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Abstract: The resonant magnetoelectric (ME) effect of Fe78Si9B13/Pb(Zr,Ti)O3 (FeSiB/PZT) compos-
ites with a surface-modified Fe78Si9B13 amorphous alloy has been studied. The surface-modified
FeSiB can improve the ME coefficient at the resonant frequency by optimizing the magnetomechancial
power conversion efficiency. The maximum ME coefficient of the surface-modified ribbons combined
with soft PZT (PZT5) is two-thirds larger than that of the composites with fully amorphous ribbons.
Meanwhile, the maximum value of the ME coefficient with surface-modified FeSiB ribbons and
hard PZT (PZT8) is one-third higher compared with the fully amorphous composites. In addition,
experimental results of magnetomechanical coupling properties of FeSiB/PZT composites with or
without piezoelectric layers indicate that the power efficiency of the composites first decreases and
then increases with the increase in the number of FeSiB layers. When the surface crystalline FeSiB
ribbons are combined with a commercially available hard piezoelectric ceramic plate, the maximum
magnetoelectric coupling coefficient of the ME composite reaches 5522 V/(Oe*cm), of which the
electromechanical resonant frequency is 23.89 kHz.

Keywords: magnetoelectric effect; surface modification; magnetostriction

1. Introduction

Fe-based amorphous alloy, also known as Fe-based metallic glass, has been widely
used in laminated magnetoelectric (ME) composites and devices because of its excellent
magnetomechanical properties [1–4]. This type of composite can realize the mutual con-
version between magnetic and electric energy through the strain or stress between the
magnetostrictive and piezoelectric materials. The devices made from ME composite ma-
terial include magnetic field sensors, miniaturized antennas, and high-efficiency energy
converters [5–9]. In order to meet the main technical indexes of these devices in practical
application, the ME composite materials need to have strong ME coupling effects at room
temperature. This usually requires improving the magnetostrictive properties of mag-
netic materials in ME composites, and then requires high-performance magnetostrictive
materials and piezoelectric materials as single-phase materials in ME composites [10–14].
Therefore, optimization of the Fe-based amorphous materials in ME composites is an im-
portant step to carry out the subsequent research, which has also attracted the attention of
researchers in recent years [15–18].

Electromagnetic waves with lower carrier frequencies have less propagation atten-
uation in lossy media, so very low frequency (VLF) antennas can solve the attenuation
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problem of high-frequency antenna transmission in high-loss environments [19–21]. How-
ever, the antenna needs to match the size of the wavelength to achieve high transmission
efficiency, which leads to the large size and poor maneuverability of the traditional VLF
transmitting antenna. The acoustic excitation antenna made of ME composite material is a
kind of antenna that uses mechanical vibration to transmit low-frequency magnetic field
signals [22–25]. The energy storage and conversion mechanism of this antenna is quite dif-
ferent from that of traditional antennas. Because the wavelength of sound waves is smaller
than that of electromagnetic waves, energy can be stored in the form of kinetic energy
or potential energy during the VLF mechanical motion of the antenna. Meanwhile, the
mechanical strain/stress drives the magnetic dipoles inside the magnetostrictive material
to transmit electromagnetic fields. Therefore, the resonant antenna based on ME composite
material can achieve higher electromagnetic wave transmission efficiency in the VLF band
with a smaller antenna volume.

Ivasheva et al. [18] used another Fe-based amorphous alloy (AMAG493) and a PZT-19
piezoelectric plate to make a magnetostrictive/piezoelectric heterostructure device with
a size of 30 mm × 10 mm. The resonant frequency of the ME sample is 53.4 kHz, and
the maximum magnetoelectric coupling coefficient is 29.52 V/(Oe*cm). This work also
focuses on the ME effect of composites, which consist of a PZT ceramic plate and FeSiB
amorphous alloy ribbon. The further expansion of the magnetoelectric coupling coefficient
(αV

