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Abstract: For autonomous driving, it is imperative to perform various high-computation image
recognition tasks with high accuracy, utilizing diverse sensors to perceive the surrounding environ-
ment. Specifically, cameras are used to perform lane detection, object detection, and segmentation,
and, in the absence of lidar, tasks extend to inferring 3D information through depth estimation,
3D object detection, 3D reconstruction, and SLAM. However, accurately processing all these image
recognition operations in real-time for autonomous driving under constrained hardware conditions
is practically unfeasible. In this study, considering the characteristics of image recognition tasks
performed by these sensors and the given hardware conditions, we investigated MTL (multi-task
learning), which enables parallel execution of various image recognition tasks to maximize their
processing speed, accuracy, and memory efficiency. Particularly, this study analyzes the combinations
of image recognition tasks for autonomous driving and proposes the MDO (multi-task decision and
optimization) algorithm, consisting of three steps, as a means for optimization. In the initial step,
a MTS (multi-task set) is selected to minimize overall latency while meeting minimum accuracy
requirements. Subsequently, additional training of the shared backbone and individual subnets is
conducted to enhance accuracy with the predefined MTS. Finally, both the shared backbone and each
subnet undergo compression while maintaining the already secured accuracy and latency perfor-
mance. The experimental results indicate that integrated accuracy performance is critically important
in the configuration and optimization of MTL, and this integrated accuracy is determined by the
ITC (inter-task correlation). The MDO algorithm was designed to consider these characteristics and
construct multi-task sets with tasks that exhibit high ITC. Furthermore, the implementation of the
proposed MDO algorithm, coupled with additional SSL (semi-supervised learning) based training,
resulted in a significant performance enhancement. This advancement manifested as approximately
a 12% increase in object detection mAP performance, a 15% improvement in lane detection accuracy,
and a 27% reduction in latency, surpassing the results of previous three-task learning techniques like
YOLOP and HybridNet.

Keywords: autonomous driving; multi-task learning; lane detection; object detection; drivable area
segmentation; depth estimation

1. Introduction

Recent technical innovations in deep learning have led to a quantum leap in robot
technology and autonomous driving technology [1]. In particular, various sensors, such as
cameras, lidar, radar, GPS, ultrasonic waves, and IMUs, are used to acquire and process
diverse information related to vehicle situational awareness in order to make driving
judgments and control the vehicle [1–3].

However, to apply the information gathered from these various sensors to autonomous
driving in real time, the corresponding calculations must be lightweight and accelerated [4–18].
Among these sensors, the tasks that require the highest computation and latency are 2D
and 3D context-aware computations, which primarily involve cameras, lidar, and radar.
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In studies [6–8,13–15], network weight reduction and acceleration efforts were conducted
for camera-based 2D object detection and 2D segmentation calculations. In studies [5,14,15],
quantization, pruning, and knowledge distillation methods for light weighting of deep learn-
ing were studied. Study [18] performs acceleration research for camera-based lane detection.

However, because all these studies focus on single tasks, the corresponding operations
must be combined in a real environment where all of them must be used. For this reason,
research on MTL (multi-task learning) was initiated in studies [9–12,19–21], allowing
multiple tasks noted above to be performed simultaneously as much as possible. Multi-task
learning (MTL) is a learning paradigm in machine learning and its aim is to leverage
useful information contained in multiple related tasks to help improve the generalization
performance of all the tasks [22]. Therefore, due to the parallel execution characteristics of
multi-task learning (MTL), essential image recognition tasks for autonomous driving, such
as 2D object detection, lane detection, and drivable area segmentation, were conducted
using MTL. However, among these studies on multi-task learning, there has been no
research addressing optimal design methodologies for three-task configurations. In fact,
most multi-task learning (MTL) studies feature complex structures and intricate training
processes, making it challenging to reproduce their performance. Particularly in multi-task
learning (MTL), the determination of an optimal combination of components is critical.
This includes the shared backbone and its lightweight version, subnets for each task, loss
functions dictating subnet training performance, and task-specific optimizers and training
details, all of which significantly impact the safety of autonomous driving. From an
accuracy perspective, concurrently executing multiple tasks can lead to improper training of
the shared backbone weights, potentially degrading each task’s performance and adversely
affecting the safety of autonomous driving. In terms of latency, if the latency of each task
slows down beyond the required threshold, it can prevent the decision-making and control
stages of autonomous driving from being executed within an appropriate time frame,
leading to potentially severe accidents. Additionally, regarding memory size, if each task
consumes an increasing proportion of the limited hardware memory in an autonomous
vehicle, it can place additional load on the overall system operations, compromising stability.
Therefore, in this study, we experimented with various combinations of these details that
determine the performance of each task in MTL and proposed a solution through the MDO
(multi-task decision and optimization) algorithm to find the optimal configuration.

