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Abstract: The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-
energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality
monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid
data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD)
monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of
the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD
system, which employs convolutional and graph neural networks to learn local spatial characteristics
induced by particles traversing the detector and the global behavior owing to shared backend circuit
connections and housing boxes of the channels, respectively. Recurrent neural networks capture the
temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD
system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD
system achieves production-level accuracy and is being integrated into the CMS core production
system for real-time monitoring of the HCAL. We provide a quantitative performance comparison
with alternative benchmark models to demonstrate the promising leverage of the presented system.

Keywords: anomaly detection; monitoring; spatio-temporal; deep learning; graph networks; particle
sensors; CMS; LHC

1. Introduction

Deep learning (DL) has become increasingly prevalent for anomaly detection (AD)
applications for reliability, safety, and health monitoring in several domains with the pro-
liferation of sensor data in recent years [1–3]. AD has been applied for a diverse set of
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tasks, including but not limited to machinery fault diagnosis and prognosis [4,5], electronic
device fault diagnosis [6–9], medical diagnosis [10–13], cybersecurity [14–16], crowd mon-
itoring [17–23], traffic monitoring [24,25], environment monitoring [26], the Internet of
things [3,27], and energy and power management [28,29]. AD aims to determine anomalies
depending on the setting and application domain [2]. An anomaly is generally an odd
observation—abnormalities, deviants, outliers, discords, failures, intrusions, exceptions,
aberrations, peculiarities, or contaminants—from a bulk of observations often indicating
peculiar underlying incidents [1]. AD methods can be categorized as supervised or unsu-
pervised approaches: (1) supervised approaches require annotated ground-truth anomaly
observations, and (2) unsupervised methods do not require labeled anomaly data and are
more generally pragmatic in many real-world application settings, as data annotation is
expensive. Unsupervised AD models trained with only healthy observations are often
categorized as semi-supervised approaches.

Deep learning has become effective for AD modeling because of its capability to cap-
ture complex structures, extract end-to-end automatic features, and scale for large data
sets [1,2]. Several DL models have been proposed in the literature for diverse data types,
such as structural [1], time series [7–9,12,13,16,27,29–38], image [10,26], graph network
data [14,15,24,25,39], and spatio-temporal [10,14,15,17–22,24,25,39]. Spatio-temporal (ST)
data are commonly collected in diverse domains, such as visual streaming data [17–23],
transportation traffic flows [24,25], sensor networks [14,15,39], geoscience [26], medical
diagnosis [10], and high-energy physics [40,41]. A unique quality of ST data that dif-
ferentiates it from other classic data is the presence of dependencies among measure-
ments induced by the spatial and temporal attributes, where data correlations are more
complex to capture by conventional techniques [42]. ST anomaly is thus defined as a
data point or cluster of data points that violate the nominal ST correlation structure
of the healthy ST data [10,14,15,17–22,24,25,39]. The wide range of unsupervised DL
AD methods discover anomalies in temporal context using density clustering on latent
space [9], data reconstruction [9,13,30], and prediction [16,27,30,33,34]. Variants of recur-
rent neural networks (RNNs) [7–9,13,21,22,24,27,34,35], convolutional neural networks
(CNNs) [9,18–21,27,30,33,34], generative adversarial networks (GANs) [12,29,35,36], graph
neural networks (GNNs) [24,25,30,37,38], and transformers [37] have been explored and
achieved competitive performance for multivariate temporal or ST AD.

The Large Hadron Collider (LHC) is the largest particle collider ever built globally. It is
designed to conduct experiments in physics and increase our understanding of the universe,
expecting that new findings will lead to practical applications. The LHC is a two-ring
superconducting hadron accelerator and collider capable of accelerating and colliding
beams of protons and heavy ions with the unprecedented luminosity of 1034 cm−2s−1 and
1027 cm−2s−1, respectively, at a velocity close to the speed of light—3× 108 ms−1 [43,44].
The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy
physics (HEP) at the LHC [40]. The CMS employs a data quality monitoring (DQM) system to
guarantee high-quality physics data through online monitoring that provides live feedback
during data acquisition and offline monitoring that certifies the data quality after offline
processing [45]. The online DQM identifies emerging problems using a reference distribu-
tion and predefined tests to detect known failure modes using summary histograms, such
as a digi-occupancy map of the CMS calorimeters [46,47]. A digi-occupancy map contains a
histogram record of particle hits of the data-recording channels of the calorimeters. The
calorimeters could have several flaws, such as issues with the front-end particle sensing
scintillators, digitization and communication systems, backend hardware, and algorithms,
which are usually reflected in the digi-occupancy map. The growing complexity of the
detector and the physics experiments make data-driven AD systems essential tools for the
CMS to identify and localize detector anomalies automatically. The CMS detector consists
of a tracker to reconstruct particle paths accurately, two calorimeters—the electromagnetic
(ECAL) and the hadronic (HCAL) calorimeters to detect electrons, photons, and hadrons,
respectively—and several muon detectors. The synergy in AD has thus far achieved promis-
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ing results on spatial 2D histogram maps of the DQM for the ECAL [48] and the muon
detectors [49].

Previous studies only considered extreme anomalies, such as no reading, dead, and
high-noise, hot-particle-sensing calorimeter channels. Detecting degrading channels is
essential for quality deterioration monitoring and early intervention, but they are often
challenging to capture; for instance, the improperly tuned bias voltage on the HCAL
physics-particle-sensing channels caused nonuniformity in the hit map of the DQM, but
the channels were neither dead nor hot [50]. The calorimeter channels may degrade with a
subtle abnormality before reaching extreme channel fault status. Capturing such subtle
anomalies, e.g., a slow system degradation, makes temporal AD models appealing for early
anomaly prediction before ultimate system failure. Time-aware models extract temporal
context to enhance AD performance. A few efforts have thus far been focused on temporal
models despite the acknowledged potential in the future automation technology challenges
at the LHC [7,48]. Our study focuses on DQM automation through time-aware AD model-
ing using digi-occupancy histogram maps of the HCAL. The digi-occupancy data of the
HCAL are 3D due to its depthwise calorimeter segmentation. It poses multidimensional
challenges, and it is relatively unexplored in ML endeavors. The particle hit map data
of the HCAL are highly dependent on the collision luminosity—a measure of how many
collisions are happening in a particle accelerator—and the number of particles traversing
the calorimeter. The effort on data normalization that enhances the learning generalization
of machine learning models is still limited.