ME) formula under electromechanical resonant frequency (EMR) shows that its value
is closely related to the magnetomechanical coupling factor (k) and quality factor (Q) of
magnetostrictive material when the thickness ratio (n) of the magnetostrictive layers to
the composite is determined. In an energy conversion system, the k2 value [26] represents
the ratio of conversion power to storage power, while the Q value [27] represents the
storage power to loss power ratio. Thus, the product of the two factors, k2Q, is defined as
the ratio between the conversion power and the loss power. Heat treatment on Fe-based
amorphous ribbons at the proper temperature can effectively improve this efficiency factor,
k2Q, according to our previous studies [28,29]. We found that the αV

ME value of the ME
composite prepared from the surface-modified FeSiB amorphous alloy can be significantly
improved under EMR. The maximum magnetoelectric coefficient with surface crystalline
FeSiB and hard piezoceramic PZT8 can reach 5522 V/(Oe*cm).

2. Experiment

A series of FeSiB ribbons with the dimensions of 80 mm × 3 mm × 0.025 mm were
annealed in an air atmosphere under 440 ◦C/500 ◦C for 20 min and cooled down to
the ambient temperature in the air. The FeSiB laminates of different thicknesses were
made with the help of annealed FeSiB ribbons and epoxy resin. Soft piezoelectric ce-
ramics PZT5 (Yu Hai Electronic Ceramics Co., Ltd., Zibo, China) with the dimensions of
40 mm × 3 mm × 0.5 mm and hard PZT ceramics PZT8 with the dimensions of
40 mm × 3 mm × 0.8 mm were selected as piezoelectric phase materials. Each two PZT
pieces were connected head to end to form one PTZ layer, and then two FeSiB layers
with the same thickness were laminated under the action of epoxy resin and hot-pressing
machine to constitute a magnetostrictive/piezoelectric/magnetostrictive trilayer hetero-
geneous structure with the dimensions of 80 mm × 3 mm. The schematic diagram of the
heterogeneous structure is given in Figure 1.

Three heterostructures were hot-pressed for more than 24 h. After that, the magne-
tostrictive layers were fully bonded with the piezoelectric layer, the samples were inserted
into a 30 cm long winding solenoid coil that has an inductance value of 7.5 mH at 1 kHz.
The k and Q values were measured by an impedance analyzer (HP 4294A) using resonant
and anti-resonant methods [30,31]. Subsequently, the prepared FeSiB/PZT/FeSiB compos-
ites, along with the winding coil, were placed in the center of a pair of permanent magnets.
According to the previous studies, the magnetic bias field (Hdc) generated by permanent
magnets was adjusted to maximize the k value. Impedance analyzer was used to test the
impedance curve vs. frequency and to determine the EMR frequency (fr).
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Figure 1. (a) Schematic diagram of magnetostrictive/piezoelectric/magnetostrictive heterostructures;
physical patterns of (b) three-layer; (c) six-layer; (d) nine-layer and (e) twelve-layer magnetostrictive
heterogeneous structures.

The ME voltage coefficient (αV
ME) is a measure of the voltage that is induced by an ap-

plied ac magnetic field H. Therefore, larger αV
ME value means greater electric field intensity

that is caused by a unit magnetic field intensity. Voltage source (Wave Factory, WF1968), low
noise voltage amplifier (Stanford Research Systems, Model SR560), oscilloscope (Tektronix
MSO46), and Helmholtz coil (PS-1HM365) were used to test αV

ME values in the experiment.
The test circuit diagram is detailed in Figure 2.
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The conversion factor of the Helmholtz coil was 10 nT/mA, which provides a magnetic
field along the length direction of the samples. The frequency of the voltage source was
adjusted close to the EMR of the composite, and the composite was put in the center of
the Helmholtz coil together with the solenoid coil. Two permanent magnets were placed
at both ends of the composite along the axial direction, and the distance between the
permanent magnets and the composite was changed to adjust Hdc, while the oscilloscope
was observed. A gain of five was set for the low noise voltage amplifier. When the output
voltage Vout reaches the maximum value, the position of permanent magnets is fixed while
the value of frequency sweeping near fr. The input voltage Vin measured across the resistor
Rm and the output voltage Vout measured from the piezoelectric ceramic of the composite
were recorded. The values of αV

ME = Vout
H (or αE

ME = Vout
tp H , where tp is the thickness of

piezoelectric layer.) were calculated from the ratio between the input field and the output
voltage as a function of the sweeping frequency.