2. Related Work

In the field of situational awareness for self-driving technology, it is crucial to execute
image recognition tasks with high precision in real time. In particular, information from
various sensors should be utilized to enable safe and reliable driving decisions.

Among these, representative image recognition tasks based on cameras include 2D
tasks such as object detection, semantic segmentation, and lane detection, as well as 3D
tasks such as 3D object detection and 3D segmentation. First, 2D detection studies of [8,23]
achieve an accuracy of 52 AP with a performance of over 30 FPS based on a single stage. Re-
cently, anchor free-based technologies, as explored in [24,25], have developed a technique
that achieves a performance of 280 FPS or more, while also enhancing accuracy. In the
field of 2D semantic segmentation, research studies [26,27] have announced a technology
that delivers an accuracy performance of 82.4 mAP. In the field of 3D object detection
research, studies based on cameras [28] (18.69% AP), lidar [29] (81.8% AP), and a fusion of
camera–lidar sensors [30] (82.4% AP) have been announced. In the field of 3D semantic
segmentation, lidar-based research [31] has achieved a performance of 74% mIoU. In the
studies by [32,33], acceleration of depth estimation was investigated using only cameras,
whereas the research conducted by [34,35] focused on exploring camera-based 3D object
detection. The research presented in [36,37] dealt with the acceleration of camera-based
3D reconstruction. Lidar-based 3D object detection and 3D segmentation were the sub-
jects of studies by [38–40]. Finally, the research by [41,42] investigated radar-based 3D
object detection.
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However, we need to note that the technologies discussed above pertain to studies of
individual tasks. In practice, within an autonomous vehicle, when all the corresponding
recognition models are loaded and executed simultaneously, there can be complications
due to synchronization issues among various technologies and potential system overloads.
In other words, even if only some of the various image recognition tasks in autonomous
driving meet the accuracy or latency requirements, but others do not, it can negatively
impact the safety of autonomous driving.As a result, the exploration of MTL (multi-task
learning) was initiated specifically for autonomous driving applications [19–21].

MTL aims to leverage useful information contained within related tasks to enhance
the generalization performance of all tasks. MTL can be categorized into five technical ap-
proaches based on its characteristics: feature learning approach [43] low-rank approach [44],
task clustering approach [45], task relation learning approach [46], and decomposition ap-
proach [47]. These approaches are being utilized in various domains of deep learning,
including natural language processing [48], reinforcement learning [49], medicine [50],
and computer vision [43].

Additionally, in the field of autonomous driving, extensive research is being conducted
to improve the performance of related tasks using MTL. In HybridNet, MTL was investi-
gated with respect to three tasks: drivable area segmentation, lane detection, and object
detection [19]. Additionally, YOLOP demonstrated potential by enhancing the performance
of HybridNet for MTL, focusing on the aforementioned three tasks [20,21].

From the foregoing, it is evident that the accuracy performance of each MTL task is
influenced by the efficiency of the underlying backbone network. However, as indicated
by the studies referenced in [51,52], the use of a complexly structured backbone network,
such as ViT (Vision Transformer) [53], does not necessarily ensure high accuracy across
all tasks. This makes achieving the ultimate objective of driving quite challenging. These
findings underscore the importance of designing image recognition technology that takes
into account the mutually complementary relationship among the relevant technologies.