In this study, we address the above gaps while investigating the performance of
temporal DL models in enhancing AD for the HCAL DQM system. We propose to de-
tect anomalies of the HCAL particle-sensing channels through a semi-supervised AD
system—GraphSTAD—from spatial digi-occupancy maps of the DQM. Anomalies can be
unpredictable and come in different patterns of severity, shape, and size, often limiting
the availability of labeled anomaly data covering all possible faults. We employ a semi-
supervised approach for the AD system; the concept for the AD is that an autoencoder
(AE) trained to reconstruct healthy digi-occupancy maps would adequately reconstruct the
healthy maps, whereas it would yield a high reconstruction error for maps with anomalies.
Since abnormal events can have a spatial appearance and temporal context, we combine
both the spatial and temporal features—spatio-temporal—for the AD [14,17–24,26]. The
spatial nature of the digi-occupancy map of the HCAL may exhibit irregularity; although
adjacent channels with the Euclidean distance are exposed to collision article hits around
their region, the channels may belong to different backend circuits, resulting in a non-
Euclidean spatial behavior on the digi measurements. The GraphSTAD system captures the
behavior of channels from regional collision particle hits, and electrical and environmental
characteristics due to the shared backend circuit of the channels to effectively detect the
degradation of faulty channels. The AD system attains these utilities using a deep AE model
that learns the local spatial behavior, the physical-connectivity-induced shared behavior,
and the temporal behavior through convolutional neural networks (CNNs), graph neural
networks (GNNs), and recurrent neural networks (RNNs), respectively.

We evaluate our proposed AD approach in detecting spatial faults and temporal
discords on digi-occupancy maps of the HCAL. We simulate different realistic types of
anomalies—dead channels without registered hits and hot channels dominated by electronic
noise—resulting in a much higher hit count than expected, and degraded channels with
deteriorated particle detection efficiency, resulting in lower hit counts than expected, to
analyze the effectiveness of the AD model. The results demonstrate promising performance
in detecting and localizing the anomalies. We further validate the efficacy in detecting real
anomalies and discuss comparisons to benchmark models and the existing DQM system.

We briefly describe the DQM and HCAL systems in Section 2, and our data sets in
Section 3. Section 4 explains the methodology of the proposed GraphSTAD model, and
Section 5 presents the performance evaluation and result discussion. Finally, we summarize
the contribution of our study in Section 6.
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2. Background

This section describes the DQM and HCAL systems of the CMS experiment.

2.1. Data Quality Monitoring of the CMS Experiment

The detector and collision data’s offline processing complexity requires continuous
data quality monitoring. Shifters and physicists at the CMS monitor the collision quality
and select data usable for analysis; they look for unexpected issues that could affect the
data quality, e.g., noise spikes, dead areas of the detector, and calibration problems [51].
The DQM provides feedback on detector performance and data reconstruction; it generates
a list of certified data for physics analyses—the “Golden JSON” [45]. The DQM employs
online and offline monitoring mechanisms: (1) the online monitoring is a real-time DQM
during data acquisition, and (2) the offline monitoring—after 48 h since the collisions were
recorded—provides the final fine-grained data quality analysis for data certification. The
online DQM populates a set of histogram-based maps on a selection of events and provides
summary plots with alarms that DQM experts inspect to spot problems. The digi-occupancy
maps—one of the maps generated by the online DQM—incorporate particle hit histogram
records of the particle readout channel sensor of the calorimeters. A digi—also called
hit—is a reconstructed and calibrated collision physics signal of the calorimeter. Various
faults in the calorimeter affecting the front-end hardware and software components appear
in the digi-occupancy map. Previous efforts by [45,48,49,52] demonstrate the promising AD
efficacy of using digi-occupancy maps for calorimeter channel monitoring using machine
learning. However, end-to-end DL with temporal models is relatively unexplored [48,49].

The purpose of leveraging the DQM through machine learning is to address particular
challenges: (1) the latency of human intervention and thresholds require sufficient statistics;
(2) the volume of data a human can process in a finite time is limited; (3) rule-based
approaches do not scale and assume limited potential failure scenarios; (4) dynamic running
conditions change reference samples; (5) the effort to train human shifters who monitor
DQM dashboards and maintain instructions is expensive. Developing machine learning
models for the DQM comes with some impediments despite the potential promises; data
normalization to handle variation in experimental settings, the granularity of the failures
to spot, and limited availability of the ground-truth labels are among the challenges [49].

We extend the efforts in AD with ST modeling of the digi-occupancy maps of the DQM
for the HCAL. Several promising ST AD models have been proposed in the literature in
diverse domains [10,14,15,17–26,39]. The previous AD studies on video data sets [18–21]
focus on CNNs for regular spatial feature extraction, and GNNs are gaining popularity
for sensor and traffic flow data [24,25] that exhibit irregular spatial attributes with a non-
Euclidean distance among nodes. GNNs have recently achieved promising results at the
LHC [41,53] and outperformed CNN in learning irregular calorimeter geometry [54] and
in pileup mitigation [55]. The spatial characteristics of the HCAL channels exhibit a regular
spatial positioning of particle hits in the calorimeter and an irregularity in measurement due
to adjacent channels may share different backend circuits. Our proposed study presents an
AD model for the DQM by integrating both CNNs and GNNs [56,57] to capture Euclidean
and non-Euclidean spatial characteristics, respectively, and an RNN for temporal learning.