3. Results

According to our previous investigations in [29], the k value of the FeSiB ribbon
reaches the maximum when the sample is annealed at 440 ◦C for 20 min. However, a
much higher annealing temperature is required for the efficiency factor k2Q to reach the
maximum value. Two commercially available piezoelectric materials, PZT5 and PZT8,
were combined with FeSiB ribbons that have been annealed in air at 440 ◦C and 500 ◦C
for 20 min. As such, four ME composites with different combinations were prepared:
440 ◦C-FeSiB/PZT5, 440 ◦C-FeSiB/PZT8, 500 ◦C-FeSiB/PZT5, 500 ◦C-FeSiB/PZT8. The
thickness values of PZT5 and PZT8 were 0.5 mm and 0.8 mm, respectively. On both sides of
PZT5, the associated layer number of the FeSiB is six, while on both sides of the PZT8, there
are nine layers of FeSiB ribbons. The ratio between the thickness of the FeSiB laminates
(including top and bottom) to the total thickness of the composite is 0.38.

The values of αE
ME for two kinds of FeSiB/PZT5 composites were plotted as a function

of the frequency, as shown in Figure 3. For the FeSiB ribbons annealed at 440 ◦C for 20 min,
the maximum magnetoelectric coupling coefficient αE

MEmax of 440 ◦C-FeSiB/PZT5 reaches
598 V/(Oe*cm) at the resonance and the corresponding fr is 22.2 kHz. When the FeSiB
ribbons were replaced by those annealed at 500 ◦C for 20 min, the value of αE

MEmax of
500 ◦C-FeSiB/PZT5 was increased to 1025 V/(Oe*cm) at 22.34 kHz, which is 71% higher
than the one with FeSiB annealed at 440 ◦C.
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In Figure 4a, for the continuously stacking magnetostrictive layer, the αE
ME of Fe-

SiB/PZT5 composite increases at first and then decreases, which is also in line with the
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prediction of the ME equivalent circuit model [32,33]. It can also be observed in Figure 4
that the resonant frequency scales up with the increase in the magnetostrictive layer’s thick-
ness. It can also be observed in Figure 4 that when soft PZT5 is selected as the piezoelectric
layer, six layers of FeSiB on top and six layers on bottom are required to maximize the
magnetoelectric coefficients.
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Using the same experimental method, the values of αE
ME were measured as a func-

tion of the frequency for FeSiB/PZT8 heterostructures with different thickness values of
magnetostrictive layers, as shown in Figure 5.
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It can be seen that when FeSiB is annealed at 440 ◦C for 20 min, the maximum value
of αE

ME of heterostructure with nine FeSiB layers is 4311 V/(Oe*cm) at 23.76 kHz. When
FeSiB is annealed at 500 ◦C for 20 min, the αE

MEmax of the ME composite with nine FeSiB
layers and PZT8 is increased to 5522 V/(Oe*cm), which is 28% higher than the sample
440 ◦C-FeSiB/PZT8. The EMR frequency increases slightly to 23.89 kHz. According to the
data in Figures 3 and 5, we could obtain the same experiment phenomenon, that is, αE

ME
of the composite annealed at a higher temperature is larger than that was annealed at a



Sensors 2023, 23, 9622 6 of 12

lower temperature under the condition that the thickness of the magnetostrictive layer is
unchanged. Meanwhile, the α-Fe(Si) crystallites have been confirmed to appear on both
sides of the ribbons, when the ribbons are annealed at 500 ◦C for 20 min, following the
X-ray diffraction measurements in ref [29]. The surface crystallization layer formed by
high-temperature annealing is shown to effectively improve the magnetoelectric coupling
ability in the ME composite. Moreover, when FeSiB ribbons are annealed at 500 ◦C,
its magnetomechanical efficiency factor (k2Q) is also optimized following our previous
investigations [29], as discussed in later sections.