The principal contributions of this study are as follows:

1. This study proposes an optimal neural network architecture incorporating backbone
and loss functions for triple-task learning of drivable area segmentation, object detec-
tion, and lane detection. It achieves improvements in all aspects, including accuracy,
latency, and size, compared to traditional individual tasks and previous three-task
learning methods.

2. The integration of depth estimation within the MTL framework for 2D image recognition was
explored, and it was proven to be unsatisfactory due to the low ITC (inter-task correlation).

3. For the performance optimization of MTL, a 3 step MDO algorithm was applied, along with
additional training techniques based on SSL (semi-supervised learning). This approach
enables enhancements in all aspects, including accuracy, latency, and memory size.

3. System Model
3.1. MTL Architecture

Figure 1 presents a system overview of multi-task learning for autonomous driving. As
depicted in Figure 1, tasks such as OD (object detection), DAS (drivable area segmentation),
LD (lane detection), DE (depth estimation), and others share a common backbone network
model SBM (shared backbone model) denoted as B. Subsequently, each individual task
utilizes its own dedicated subnet model TSM (task-specific subnet model) denoted as S,
along with respective loss functions, to derive the final output. Among the networks
based on the encoder–decoder structure, UNet [54], FPN [55], Bi-FPN [56], PFPN [26],
and Transformer [27] were selected as candidates for SBM. Because all of these networks
are based on segmentation tasks, most of them can be shared for tasks such as object
detection, segmentation, and depth estimation. As evident from the above, the essence
of MTL lies in sharing a common backbone, which serves as a fundamental module or a
subset thereof, across diverse image recognition tasks. By sharing the backbone in this
manner, the latency required for each multi-task can be reduced, and the accuracy can also
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be improved. This is because the shared backbone undergoes learning on diverse data
from each multi-task, leading to enhanced performance. However, attempting to share
the same backbone for tasks that are too unrelated among these multi-tasks, i.e., low ITC
(inter-task correlation), may lead to decreased accuracy for each individual task. This is
because the shared backbone cannot be optimized specifically for each task, compromising
its performance. In particular, in environments such as self-driving cars, even a minor
error in image recognition performance can have a potentially fatal impact on driver safety.
Hence, the application of MTL in such scenarios necessitates a cautious approach due to
the critical nature of the problem.

Figure 1. The architecture of multi-task learning for autonomous driving.

3.2. MDO Algorithm

As shown in Figure 2, this paper introduces the MDO (multi-task decision and op-
timization) algorithm consisting of three steps, designed to optimize accuracy, latency,
and size across multiple tasks. The algorithm focuses on minimizing the latency and the
size while satisfying the target accuracy considering the target performance of each task.
The parameters for the description of the MDO algorithm are defined in Table 1.

Figure 2. MDO algorithm.
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Table 1. Parameters for describing MDO.

Notation Meaning

Tt Total task set of image recognition for autonomous driving
Tm Task set to which MTL is applied, Tm ⊂ Tt
ti Individual task to which MTL is applied, ti ∈ Tm
Tmc Task sets to which MTL is not applied, Tmc = Tt \ Tm
tj Individual task to which MTL is not applied, tj ∈ Tmc

LM(ti, B) Latency of task ti with SBM B
LI(tj) Latency of task tj
Acc(ti) Accuracy of task ti
Size(ti, WB, WS) Size of SBM WB and TSM WS for task ti
γi Accuracy threshold of task ti
θi Latency threshold of task ti
L(ti) Loss function of task ti for training

• Step 1. Determination of MTS T∗m and SBM B∗ that can minimize total latency with
satisfying each accuracy requirement: Based on the weight values pretrained on
ImageNet, optimal MTS (multi-task set) T∗m and optimal SBM (shared backbone
model) B∗ are determined according to Equation (1). In addition, as optimal MTS T∗m
is determined, TSM S suitable for T∗m is also determined.