2.2. Readout Boxes of the Hadron Calorimeter

The HCAL is a specialized calorimeter to capture hadronic particles. The calorimeter
is composed of multiple subsystems such as HCAL Endcap (HE), HCAL Barrel (HB), HCAL
Forward (HF), and HCAL Outer (HO) (see Figure 1).
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Figure 1. Schematic of the CMS detector and its calorimeters [58].

The HCAL subsystems are made of readout boxes (RBXes) to house the data acquisition
electronics. The RBXes provide high voltage, low voltage, backplane communications, and
cooling to the data acquisition electronics. The HE—the use-case of our study—consists
of 36 RBXes arranged on the plus and minus hemispheres of the CMS. Its front-end
particle detection system is built on brass and plastic scintillators, and the produced photon
is transmitted via the wavelength-shifting fibers to silicon photomultipliers (SiPMs) (see
Figure 2). Each RBX comprises 4 readout modules (RMs) for signal digitization [59]; each
RM has 48 SiPMs and 4 readout cards, each including 12 charge-integrating and -encoding
channels (QIE11 ASICs) connected to corresponding SiPMs and a field-programmable gate
array (Microsemi Igloo2 FPGA). A QIE integrates the charge from a SiPM at 40 MHz, and
the FPGA serializes and encodes the data from 12 QIE channels (see Figure 2). The encoded
data are optically transmitted to the backend system via the CERN versatile twin transmitter
(VTTx) at 4.8 Gbps. The HE system has 17 detector scintillator layers that are read out in
seven groups—hereafter referred to as depths; the light from the scintillators in any given
group is optically added together by sending it to a single SiPM. Additional channels enable
a more refined depth segmentation, ideal for precisely calibrating the depth-dependent
radiation damage on the HCAL [45].

Figure 2. The data acquisition chain of the HE, including the SiPMs, the front-end readout cards, and
the optical link connected to the backend electronics [59]. Each readout card contains 10–12 QIE11
for charge integration, an Igloo2 FPGA for data serialization and encoding, and a VTTx optical
transmitter. A fault in the chain may cause anomalous digi-occupancy reading in the online DQM.

3. Data Set Description

We employed digi-occupancy map data of the online DQM system to train and validate
the proposed AD system. The collision data of the LHC are aggregated into runs, each
containing thousands of lumisections. A lumisection (LS) corresponds to approximately
23 s of data acquisition and comprises hundreds or thousands of collision events containing
particle hit records. The digi-occupancy maps generated by the online DQM contain
particle hit histogram records of the particle readout channel sensor of the calorimeters.
Several faults in the calorimeter affecting the front-end particle-sensing scintillators, the
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digitalization and communication systems, the backend hardware, and the algorithms
usually appear in the digi-occupancy map. The value of the digi-occupancy varies with the
received luminosity recorded by the CMS—hereafter referred to as the luminosity—and
the number of events—particles traversing the calorimeter. The maps from a sequence of
LSs constitute the attribution of ST data with correlated spatial and temporal relations [42].

The digi-occupancy map root-file data sets were collected in 2018 during the LHC
RUN-2 collision by the CMS experiment. The data set, from the CMS ZeroBias Primary
Dataset, contains approximately 20,000 LSs from 20 different healthy runs prescrutinized by
the CMS certifiers and declared in the “Golden JSON” of the DQM as of good quality [60].
The digi-occupancy map data of the HCAL have 3D spatial dimensions with η φ, and
depth axes and contain digi histogram records of the physics readout channel sensor of the
calorimeter referenced by iη = [−32, 32], iφ = [1, 72], and depth = [1, 7] axes (see Figure 3).
The maps—one per LS—were populated with the per-LS received luminosity up to 0.4 pb−1

and the number of events up to 2250. Our working data set contains about 20,000 map
samples, each with a dimension of [iη = 64× iφ = 72× depth = 7]).

Figure 3. Digi-occupancy map (year = 2018, RunId = 325170, LS = 15) of the HE. The HE channels
are placed in |iη| = [16, 29], iφ = [1, 72], and depth = [1, 7]. Each pixel in the map corresponds
to the readout of an HE channel. The HCAL covers a considerable volume of CMS and has a fine
segmentation along three axes (iη, iφ, and depth). The missing section at the top left is due to two
failed RBXes during the 2018 collision runs.

4. Methodology

This section presents the proposed GraphSTAD approach for HCAL monitoring using
digi-occupancy maps.

There is a lack of adequate labeled anomaly data covering all possible channel fault
scenarios for the HCAL, and the anomalies may follow unpredictable patterns with different
severity, shape, and size. We thus employed a semi-supervised approach for the AD
system—GraphSTAD system; we trained a deep AE model to reconstruct healthy digi-
occupancy maps with low contamination of anomalies. We present an ST reconstruction
AE to detect abnormality in the HCAL channels using reconstruction deviation scores on
ST digi-occupancy maps from consecutive lumisections (see Figure 4). The AE combines
CNNs, GNNs, and RNNs to capture ST characteristics of digi-occupancy maps. The spatial
feature extraction of the CNNs is leveraged with GNNs to learn circuit and housing-
connectivity-induced spatial behavior irregularities among the HCAL sensor channels.
There are approximately 7000 channels—pixels—on the digi-occupancy map of the HCAL
endcap subsystem, housed in 36 RBXes. The channels in a given RBX are susceptible to
system faults in the RBX due to the shared backbone circuit and environmental factors
like temperature and humidity. Our proposed GraphSTAD employs GNNs in its spatial
feature extraction network pipeline to capture the characteristics of the HCAL channels
owing to their shared physical connectivity to a given RBX. GNNs have recently achieved
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promising results in several applications at the LHC [41,53] and outperformed CNNs in
learning irregular calorimeter geometry [54] and in pileup mitigation [55]. The GraphSTAD
system exploits both CNNs and GNNs [56,57] to capture Euclidean and non-Euclidean
spatial characteristics of the HCAL channels, respectively.