The resonant frequency and the maximum αE
ME of FeSiB/PZT8 composite with the

increase in FeSiB layer number are also shown in Figure 6. The trend of variation with
the resonant frequency in Figure 6 is similar to that in Figure 4. The resonant frequency
increases with the increase in the thickness of FeSiB layer. However, the αE

ME coefficient
increases at first and then decreases with the increase in the FeSiB thickness value. When
the hard PZT8 is selected as the piezoelectric layer, it requires nine layers FeSiB on both the
top and bottom to maximize the αE

ME coefficient.
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By comparing the values of αE
ME of two kinds of ME devices, the magnetoelectric

coupling ability of the composite after surface modification treatment is effectively im-
proved. This also provides the possibility for us to further use this device to prepare
efficient transducers, magnetoelectric antennas and so on. Using this device can ensure
that high-efficiency energy transmission can be achieved while maintaining a small size, so
as to achieve the goal of a miniaturized low-frequency antenna.

According to the above discussion, the magnetoelectric coupling coefficient αE
ME of

FeSiB/PZT5 composite annealed at 440 ◦C is the lowest, and that of FeSiB/PZT8 composite
annealed at 500 ◦C is the highest in the four groups of experimental data. We compared
magnetomechanical properties of these two samples before and after adding piezoelectric
layer. Experiment results are shown in Figures 7 and 8.

Figure 7 shows the variation of the magnetomechanical coupling coefficients k of
the FeSiB/PZT5 composites with the increase in the FeSiB layer number. All the samples
in Figure 7 are made with the same PZT5 ceramic plate by changing the different FeSiB
layers attached to ceramic plates. The experimental results in Figure 7a show that the
thin FeSiB layer will result in a small k value for the epoxy-FeSiB composite, but with the
increase in the thickness of the magnetostrictive layers, the k value of the ME composite
gradually increases until the k value of the epoxy-bonded FeSiB composite is exceeded by
that of the FeSiB/PZT5 composite. There are two main reasons for this. On the one hand,
when the thickness of magnetostrictive layer increases, the demagnetization factor reduces
the k value [34]. On the other hand, with the addition of piezoelectric layer, the average
compliance coefficient (s) of the composite decreases, thus the k value of the composite
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increases when the piezomagnetic coefficient (dm) and magnetic permeability (µ) remain

basically unchanged according to the calculation formula k2 = d2
m

µsH . Q value of the ME
composites increases significantly compared with that of the single magnetostrictive layer,
as shown in Figure 7b. Under the combined action of the magnetomechanical coupling
coefficient k and quality factor Q, the efficiency factor k2Q of the ME composite decreases
first and then increases compared with the epoxy-bonded FeSiB composite, as shown in
Figure 7c. It can be seen that the introduction of the piezoelectric layer can indeed improve
the energy transmission efficiency of this heterogeneous structure.
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Similarly, the variation of the measured magnetomechancial coefficients of FeSiB/PZT8
composites with the layer numbers is shown in Figure 8. The variation trend of the k, Q,
k2Q curves resemble to those in Figure 7, the efficiency factor k2Q of the composites first
decreases and then increases with the increase in the number of FeSiB layers.



Sensors 2023, 23, 9622 8 of 12Sensors 2023, 23, x FOR PEER REVIEW 8 of 12 
 

 

 

 
Figure 8. Magnetostrictive coefficients of FeSiB/PZT8 composite and corresponding magnetostric-
tive materials as a function of layer numbers. (a) The maximum value of k as a function of FeSiB 
layers. (b) The value of Q and (c) the value of k2Q, which correspond to the maximum k as a function 
of FeSiB layers. 