T∗m, B∗ = arg min
Tm ,B
{ ∑

ti∈Tm

LM(ti, B) + ∑
tj∈Tmc

LI(tj)} (1)

Subject To Acc(ti) ≥ γi, ti ∈ Tt,

B ∈ {UNet, FPN, BiFPN, PFPN, Transformer}.

where the parameters are defined in Table 1.
Equation (1) is formulated to select the optimal shared backbone model B∗ and the
optimal multi-task set T∗m, aimed at minimizing the latency of the multi-task set within
a multi-task learning framework. For this, each task ti within the multi-task set must
satisfy the accuracy requirement, and each SBM is chosen from UNet, FPN, BiFPN,
PFPN, and Transformer. The weights WB and WS, being pretrained on ImageNet, do
not require additional training. This allows for a swift check of the accuracy conditions
for each task ti in the MTS, thereby selecting the multi-task set that minimizes the
overall latency.
In addition, the accuracy threshold γi in Equation (1) is closely linked to the safety
and latency in autonomous driving. It plays a crucial role in shaping the overall
operational methodology of multi-task learning. First of all, if the goal is to enhance
accuracy through MTL, it can be achieved by introducing a new accuracy threshold,
γi + δi, where δi is added to the existing accuracy threshold, γi. Certainly, it should
be noted that increasing the accuracy threshold in this manner may result in the
non-existence of a feasible solution for the MTS Tm. On the contrary, if the accuracy
threshold is decreased to γi − δi, it becomes possible to obtain/larger MTS Tm, thereby
reducing the overall system latency. However, this reduction in accuracy threshold
may negatively impact the safety of autonomous driving. Based on this observation,
it becomes evident that determining Tm based on Equation (1) introduces a trade-off
relationship between safety and speed. Furthermore, because the accuracy threshold
γi can be customized individually for each task, it provides the flexibility to prioritize
specific tasks over others. In other words, by setting a higher threshold for an image
recognition task that directly impacts the safety of autonomous driving and a slightly
lower threshold for tasks of lesser importance, a viable solution to the problem can
be established. These distinct accuracy thresholds also influence the decision-making
process of the SBM B∗.

• Step 2. Determination of W∗B and W∗S that can further maximize the accuracy of each
task within the determined MTS T∗m:
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Using the previously determined MTS T∗m and SBM B∗, the optimal weights W∗B for
the SBM and W∗S for the TSM are determined in order to maximize the accuracy across
all tasks. Due to the potential variation in accuracy scales and the varying importance
of each task, the weights WB and WS are retrained to maximize the total weighted
accuracy sum, incorporating task-specific weights λi as depicted in Equation (2),

W∗B, W∗S = arg max
WB ,WS

{ ∑
ti∈T∗m

λi · Acc(ti, WB, WS)}, (2)

≈ arg min
WB ,WS

{ ∑
ti∈T∗m

λi · L(ti, WB, WS)}. (3)

Here, task-specific weights λi are normalized to a total sum of one, ∑ti∈T∗m λi, and are
proportionally determined for each task based on the respective loss functions, as es-
tablished through experimentation. Because the accuracy value of Equation (2) can
be replaced with a loss function for training, it can be re-derived as in Equation (3) to
ensure an optimized allocation of resources across tasks. Additionally, the task-specific
loss functions in Equation (3) are detailed in Section 4.

• Step 3. Network compression that can minimize the size of W∗B and W∗S while satisfying
all accuracy and latency requirements: In Step 3, the memory size of the predetermined
optimal weights WB∗ and WS∗ for the shared backbone model and task specific model
is minimized. However, this network compression is conducted in a manner that does
not compromise the accuracy and latency values obtained in the previous stage. Based
on the study by [5], network compression is performed through quantization and
pruning to determine the lightweighted WB and WS. This task is carefully managed
to minimize network size while maintaining the target accuracy, as it can potentially
impact accuracy. Based on the research [5], we conduct network compression through
quantization and pruning to determine the lightweighted W−B and W−S from W∗B, W∗S,

W−B , W−S = arg min
W∗B ,W∗S

{ ∑
ti∈T∗m

Size(ti, W∗B, W∗S )}, (4)

Subject To Acc(ti) ≥ γi, ti ∈ T∗m,

LM(ti, B) ≥ θi, ti ∈ T∗m.