Figure 4. The proposed channel-localized AE reconstruction AD system. The AE reconstructs the
input ST digi-occupancy map, and a spatial AD decision is performed using the anomaly scores
estimated from the ST reconstruction errors.

4.1. Data Preprocessing

This section explains the data preprocessing stages of our proposed AD approach:
(1) digi-occupancy renormalization, and (2) graph adjacency matrix generation.

4.1.1. Digi-Occupancy Map Renormalization

The digi-occupancy (γ) map data of the HCAL vary with the received luminosity (β)
and the number of events (ξ) (see Figure 5). We devised a renormalization of γ through
a regression model R to have a consistent quantity interpretation of γ and build an AD
model that robustly generalizes previously unseen run settings—β and ξ variations. The
modelR estimates the renormalizing γ̄s at the sth LS using β and ξ as:

γ̄s = R(ξ, β) (1)

The modelR is trained to minimize the MSE cost function, E[(γs − γ̄s)2], where γs is
calculated as:

γs = ∑
∀i

γ(s, i) (2)

where γ(s, i) is the digi-occupancy of the ith channel in the map at the sth LS. Finally, the
per-channel γ(s, i) is renormalized by its corresponding γ̄s as:

γ̂(s, i) =
Kγ(s, i)

γ̄s
(3)

where γ̂ is the renormalized γ, and K is a scaling factor to compensate for the difference in
the number of channels on the depth axes.

We employ fully connected (FC) neural networks to build the regression model to
effectively capture the nonlinear relationships illustrated in Figure 5:

input(ξ, β)→ ReLU(FC(64))→ ReLU(FC(64))→ ReLU(FC(7))→ output(γ̄s) (4)
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Figure 6 depicts the data distribution of γs before and after renormalization withR.
The renormalization has successfully handled the discrepancies on the γs from several runs;
it overlaps and centers distributions of γ̂s and minimizes the outliers.

Figure 5. Digi-occupancy and run settings—the received luminosity and the number of events—in LS
granularity. The number of events did not fully follow the drop in luminosity (bottom plot) and digi-
occupancy (top-right plot), in contrast to the simultaneous shift in luminosity and digi-occupancy
(top-left plot)—portraying the nonlinear behavior of the LHC. The different colors correspond to
different collision runs.

Figure 6. Distribution of total digi-occupancy per LS before and after renormalization. From left to
right: (top) the received luminosity, and the number of events; (bottom) the digi-occupancy, and the
renormalized digi-occupancy obtained with the regression model described in the text. The different
colors correspond to different runs.
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4.1.2. Adjacency Matrix Generation for Graph Network

We employed an undirected graph network G(V , Θ) to represent the calorimeter
channels in a graph network based on their connection to a shared RBX system. The graph
G contained nodes υ ∈ V , with edges (υi, υj) ∈ Θ in a binary adjacency matrix A ∈ RM×M,
where M is the number of channel nodes. An edge indicated the channels sharing the same
RBX as:

A(υi, υj) =

{
1, if Ω(υi) = Ω(υj)

0, otherwise
(5)

where Ω(υ) returns the RBX ID of the channel υ.
There are about 7K channels in a graph representation of the digi-occupancy map

of the HE calorimeter—each RBX network contains roughly 190 nodes. We retrieved the
channel to RBX mapping from the calorimeter segmentation map of the HE.

4.2. Anomaly Detection Modeling with Autoencoder Model

We denote the AE model of the GraphSTAD system as F . The ST data,
X ∈ RT×Niη×Niφ×Nd×N f , are represented as a sequence in a time window tx ∈ [t − T, t],
where Niη × Niφ × Nd is the spatial dimension corresponding to the iη, iφ, and depth axes,
respectively, and N f = 1 is the number of input variables—only a digi-occupancy quantity
in the spatial data. Fθ,ω : X→ X̄ is parameterized by θ and ω and attempts to reconstruct
the input ST data X and outputs X̄. The encoder network of the model Eθ : X→ z provides
the low-dimension latent space z = Eθ(X), and the decoder Dω : z → X̄ reconstructs the
ST data from z–X̄ = Dω(z) as:

X̄ = Fθ,ω(X) = Dω(Eθ(X)) (6)

The channel anomalies can be transients—short-lived and impacting only a single
digi-occupancy map—or persist over time—affecting a sequence of maps. The spatial
reconstruction error e to detect a transient anomaly is calculated as:

ei = |xi − x̄i| (7)

where xi ∈ X and x̄i ∈ X̄ are the input and reconstructed digi-occupancy of the ith channel.
ei detects a channel abnormality occurrence on isolated maps. We opted for an aggregated
error in a time window T using the mean absolute error (MAE) to capture a time-persistent
anomaly as:

ei,MAE =
1
T

t

∑
t′=t−T

ei(t′) (8)

We standardized ei to regularize the reconstruction accuracy variations among the
channels, allowing a single AD decision threshold α to all the channels in the spatial map:

si =
ei
σi

(9)

where σi is the standard deviation of ei, or ei,MAE if the time window is considered, on
the training data set. The anomaly flags ai are generated after applying α to the anomaly
scores—ai = si > α. α is a tunable constant that controls the detection sensitivity.

4.3. Autoencoder Model Architecture

Convolutional neural networks have achieved state-of-the-art performance in several
applications, mainly with image data [18–21,24]. The shared nature of the kernel filters of
CNNs substantially reduces the number of trainable parameters in the model compared to
fully connected neural networks. Directly supplying the learned spatial features to temporal
neural networks such as RNNs could become inherently challenging due to the considerable
computational demand for high-dimensional data. We employed CNNs and GNNs with a
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pooling mechanism to extract relevant features from high-dimensional spatial data followed
by RNNs to capture temporal characteristics of the extracted features (see Figure 7). We
integrated the variational layer [61] at the end of the encoder for overfitting regularization
by enforcing continuous and normally distributed latent representations [9,31,62,63].