Figure 7 shows the variation of the magnetomechanical coupling coefficients k of the 
FeSiB/PZT5 composites with the increase in the FeSiB layer number. All the samples in 
Figure 7 are made with the same PZT5 ceramic plate by changing the different FeSiB layers 
attached to ceramic plates. The experimental results in Figure 7a show that the thin FeSiB 
layer will result in a small k value for the epoxy-FeSiB composite, but with the increase in 
the thickness of the magnetostrictive layers, the k value of the ME composite gradually 
increases until the k value of the epoxy-bonded FeSiB composite is exceeded by that of the 
FeSiB/PZT5 composite. There are two main reasons for this. On the one hand, when the 
thickness of magnetostrictive layer increases, the demagnetization factor reduces the k 
value [34]. On the other hand, with the addition of piezoelectric layer, the average com-
pliance coefficient (s) of the composite decreases, thus the k value of the composite in-
creases when the piezomagnetic coefficient (dm) and magnetic permeability (µ) remain ba-
sically unchanged according to the calculation formula 𝑘 = . Q value of the ME com-
posites increases significantly compared with that of the single magnetostrictive layer, as 
shown in Figure 7b. Under the combined action of the magnetomechanical coupling coef-
ficient k and quality factor Q, the efficiency factor k2Q of the ME composite decreases first 
and then increases compared with the epoxy-bonded FeSiB composite, as shown in Figure 
7c. It can be seen that the introduction of the piezoelectric layer can indeed improve the 
energy transmission efficiency of this heterogeneous structure. 

Figure 8. Magnetostrictive coefficients of FeSiB/PZT8 composite and corresponding magnetostrictive
materials as a function of layer numbers. (a) The maximum value of k as a function of FeSiB layers.
(b) The value of Q and (c) the value of k2Q, which correspond to the maximum k as a function of
FeSiB layers.

4. Discussion

Previous studies [28,29] have shown that annealing at an appropriate temperature can
improve the magnetomechanical properties of the Fe-based amorphous ribbon. Therefore,
we used the annealed FeSiB ribbons to fabricate the ME-laminated composites and tested
their magnetomechanical properties in this experiment. Following the ME equivalent
circuit model in Refs. [33,35], the ME coefficient αV

ME of the ME composites at resonant
frequency can be expressed in terms of piezoelectric (dp), piezomagnetic (dm), compliance
coefficient (sE, sH) and quality factor (Q), as shown in Equation (1),

αV
ME =

∣∣∣∣ dV
dH

∣∣∣∣
r
=

8
π2 Q

ntpdmgp

nsE + (1− n)sH . (1)

The formula is further simplified by considering the composite compliance coefficient
of the composite material, given as

1/s = n/sH + (1− n)/sE, (2)



Sensors 2023, 23, 9622 9 of 12

where sE is the compliance coefficient of piezoelectric layer, and sH is the compliance
coefficient of magnetostrictive layer. Substituting into Formula (1), we have{

αV
ME =

∣∣∣ dV
dH

∣∣∣
r
= β 8

π2 Qntpdmgp

β = s
sHsE

, (3)

where the piezomagnetic coefficient is deduced as dm = k
√

sµ. Similarly, the piezoelectric
charge constant is expressed as dp = kp

√
sε, and the piezoelectric voltage constant is

gp =
dp
ε . β represents the composite compliance coefficient parameter. Substituting the

above two equalities into Equation (3) yields

αV
ME =

∣∣∣∣ dV
dH

∣∣∣∣
r
= βs

8
π2

√
µ

ε
n(1− n)tQkkp. (4)

Equation (4) summarizes the relation between the magnetoelectric coupling coefficient
of the composite and k and Q values. The magnetomechanical properties of four kinds of
ME composites calculated from the verified Equation (4) are measured, as given in Table 1.

Table 1. Impact factors of αV
ME value of composites.