According to [5], most quantization techniques rely on a quantization table, which
can lead to latency loss due to value reference time. However, FP16, which performs
quantization by merely truncating decimal values from the original FP32 values, is
the only method that can achieve quantization without latency loss. Pruning can
also achieve network compression without impacting latency. However, unlike FP16,
pruning requires additional training. Moreover, the accuracy can be compromised
depending on the training technique used, thus necessitating careful application of
this method. Considering these factors, this study prioritizes the application of FP16,
aiming to achieve network compression without sacrificing the accuracy and latency
gains achieved in the previous phase.

4. Subnet for Multi-Task Learning

In this section, we focus on identifying the TSM (task-specific subnet model) S for
MTL. In particular, the neural network structures and loss functions for the mentioned
tasks, i.e., object detection, drivable area segmentation, lane detection, and depth estimation
are defined.
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4.1. OD (Object Detection)

For object detection, we employ the multi-head subnet structure of FPN [55] based
RetinaNet [8] as a subnet. Additionally, the loss functions used for each multi-head branch
are the focal loss and regression loss as

LOD = LFoc + LReg.

First, focal loss is a cross-entropy-based loss function designed to address the class
imbalance problem and is defined as follows:

LFoc = −αt · (1− pt)
γ · log(pt),

where αt is a weighting factor for each class, which helps to balance the importance of
positive/negative examples, pt is the model’s estimated probability for the class with label
1 (ground truth), and γ is a focusing parameter. A higher value of γ dampens the loss
contribution from easy examples and increases the influence of hard examples. In this
paper, αt is equally set to 1/N for all classes, and γ is set to 2.

Regression loss LReg is a loss function introduced for bounding box regression. It uses
Smooth L1 loss (Huber loss) and is defined as follows:

LReg =

{
0.5× (δy)2 if |δy| < 1,
|δy| − 0.5 otherwise,

where δy represents the difference between the predicted value and the ground truth for
each aspect of the bounding box (e.g., center coordinates, width, and height).

The accuracy index utilizes AP (average precision) for each major class and mAP (mean
average precision) for all classes:

AP =
∫ 1

0
p(r)dr, mAP =

1
N

N

∑
i=1

APi,

where p(r) is the precision at recall r, N is the number of classes. and APi is the AP for the
ith class.

4.2. DAS (Drivable Area Segmentation)

For DAS (drivable area segmentation) tasks, the subnet depending on the each se-
mantic segmentation based backbone [26,27,51,54–56] is primarily utilized. In terms of the
loss function, Dice loss, Tyversky loss, and BCE loss are selectively employed based on
their performance.

BCE (binary cross-entropy) loss LBCE is based on pixel-wise classification, that is, each pixel
in an image is classified as either belonging to the foreground class or the background class,

LBCE = − 1
N

N

∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

where N is the total number of pixels in the image, yi is the ground truth label for the ith
pixel, which is 1 if the pixel belongs to the foreground and 0 if it belongs to the background,
pi is the predicted probability that the ith pixel belongs to the foreground class.

The Dice loss LDice utilizes the DC (Dice coefficient), a measure used to quantify the
degree of overlap between two sets. This coefficient computes the extent of overlap between
the predicted area and the actual ground truth, normalizing it to a decimal value less than
1. The Dice loss LDice is then derived by calculating the difference from 1,

DC =
2× |P⋂G|
|P|+ |G| =

2×∑N
i=1 pigi

∑N
i=1 p2

i + ∑N
i=1 g2

i
, LDice = 1− DC,
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where pi refers to the predicted probability of pixel i belonging to the foreground class, gi
is the ground truth label for pixel i, which is 1 for foreground and 0 for background, and N
is the number of total pixels in the predicted and ground truth images.