Conv3D: 3D convolutional neural network; GCN: graph convolutional neural networks; Deconv3D: 3D deconvo-
lutional neural networks; BN: batch normalization; LSTM: long short-term memory recurrent networks; FC: fully
connected neural networks.

Figure 7. The architecture of the proposed AE for the GraphSTAD system. The GNN and CNN are
for spatial feature extraction at each time step, and the RNN captures the temporal behavior of the
extracted features. The encoder incorporates the GNN for backend physical connectivity among
the spatial channels, CNN for regional spatial proximity of the channels, and RNN for temporal
behavior extraction. The decoder contains RNN and deconvolutional neural networks to reconstruct
the spatio-temporal input data from the low-dimensional latent features.

The CNN of the encoder has Lc networks, each containing Conv3D(·, kernel_size =
[3 × 3 × 3]) for regular spatial learning followed by batch normalization (BN) for net-
work weight regularization and faster convergence, ReLU for nonlinear activation, and
MaxPooling3D for spatial dimension reduction. The model can be summarized as:

yc
t , ψc

t = Pool(ReLU(BN(Conv3D(xl
t, Nl

c))))|l=1,...,Lc (10)

where xl
t is the input spatial γ map data at time step t, and Nl

c is the feature size of the lth net-
work. yc

t is the extracted feature set of the CNN at t. Pool(·) denotes MaxPooling3D(·, stride =
[2× 2× 2]). ψc

t holds the pooling spatial location indices of the MaxPooling3D layers to be
used later for upsampling in the decoder during map reconstruction. The final extracted
feature set Yc ∈ RT×Nc of the CNN is an aggregation of all yc

t in the time window T,
concatenated on the time dimension:

Yc = [yc
1, yc

2, ..., yc
T ] (11)

We used Lc = 4 to map the input spatial dimension [64× 72× 7] into [4× 4× 1], which
yielded a reduction factor of 2Lc and expanded the feature space of the input from N f = 1
to Nc = 128. N′c : [4× 4× 1× 128] = 2048 spatial features were generated after reshaping.

The GNN of the encoder has Lg networks of a graph convolutional network (GCN)
with a ReLU activation, and a final global attention pooling [64]. The networks are summa-
rized as:

yg
t = Pool(ReLU(GCN(xl

t, Nl
g)|l=1,...,Lg))

Yg = [yg
1 , yg

2 , ..., yg
T ]

(12)

where the GCN layers have a feature size of Nl
g, and Pool(·) signifies the

GlobalAttentionPooling(·) at the end of the GNN. GlobalAttentionPooling aggregates the
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graph node features with an attention mechanism to obtain the final feature set of the GNN
Yg ∈ RT×Ng . Similar to the CNN, we set Lg = 4 and Ng = 128 to generate the Yg.

The encoded ST feature set ζ ∈ R1×Nz is obtained by learning the temporal context
on the extracted spatial features Y = [Yc, Yg] with two layers of long short-term memory
(LSTM) as:

ζ = LSTM(Y, Nl
r)|l=1,2 (13)

where Nl
r is the feature size of the lth LSTM layer. The last layer (N2

r = Nz = 32) generates
the low-dimensional latent representation of the encoder. The VAE layer of the encoder
generates the normally distributed representation latent features z as:

z = µz + σz � ε (14)

where � signifies an element-wise product with a standard normal distribution sampling
ε ∼ N (0, 1) [62]. µz and σz of the VAE are implemented with FC layers taking ζ as input.

The decoder network of the AE is comprised of an RNN and a CNN to reconstruct
the target ST data from the latent features. The decoding starts with a temporal feature
reconstruction using an LSTM network as:

ζ̄ = LSTM(z, Nl
r)|l=1,2 (15)

where ζ̄ is the reconstructed temporal feature set from the latent space z. A spatial recon-
struction follows for each time step t through a multilayer deconvolutional neural network.
Each network starts with MaxUnpooling3D(·, stride = [2× 2× 2], ψc

l ) to upsample the
spatial data using localization indices ψc

l from the lth MaxPooling3D of the encoder fol-
lowed by a deconvolutional layer (Deconv3D(·, kernel_size = [3× 3× 3])) [65], a BN, and
a ReLU. Eventually, Deconv3D(·, kernel_size = [1× 1× 1]) is incorporated for the final
output stabilization. The decoder network is summarized as:

x̄t = ReLU(BN(Deconv3D(Unpool(ζ̄t, ψc
t ), Nl

c))|l=1,...,Lc

x̄t = ReLU(Deconv3D(x̄t, N f ))
(16)

where x̄t is the reconstructed spatial data, and Unpool(·) denotes MaxUnpool3D(·). The
final reconstructed ST data X̄ ∈ RT×Niη×Niφ×Nd×N f are obtained as:

X̄ = [x̄1, x̄2, ..., x̄T ] (17)

4.4. Model Training

We trained the AE on healthy digi-occupancy maps of LHC collision runs. The model-
ing task became a multivariate learning problem since the target data contained readings
from multiple calorimeter channels in the spatial digi-occupancy map. An appropriate
scaling of the spatial data was thus necessary for effective model training; we further
normalized the spatial data per channel into a range of [0, 1]. We also observed that the
γ distribution of the channels at the first depth of the spatial map was different from the
channels at the higher depths (see Figure 3); a distribution imbalance on target channel
data affects model training efficacy when well-known statistical algorithms, e.g., MSE, are
employed as loss functions. The MSE loss minimizes the cost of the entire space, and it
may converge to a nonoptimal local minimum in the presence of an imbalanced data distri-
bution; this phenomenon is known as the class imbalance challenge in machine learning
classification problems. A widely used remedy is to employ a weighting mechanism—
assigning weights to the different targets. We applied a weighted MSE loss function to
scale the loss from the different distributions, the depth ∈ 1 and depth ∈ 2, . . . , 7:

L′ = ∑
j

ς j

Mj
∑

i∈Cj

(xi − x̄i)
2 (18)
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where xi is the γ̂ of the ith channel in the jth group set Cj, Mj is the number of channels in
Cj, and ς j is the weight factor of the MSE loss of the jth group. We holistically set ς1 = 0.4
and ς2 = 1 after experimenting with different ς values.

