J.P.; Oliveira, M.; de Jesus Filho, M.; Godoy, H.T.; Amigo, J.M.; Barbin, D.F. Shelf life estimation and kinetic

degradation modeling of chia seeds (Salvia hispanica) using principal component analysis based on NIR-hyperspectral imaging.
Food Control. 2021, 123, 107777. [CrossRef]

4. Djokam, M.; Sandasi, M.; Chen, W.; Viljoen, A.; Vermaak, I. Hyperspectral Imaging as a Rapid Quality Control Method for Herbal
Tea Blends. Appl. Sci. 2017, 7, 268. [CrossRef]

5. Huang, J.; He, H.; Lv, R.; Zhang, G.; Zhou, Z.; Wang, X. Non-destructive detection and classification of textile fibres based on
hyperspectral imaging and 1D-CNN. Anal. Chim. Acta 2022, 1224, 340238. [CrossRef] [PubMed]

6. Rocha de Oliveira, R.; de Juan, A. SWiVIA—Sliding window variographic image analysis for real-time assessment of heterogeneity
indices in blending processes monitored with hyperspectral imaging. Anal. Chim. Acta 2021, 1180, 338852. [CrossRef] [PubMed]

7. Sun, K.; Huang, Z.; Mao, H.; Qin, A.; Li, X.; Tang, W.; Xiong, J. Multi-Scale Cluster-Graph Convolution Network With Multi-
Channel Residual Network for Intelligent Fault Diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

8. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. 2020, 42, 2011–2023.
[CrossRef] [PubMed]

9. Zhang, X.; Ding, G.; Li, J.; Wang, W.; Wu, Q. Deep Learning Empowered MAC Protocol Identification With Squeeze-and-Excitation
Networks. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 683–693. [CrossRef]

10. Yi, D.; Baltov, P.; Hua, Y.; Philip, S.; Sharma, P. Compound Scaling Encoder-Decoder (CoSED) Network for Diabetic Retinopathy
Related Bio-marker Detection. IEEE J. Biomed. Health Inform. 2023, 99, 1–12. [CrossRef] [PubMed]

11. Zhu, H.; Gu, W.; Wang, L.; Xu, Z.; Sheng, V. Android malware detection based on multi-head squeeze-and-excitation residual
network. Expert Syst. Appl. 2023, 212, 118705. [CrossRef]

12. Weng, Y.-S.; Kuo, W.-W.; Lin, Y.-M.; Kuo, C.-H.; Tzang, B.-S.; Tsai, F.-J.; Tsai, C.-H.; Lin, J.A.; Hsieh, D.J.-Y.; Huang, C.-Y. Danshen
mediates through estrogen receptors to activate Akt and inhibit apoptosis effect of Leu27IGF-II-induced IGF-II receptor signaling
activation in cardiomyoblasts. Food Chem. Toxicol. 2013, 56, 28–39. [CrossRef] [PubMed]

13. Jia, L.; Song, N.; Yang, G.; Ma, Y.; Li, X.; Lu, R.; Cao, H.; Zhang, N.; Zhu, M.; Wang, J.; et al. Effects of Tanshinone IIA on the
modulation of miR-33a and the SREBP-2/Pcsk9 signaling pathway in hyperlipidemic rats. Mol. Med. Rep. 2016, 13, 4627–4635.
[CrossRef] [PubMed]

14. Gao, H.W.; Huang, L.T.; Ding, F.; Yang, K.; Feng, Y.L.; Tang, H.Z.; Xu, Q.M.; Feng, J.F.; Yang, S.L. Simultaneous purification of
dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory
activities investigation. Sci. Rep. 2018, 8, 8460. [CrossRef] [PubMed]

15. Jiang, G.Q.; Liu, J.; Ren, B.Y.; Zhang, L.; Owusu, L.; Liu, L.K.; Zhang, J.; Tang, Y.W.; Li, W.L. Anti-tumor and chemosensitization
effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J. Ethnopharmacol. 2017, 205,
33–40. [PubMed]

16. Zhang, J.Q.; Jin, Q.H.; Deng, Y.P.; Hou, J.J.; Wu, W.Y.; Guo, D.A. New depsides from the roots of Salvia miltiorrhiza and their
radical scavenging capacity and protective effects against H2O2-induced H9c2 cells. Fitoterapia 2017, 121, 46–52. [CrossRef]
[PubMed]

https://doi.org/10.3390/molecules190913104
https://www.ncbi.nlm.nih.gov/pubmed/25255748
https://doi.org/10.1016/j.jpba.2012.11.039
https://www.ncbi.nlm.nih.gov/pubmed/23277152
https://doi.org/10.1016/j.foodcont.2020.107777
https://doi.org/10.3390/app7030268
https://doi.org/10.1016/j.aca.2022.340238
https://www.ncbi.nlm.nih.gov/pubmed/35998989
https://doi.org/10.1016/j.aca.2021.338852
https://www.ncbi.nlm.nih.gov/pubmed/34538329
https://doi.org/10.1109/TIM.2021.3136264
https://doi.org/10.1109/TPAMI.2019.2913372
https://www.ncbi.nlm.nih.gov/pubmed/31034408
https://doi.org/10.1109/TCCN.2021.3126306
https://doi.org/10.1109/JBHI.2023.3313785
https://www.ncbi.nlm.nih.gov/pubmed/37695962
https://doi.org/10.1016/j.eswa.2022.118705
https://doi.org/10.1016/j.fct.2013.01.008
https://www.ncbi.nlm.nih.gov/pubmed/23419388
https://doi.org/10.3892/mmr.2016.5133
https://www.ncbi.nlm.nih.gov/pubmed/27082100
https://doi.org/10.1038/s41598-018-26828-0
https://www.ncbi.nlm.nih.gov/pubmed/29855534
https://www.ncbi.nlm.nih.gov/pubmed/28456578
https://doi.org/10.1016/j.fitote.2017.06.018
https://www.ncbi.nlm.nih.gov/pubmed/28647481


Sensors 2023, 23, 9345 13 of 13

17. Wang, R.; Yu, X.Y.; Guo, Z.Y.; Wang, Y.J.; Wu, Y.; Yuan, Y.F. Inhibitory effects of salvianolic acid B on CCl4-induced hepatic fibrosis
through regulating NF-kappa B/I kappa B alpha signaling. J. Ethnopharmacol. 2012, 144, 592–598. [CrossRef]

18. Huang, M.A.; Wang, P.J.; Xu, S.Y.; Xu, W.; Xu, W.; Chu, K.D.; Lu, J.J. Biological activities of salvianolic acid B from Salvia
miltiorrhiza on type 2 diabetes induced by high-fat diet and streptozotocin. Pharm. Biol. 2015, 53, 1058–1065. [CrossRef]

19. Commission, C.P. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jep.2012.09.048
https://doi.org/10.3109/13880209.2014.959611

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Hyperspectral Images Acquisition 
	Hyperspectral Image Correction 
	HPLC Analysis 
	Method Validation 
	Moisture Determination 
	Establishment of PLSR Model 
	Establishment of SVMR and RBFNN Models 
	Establishment of SE-ResNet Model 
	Assessment of the Established Models 

	Results 
	Quantitation of Effective Ingredients 
	Measurement of Moisture Content 
	Division of Training Sets and Test Sets 
	Performance of PLSR Model 
	Performance of SVMR and RBFNN Models 
	Performance of SE-ResNet Model 

	Discussion 
	Conclusions 
	References