Tyversky loss LTyv is a generalization of the Dice loss, providing more flexibility in
handling false positives and false negatives:

LTyv = 1− ∑N
i=1 pigi + ε

∑N
i=1 pigi + α ∑N

i=1 pi(1− gi) + β ∑N
i=1(1− pi)gi + ε

,

where pi is the predicted probability of pixel i belonging to the foreground class, gi is the
ground truth label for pixel i, which is 1 for foreground and 0 for background, α and β are
weights to control the relative importance of false negatives and false positives, respectively,
and ε is a small constant (like 1× 10−5) added for numerical stability; N is the number of
pixels in the predicted and ground truth images.

The accuracy metric is based on the accuracy calculated from segmentation mask as
the measure of performance.

4.3. LD (Lane Detection)

For lane detection, the lane area was derived by treating it as a branch of segmentation,
in a similar way as DAS. In recent lane detection studies UFLD [18] and CLRNet [57],
row anchor-based approaches have demonstrated superior accuracy performance. How-
ever, as these approaches necessitate additional backbones, subnets, and post-processing
steps, they result in increased latency. To minimize latency and leverage the potential
of the existing backbone and subnet, a segmentation-based technology was employed in
this study.

Similar to the case of DAS (drivable area segmentation), the accuracy metric for
this task is based on the accuracy calculated from the segmentation mask, serving as the
performance measure.

4.4. DE (Depth Estimation)

A subnet was designed based on MonoDepth [58], which is an FPN based depth
estimation technology.

SigLoss (scale-invariant gradient loss) LSig and BerhuLoss LBerhu [59] were employed
as loss functions, with the more effective loss function value being selected and utilized
based on experimental outcomes.

SigLoss LSig is used to ensure that the estimated depth maps maintain correct local
structures and gradients relative to the ground truth. This loss is particularly useful for
preserving edge information and relative depth differences, regardless of the absolute scale:

LSig =
1
N

N

∑
i=1

(
∆dpred

i − ∆dtrue
i

)2
(5)

where N is the total number of pixels, and ∆dpred
i and ∆dtrue

i are the gradients (spatial
derivatives) of the predicted and true depth values at pixel i, respectively. The sum of
squared differences in gradients across all pixels is calculated and normalized by the
number of pixels.

BerhuLoss LBerhu is a loss function that combines the properties of L1 for small errors
and L2 losses for larger errors:

LBerhu =

{
|y− ŷ| for |y− ŷ| ≤ c
(y−ŷ)2+c2

2c for |y− ŷ| > c
(6)
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where y is the true value (in this case, the true depth), ŷ is the predicted value (the estimated
depth), and c is a threshold that determines the switch between the L1-like and L2-like
behavior.

For accuracy metrics, the REL (absolute relative error) values for depth information of
each pixel were utilized.

REL =
1
N

N

∑
i=1

|dpred
i − dtrue

i |
dtrue

i
, (7)

where N is the total number of pixels (or points) for which the depth is being estimated,
dpred

i is the predicted depth for the ith pixel (or point), and dtrue
i the ground truth depth for

the ith pixel (or point).

5. Simulation Results

The evaluation of various tasks are conducted under the umbrella of MTL, analyzing
them both individually and in integrated configurations, ranging from single-task scenarios
to combinations of up to four tasks. Furthermore, the results were benchmarked against
previous MTL techniques, notably YOLOP [20] and HybridNet [19]. This comparison was
extended to traditional OD (object detection) strategies, such as RetinaNet [8], LD (lane
detection) methods such as UFLD [18] and CLRNet [57], DE (depth estimation) such as
DepthFormer, and DAS (drivable area segmentation) approaches utilizing architectures
like FPN, PFPN, BiFPN, and Transformer (SegFormer) mentioned in Section 3.

To assess the MDO algorithm, the optimal multi-task set T∗m, SBM B, and TSM S are
determined within parameters exceeding the targeted accuracy of 95 % for LD and DAS,
surpassing the targeted mAP of 0.80 for OD, and falling below the targeted absolute REL
(relative error) of 0.06 for DE. Subsequently, the accuracy and latency performances of these
optimized sets are evaluated.