The VAE regularized the training MSE loss using the KL divergence loss DKL to
achieve the normally distributed latent space as:

L = argmin
W∈R

{
L′ − βDKL[N (µz, σz)‖N (0, I)] + ρ‖W‖2

2

}
(19)

whereN is a normal distribution with zero mean and unit variance, and ‖.‖ is the Frobenius
norm of the L2 regularization for the trainable model parameters W. β = 0.003 and ρ = 10−7

are tunable regularization hyperparameters. We finally used the Adam optimizer with
superconvergence via one-cycle learning rate scheduling [66] for training.

5. Experimental Results and Discussion

AD studies for the DQM inject simulated anomalies into good data to validate the
effectiveness of the developed models since a small fraction of the data is affected by real
anomalies [48]. Likewise, we trained the GraphSTAD autoencoder model using four GPUs
on 10,000 digi-occupancy maps—from LS sequence number [1, 500]—and evaluated on
LSs [500, 1500] injected with synthetic anomalies simulating real dead, hot, and degraded
calorimeter channels. We employed early stopping using 20% of the training dataset to
estimate the validation loss during each training epoch (see Figure 8). The model training
achieved good fitting and generalization, as demonstrated by the low loss and closeness
between the training and validation losses.

Figure 8. GraphSTAD autoencoder model training (early stopping = 20 epochs, learning rate = 10−3, weight
regularization = 10−7, training time = 82 min). The low training loss indicates a good model fitting—no
underfitting—to the data set, and the low validation loss demonstrates a good generalization—
no overfitting.

Figure 9 demonstrates the capability of the proposed ST AE in reconstructing normal
digi-occupancy maps from a sequence of lumisections. The AE accomplished a promising
reconstruction ability on the ST digi-occupancy data. A high reconstruction accuracy on
the healthy data is essential to reduce false-positive flags when a semi-supervised AE is
employed for AD application. We further discuss the reconstruction error distribution
comparison on the healthy and abnormal channels in Section 5.1.2.
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Figure 9. ST digi-occupancy maps’ reconstruction on samples from the test data set (RunId: 325170,
LS = [500, 750]). The figure illustrates the total digi-occupancy across the seven depths—γ̂l . Our
GraphSTAD AE operates on ST γ map data, and we present the above plots, corresponding to the γl
per LS, to demonstrate the capability of the AE in handling the fluctuation across the sequence of LSs.

We discuss below the performance of our proposed model, comparisons with bench-
mark models, detection results on real faulty channels, and model complexity cost.

5.1. Anomaly Detection Performance

We created synthetic anomalies to simulate dead, hot, and degraded channels and then
injected them into healthy digi-occupancy maps. We subsequently evaluated the ability of
the AD to detect the injected anomalies. The anomaly generation algorithm involved three
steps: (1) a selection of a random set of LSs τ ∈ [500, 1500] from the test set, (2) a random
selection of spatial locations ϕ for each τ, where ϕ ∈ {iη × iφ× depth} on the HE axes (see
Figure 3), and (3) injection of anomalies. The anomalies were simulated using degrading
factor RD with γa = RDγh, where γa and γa are the healthy and anomaly channel γ values:
dead (RD = 0, and γa = 0), hot (RD > 1, and γa >> γh), and degraded (0 < RD ∈< 1,
and 0 ≤ γa < γh). We kept the same τ and ϕ as for the generated anomalies for consistency
when evaluating the AD performance of the different anomaly types.

5.1.1. Detection of Dead and Hot Channels

We evaluated the AD accuracy on dead—γa = 0, RD = 0—and hot—γa = RDγh,
RD = 200%—channels on the 10,000 maps—5000 maps for each anomaly type. Tables 1 and 2
present the AD performance on transient anomalies—short-lived in isolated maps—and
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time-persisting anomalies—encroaching consecutive maps in a time window—respectively.
Our model achieved a good accuracy with precise localization of the faulty channels—a
0.99 precision when capturing 99% of the faulty channels. Time-persistent anomalies were
easier to detect; the FPR generally improved by 13–23% and 28–40% for the dead and
hot anomalies, respectively, compared to the short-lived anomalies on isolated LSs. We
observed that most false positives (FPs) occurred on channels with a low expected γh,
where the model achieved a relatively lower reconstruction accuracy. The performance was
not entirely unexpected since we trained the AE to minimize a global MSE loss function (19).
The reconstruction errors became relatively high for channels with low γ ranges that limited
the effectiveness in distinguishing the anomalies when capturing 99% of the time-persistent
dead channels using (8).

We monitored roughly 31.28 million HE sensor channels, of which 335,000 (1.07%)
were simulated abnormal channels, from the 5000 maps on the isolated map evaluation in
Table 1. The monitored channels grew to 156 million with 1.68 million (1.07%) anomalies
for the evaluation of time-persistent anomalies in Table 2 using five time-window maps
resulting in 25,000 maps.

Table 1. AD on dead and hot channel anomalies on isolated digi-occupancy maps.

Anomaly Type Captured Anomalies P R F1 FPR

Dead Channel
99% 0.999 0.99 0.995 6.722× 10−6

95% 1.000 0.95 0.974 3.102× 10−6

90% 1.000 0.90 0.947 2.068× 10−6

Hot Channel
99% 0.999 0.99 0.994 9.113× 10−6

95% 1.000 0.95 0.974 1.939× 10−6

90% 1.000 0.90 0.947 1.196× 10−6

P—precision, R—recall, F1—F1-score, FPR—false positive rate.