Composites N 1 Hdc (Oe) 2 L (mH) 3 Q k (%) 4 kp (%) 5 n 6 T (mm) fr (kHz) Cal. (×103
√

H m
s ) 7

440 ◦C-FeSiB/PZT5 6 9 49.3 150 25 29 0.38 0.8 22.20 7.2

500 ◦C-FeSiB/PZT5 6 9 44.1 200 24 27 0.38 0.8 22.34 8.1

440 ◦C-FeSiB/PZT8 9 13 52.0 480 26 24 0.38 1.3 23.76 16.5

500 ◦C-FeSiB/PZT8 9 13 50.1 680 22 23 0.38 1.3 23.89 18.6

1 N indicates the number of magnetostrictive layers; 2 the optimal values of the biased field corresponding
to k. 3 the measure values of inductance(L) at 5 kHz; 4 k represents magnetostrictive end magnetomechanical
coupling coefficient of the composite; 5 kp represents pizeoelectric end magnetomechanical coupling coefficient
of the composite; 6 n represents the thickness ratio of magnetostrictive layer to the composite; 7 Cal. represents
calculated relative values of αV

ME as a function of the measured values of the impact factors in Equation (4).

Figure 9 shows the comparison of the calculated and measured values of the magne-
toelectric coupling ability of four kinds of composites in Table 1. Due to the limitation of
measuring means, the variation of some parameters in Equation (4), such as permeability
and the compliance coefficient with magnetostriction, cannot be accurately measured,
so we adopt a semiquantitative method to convert the parameters that cannot be accu-
rately measured into measurable parameters by using the proportional relationship. In
Equation (4), the permeability µ and dielectric constant ε are directly proportional to the

inductance L and relative dielectric constant εr, respectively, according to L = kLµ0µN2S
l ,

where N represents the number of turns of the solenoid coil, S indicates the cross-sectional
area of the coil, kL depends on the ratio of S to the length of the coil l, and ε = εrε0. 8

π2

and thickness ratio n are constants, so the calculation formula of the relative value of the
ME coefficient can be expressed as Cal. =

√
L/N
εr

tQkkp. Accordingly, the unit of relative

values derived from this formula is
√

H m
s , which does not represent any actual physical

meaning. For this reason, it is impossible to compare the calculated relative values directly
with the measured values. However, the results in Figure 9 show that the variation trend
of the calculated relative values of the composites is highly consistent with the measured
values. When the piezoelectric material is the same, the composite with higher temperature
annealed FeSiB has a higher ME coefficient at EMR, while the FeSiB material is the same,
the ME coefficient of the composite with hard PZT8 is also higher.
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Figure 9. Comparison of the calculated and measured values of the magnetoelectric coupling capacity
of four kinds of composites.

The Fe-based amorphous ribbon prepared by the single-wheel rapid quenching process
has an uneven distribution of atomic chemical components along the thickness direction.
The composition of metalloid atoms on the surface of the ribbon is often less than that of
the inner region, so the crystallization temperature near the ribbon surface is lower. After
the annealing process at an appropriate temperature for a certain period of time, the surface
of the Fe-based amorphous ribbon is partially crystallized, while the internal state remains
amorphous. This is a heterostructure composed of surface crystalline and amorphous
reminders, which can significantly improve the ME coefficient of Fe-based amorphous
ribbons when the ribbons are excited at resonant frequency. The surface modification of
FeSiB ribbons after annealing reduces the magnetic loss by establishing the surface-to-
interior stress. The ME coefficients for the composites with the annealed FeSiB ribbons that
are crystallized near the surface regions are enhanced compared to the amorphous ones.

5. Conclusions

FeSiB ribbons annealed at 440 ◦C and 500 ◦C, respectively, are bonded with two
kinds of piezoelectric materials by epoxy to prepare ME composites. Measured values of
αE

ME show that Fe-based amorphous ribbons with surface crystallization can effectively
improve the ME coefficients in magnetostrictive-piezoelectric heterostructures. The αE

ME
value of 500 ◦C-FeSiB/PZT8 heterostructure reaches 5522 V/(Oe*cm) at an EMR frequency
of 23.89 kHz, which is approximately one-third higher than that for 440 ◦C-FeSiB/PZT8
composite. Furthermore, we compared the calculated and measured values of the ME
coefficients by considering the measured inputs parameters, the results showed a good
fit between calculation and measurement. Based on our results, we are able to conclude
that the ME coefficient with surface-modified Fe-based amorphous alloy by the annealing
process can be effectively improved at EMR frequency.
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