The BDD 100K and the KITTI datasets in [60,61] were employed for training and
evaluation. Specifically, whereas the BDD 100K dataset contains labels for DAS, such
labels are absent in the KITTI dataset. To address this, SSL (semi-supervised learning) was
applied to the KITTI dataset for additional training. More precisely, a pseudo label was
created using an InterImage model [51] pretrained on Cityscapes [62], which was then
utilized to apply semi-supervised learning for the DAS task. Experiments were executed
using implementations in TensorFlow, facilitated by an NVIDIA GPU equipped with a
2-way 4090 architecture. A piecewise constant decay strategy was adopted for the learning
rate schedule. Model performances were assessed across a span of 50 epochs, with the
most optimal outcome within this range being chosen for further analysis. The AdamW
was employed as the optimizer algorithm. Each task-specific loss value in MTL was
trained through the summation of loss values derived in Equation (3), using the functions
mentioned in Section 4. The weight λi for each loss function was set to 2 for object detection
and maintained at 1 for the remaining tasks.

For the performance analysis of each task (OD, LD, DAS, and DE) in MTL, experimen-
tal groups were set up with a dedicated 1-task model, a 2-task model (DAS+LD, DAS+OD,
OD+LD, DE+DAS) and a 3-task model (OD+LD+DAS), and their respective performances
were compared. Table 2 shows the performance of DAS, Table 3 presents the performance
of OD, Table 4 illustrates the performance of LD, and Table 5 presents the performance of
DE. Additionally, Figures 3–5 provide visual examples of the application of these 2-task
and 3-task scenarios.

Based on the results of all experimental groups presented in Tables 3–5, it is evident
that the applications of depth estimation are insufficient for ensuring safe autonomous
driving. As evidenced by Tables 2 and 5, the results for the 2-task (DAS + DE) setup indicate
that DAS does not meet its target accuracy of 95%, and, similarly, DE falls short of the target
REL of 0.06. In contrast, other experimental sets excluding DE, such as 1-task, as well as
2-task and 3-task configurations, generally satisfy their target performance.
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This can be attributed to the fact that tasks such as DAS and LD have high ITC, leading
to their backbone weights being trained to exhibit similar distributions, which in turn
enhances their collective performance. Conversely, tasks like OD and DE have less ITC,
resulting in them being trained with different backbone weight distributions, ultimately
leading to a mutual degradation in performance.

Therefore, it can be inferred that tasks for multi-task learning can be readily trained
to assist each other in improving accuracy, whereas some MTS configurations may not
offer such benefits. Consequently, constructing an MTS with such complementary tasks is
instrumental in enhancing the safety of autonomous driving. Additionally, the multi-task
learning examples presented in this study reveal that operating with only three tasks—OD,
LD, and DAS—excluding DE, provides a more secure and efficient approach to securing an
autonomous driving image recognition model.

Table 2. Performance results of MTL for drivable area segmentation task.

1 Task (DAS)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.93 0.93 0.95 0.95 0.95

Perf. Req. X X O O O

Lat (ms) 24 24 25 25 60

2 Tasks (DAS + LD)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.92 0.94 0.95 0.95 0.95

Perf. Req. X X O O O

Lat (ms) 26 26 27 27 62

2 Tasks (DAS + DE)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.59 0.62 0.66 0.68 0.71

Perf. Req. X X X X X

Lat (ms) 31 31 32 32 61

2 Tasks (DAS + OD)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.92 0.94 0.95 0.95 0.92

Perf. Req. X X O O X

Lat (ms) 26 26 27 28 63

3 Tasks (DAS + LD + OD) Prev 3 Tasks

Model UNet FPN BiFPN PFPN TRN YOLOP HybridN

Best Loss Dice Dice Dice Dice Dice Tyv Tyv

ACC 0.90 0.91 0.95 0.95 0.90 0.97 0.91

Perf. Req. X X O O X O X

Lat (ms) 30 30 31 32 72 44 61
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Table 3. Performance results of MTL for object detection task.