Table 2. AD on time-persistent dead and hot channel anomalies.

Anomaly Type Captured Anomalies P R F1 FPR

Dead Channel
99% 0.999 0.99 0.995 7.691× 10−6

95% 1.000 0.95 0.974 2.715× 10−6

90% 1.000 0.90 0.947 1.616× 10−6

Hot Channel
99% 0.999 0.99 0.995 5.461× 10−6

95% 1.000 0.95 0.974 1.357× 10−6

90% 1.000 0.90 0.947 7.756× 10−7

5.1.2. Detection of Degrading Channels

Table 3 presents the AD accuracy of time-persistent degraded channels simulated
with RD = [80%, 60%, 40%, 20%, 0%]; RD = 0% corresponds to a dead channel. We
injected the generated channel faults into 1000 maps for each decay factor. We monitored
around 156 million channels, of which 1.74 million (1.11%) were abnormal channels, from
the total of 25,000 digi-occupancy maps—5000 maps per time window. The AD system
demonstrated a promising potential in detecting degraded channel anomalies. The FPR
to capture 99% of the anomaly was 2.988%, 0.155%, 0.022%, 0.002%, and 0.001% when
channels operated at 80%, 60%, 40%, 20%, and 0% of their expected capacity, respectively.

The relatively lower precision at RD = 80% indicated that there were still a few anoma-
lies challenging to catch despite the very low FPR considering the accurate classification
of numerous true-negative healthy channels (see Figure 10); the channels operating at
RD = 80% were mostly inliers overlapping with the healthy operating ranges, and de-
tecting them was difficult when the expected γh of the channel was low. The significant
improvement of the FPR by 88% and 95% when the number of the captured anomalies was
reduced to 95% and 90%, respectively, demonstrated a small percentage of the channels
caused the performance drop at RD = 80%. Figure 11 illustrates the overlap regions on the
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distribution of the reconstruction errors of the healthy and faulty channels at the various
RD values.

Table 3. AD on time-persistent degraded channels.

Anomaly Type RD FPR (90%) FPR (95%) FPR (99%)

Degraded Channel

80% 1.636× 10−3 3.614× 10−3 2.988× 10−2

60% 1.329× 10−4 3.834× 10−4 1.550× 10−3

40% 8.405× 10−6 2.764× 10−5 2.242× 10−4

20% 2.263× 10−6 5.173× 10−6 2.505× 10−5

0% 9.699× 10−7 1.778× 10−6 6.142× 10−6

Figure 10. AD classification performance on time-persistent degraded channels.

Figure 11. Reconstruction error distribution of healthy and anomalous channels at different RD’s.
The overlap region decreases substantially as the channel deterioration increases (left to right).

5.2. Performance Comparison with Benchmark Models

We quantitatively compared alternative benchmark models to validate the capability of
GraphSTAD (see Figure 12). The benchmark AE models employed a similar architecture as
the GraphSTAD AE but with different layers. The results demonstrated that the integration
of the GNN had a significant performance improvement from 1.6 to 3.9 times in the FPR. The
temporal models—with RNN—achieved a three- to fivefold boost over the nontemporal
spatial AD model when capturing severely degraded channels. The GraphSTAD system
had a substantial 25-time amelioration over the nontemporal model for subtle and inlier
anomalies, e.g., channels deteriorated by 20% at RD = 80%. Incorporating temporal
modeling and a GNN enhanced degrading channel detection performance.
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CNNs: convolutional neural networks, GNNs: graph neural networks, BiLSTM: bidirectional LSTM, GRU: gated
recurrent unit, and VAE: variational AE.

Figure 12. Comparison with benchmark models on time-persistent anomaly channels. The Graph-
STAD (CNN + GNN + LSTM + VAE) achieved a significantly lower FPR.

5.3. Detection of Real Anomalies in the HCAL

Our GraphSTAD system caught five real faulty HE channels in collision data RunId =
324841 using the digi-occupancy maps. The faulty channels were located at [iη, iφ, depth] :
[17, 71, 3], [18, 71, 3], [18, 71, 4], [18, 71, 5], and [28, 71, 4] and impacted 52 consecutive LSs
(see Figure 13). Figures 13 and 14 illustrate the detected faults fell into the dead channel
category except the last one LS = 57, where the channels operated in a degraded state—
the γ was lower than expected. Detecting degraded channels is challenging since the γ
reading is nonextreme as in dead and hot channels, and the γ drop overlaps with other
false down-spikes (see LS > 57 in Figure 13). The down-spikes in the digi-occupancy
for LS > 57 are due to a nonlinearity in the LHC—changes in collision run settings (see
Figure 13b); our normalizing regression model successfully handled the fluctuation during
prepossessing before causing false-positive alerts (see Figure 13a). Figures 15 and 16 portray
the spatial anomaly scores during the death and degraded status of the faulty channels; the
high anomaly scores localized at the faulty channels demonstrated the GraphSTAD AD
performance at a channel-level granularity. The existing production DQM system of the
CMS uses rule-based and statistical methods and has also reported these abnormal channels
in a run-level analysis; the results are only available at the end of the run after analyzing all
the LSs for the run [46]. Our approach is adaptive to variability in the digi-occupancy maps
and provides an anomaly localization that detects faulty channels, including nonextreme
degraded channels, per lumisection granularity.

(a)

Figure 13. Cont.
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(b)

Figure 13. Detected real faulty channels on digi-occupancy maps at LS = [6, 57] of RunId = 324841.
(a) The digi-occupancy dropped to near zero for the faulty channels (left and middle plots), resulting
in high anomaly scores (right). Dead (LS = [6, 56]) and degraded channel anomalies (LS = 57) were
captured on the highlighted LSs (red). (b) Collision run settings and the total digi-occupancy per LS.

(a)

(b)
Figure 14. Spatial view on real faulty channels detection from RunId = 324841 collision run data.
(a) The 3D digi-occupancy maps with faulty channels, dead on the left at LS = 6 and degraded on
the right at LS = 57, and (b) the anomaly flags on the 2D map according to the depth axes, red for
an anomaly and green for healthy. Previously known bad channels during model training were
excluded in the plots and were not detected as new.
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(a)

(b)
Figure 15. Spatial view on the detected real dead channels at LS = 6 from RunId = 324841. (a) The raw
2D digi-occupancy maps at the depth axes of the faulty channels and (b) the corresponding anomaly
score maps. The GraphSTAD localized the anomaly scores on the faulty dead channels.

(a)

Figure 16. Cont.
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(b)
Figure 16. Spatial view on the detected real degraded channels at LS = 57 from RunId = 324841.
(a) The 2D digi-occupancy maps at the depth axes of the faulty channels and (b) the corresponding
anomaly score maps. The GraphSTAD localized the anomaly scores on the faulty degraded channels
with a strength proportional to the anomaly severity—lower scores in the color bars than the dead
channels.

5.4. Cost of Model Complexity

We developed the models with PyTorch and trained them on four GPUs of NVIDIA
Tesla V100 SXM3 32GB and an Intel(R) Xeon(R) Platinum 8168 CPU 2.70 GHz. We utilized
a time window T = 5 and batch size B = 8 for training, and the dimension of a batch
was [B × T × Niη × Niφ × Nd × N f ]. The training time of the GraphSTAD model was
approximately 45 s per epoch. The training iteration epoch 200 achieved good accuracy
with a one-cycle learning rate schedule [66]. The nontemporal model—CNN + FC + VAE—
was the fastest, and its superiority emanated from its nonrecurrent networks that only
analyzed a single map instead of a sequential processing of five maps in a time window. The
median inference time of the GraphSTAD system on a single GPU was roughly 0.05 s with
a standard deviation of 0.006 s. The integration of the GNN made the inference relatively
slower compared to the benchmark models (see Figure 17). The processing cost was within
an acceptable range for the CMS production requirement since the input digi-occupancy
map was generated at each lumisection with a time interval of 23 s.

Figure 17. Model inference computational cost relative to the proposed GraphSTAD model (CNN
+ GNN + LSTM + VAE). The GNN increased the inference delay, whereas the nontemporal model
(CNN + FC + VAE) had a speed advantage due to its relatively lower number of model parameters
and its inference on a single map instead of time windowing.

6. Conclusions

In this study, we presented a semi-supervised anomaly detection system for the data
quality monitoring system of the Hadron Calorimeter using spatio-temporal digi-occupancy
maps. We extended the synergy of temporal deep learning developments for the CMS



Sensors 2023, 23, 9679 20 of 23

experiment. Our approach addressed modeling challenges, including digi-occupancy map
renormalization, learning non-Euclidean spatial behavior, and degrading channel detection.
We proposed the GraphSTAD system that combined convolutional, graph, and temporal
learning networks to capture spatio-temporal behavior and achieve a robust localization of
anomalies at a channel granularity on high-dimensional spatial data. The AD performance
evaluation demonstrated the efficacy of the proposed system for channel monitoring. Our
proposed AD system will facilitate monitoring and diagnostics of faults in the front-end
hardware and software systems of the calorimeter. It will enhance the accuracy and
automation of the existing DQM system, providing instant anomaly alerts on a broader
range of channel faults in realtime and offline; the improved monitoring of the calorimeter
will result in the collection of high-quality physics data. The methods and approaches
discussed in this study are domain-agnostic and can be adopted in other spatio-temporal
fields, particularly when the data exhibit regular and irregular spatial characteristics.
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The following abbreviations are used in this manuscript:

AE Autoencoder
AD Anomaly detection
CERN The European Organization for Nuclear Research
CMS Compact Muon Solenoid
CNN Convolutional neural networks
DL Deep learning
DQM Data quality monitoring
FC Fully connected neural networks
GNN Graph neural networks
GraphSTAD Graph-based ST AD model
HCAL Hadron Calorimeter
HE HCAL Endcap detector
HEP High-energy physics
LHC Large Hadron Collider
LS(s) Lumisection(s)
MAE Mean absolute error
MSE Mean square error
QIE Charge integrating and encoding
RBX Readout box
RNN Recurrent neural networks
SiPM Silicon photomultipliers
ST Spatio-temporal
VAE Variational autoencoder
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8. Wielgosz, M.; Skoczeń, A.; Mertik, M. Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets.

Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2017, 867, 40–50. [CrossRef]
9. Asres, M.W.; Cummings, G.; Parygin, P.; Khukhunaishvili, A.; Toms, M.; Campbell, A.; Cooper, S.I.; Yu, D.; Dittmann, J.;

Omlin, C.W. Unsupervised deep variational model for multivariate sensor anomaly detection. In Proceedings of the Interna-
tional Conference on Progress in Informatics and Computing, Online, 17–19 December 2021; IEEE: New York, NY, USA, 2021;
pp. 364–371.

10. Ahmedt-Aristizabal, D.; Armin, M.A.; Denman, S.; Fookes, C.; Petersson, L. Graph-based deep learning for medical diagnosis
and analysis: Past, present and future. Sensors 2021, 21, 4758. [CrossRef]

11. Bakator, M.; Radosav, D. Deep learning and medical diagnosis: A review of literature. Multimodal Technol. Interact. 2018, 2, 47.
[CrossRef]

12. Zhou, B.; Liu, S.; Hooi, B.; Cheng, X.; Ye, J. BeatGAN: Anomalous rhythm detection using adversarially generated time series. In
Proceedings of the International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 4433–4439.

13. Cowton, J.; Kyriazakis, I.; Plötz, T.; Bacardit, J. A combined deep learning GRU-autoencoder for the early detection of respiratory
disease in pigs using multiple environmental sensors. Sensors 2018, 18, 2521. [CrossRef]
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