1 Task

Metric UNet FPN BiFPN PFPN TRN

mAP 0.83 0.88 0.88 0.88 0.88

Lat (ms) 26 25 25 25 61

2 Tasks (OD + DAS)

Metric UNet FPN BiFPN PFPN TRN

mAP 0.82 0.85 0.87 0.86 0.88

Lat (ms) 26 26 27 28 63

2 Tasks (OD + LD)

Metric UNet FPN BiFPN PFPN TRN

mAP 0.82 0.86 0.87 0.86 0.87

Lat (ms) 26 26 26 28 62

3 Tasks (OD + LD + DAS) Prev 3 Tasks

Metric UNet FPN BiFPN PFPN TRN YOLOP HybridN

mAP 0.81 0.86 0.87 0.87 0.85 0.76 0.77

Perf. Req. O O O O O X X

Lat (ms) 30 30 31 32 72 44 61

Table 4. Performance results of MTL for lane detection task.

1 Model 1 Task (LD)

Metric UFLD CLRNet UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice Dice Dice

mAP 0.98 0.99 0.95 0.97 0.98 0.97 0.98

Lat (ms) 10 11 24 24 25 25 60

2 Tasks (LD + DAS)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.96 0.96 0.98 0.97 0.95

Lat (ms) 26 26 27 27 62

2 Tasks (LD + OD)

Model UNet FPN BiFPN PFPN TRN

Best Loss Dice Dice Dice Dice Dice

ACC 0.93 0.96 0.98 0.95 0.90

Lat (ms) 26 26 26 28 62

3 Tasks (LD + DAS + OD) Prev 3 Tasks

Model UNet FPN BiFPN PFPN TRN YOLOP HybridN

Best Loss Dice Dice Dice Dice Dice Tyv Tyv

ACC 0.89 0.94 0.98 0.98 0.86 0.70 0.85

Perf. Req. X X O O X X X

Lat (ms) 30 30 31 32 72 44 61
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Table 5. Performance results of MTL for depth estimation task.

1 Model 1 Task (DE)

Metric DepthF UNet FPN BiFPN PFPN TRN

Best Loss Berhu Berhu Berhu Berhu Berhu Berhu

REL 0.0528 0.122 0.098 0.096 0.095 0.074

Perf. Req. O X X X X X

Lat (ms) 37 24 24 25 55 60

2 Tasks (DE + DAS)

Model UNet FPN BiFPN PFPN TRN

Best Loss Berhu Berhu Berhu Berhu Berhu

REL 0.182 0.167 0.155 0.154 0.116

Perf. Req. X X X X X

Lat (ms) 31 31 32 32 61

Figure 3. The example results of two tasks.

Figure 4. The example results of three tasks.
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Figure 5. The example results for depth estimation.

Moreover, although the backbone models generally exhibit similar performance, it
is noteworthy that in the 3-task configuration, BiFPN demonstrates the best performance.
This surpasses even the Transformer-based SegFormer and PFPN, which have the highest
number of parameters. This suggests that for the KITTI dataset of DAS, OD, and LD tasks,
the BiFPN model, with fewer parameters than the SegFormer and PFPN, is less prone to
overfitting and offers better generalization effects.

Furthermore, it can be observed that this parallel processing approach in multi-task learn-
ing offers significant advantages in terms of latency. As indicated in Tables 2–4, for the 2-task
configuration, there is an approximate 50% reduction in latency, while for the 3-task setup,
the latency reduction effect can reach around 60% compared to the individual task learning.

Table 6 selectively compares the system load of 3-task learning in experimental sets
that meet the performance requirements of each task. The results presented are after
the application of step 3 of the MDO algorithm, which is TensorFlow-Lite based FP16
quantization [63]. The rationale for employing FP16 quantization is that, compared to other
quantization techniques, it incurs the least accuracy loss and can halve the memory size,
while having no impact on operational latency [5]. This demonstrates that the application
of the MDO algorithm can achieve optimal adjustments suitable for autonomous driving in
terms of accuracy, latency, and memory size.

Next, let us delve into an analysis of the loss functions utilized for the DAS and
LD tasks, as presented in Tables 2 and 4. Traditionally, in image segmentation problems,
the binary cross-entropy function is predominantly employed. However, to address class
imbalance issues, the Dice and Tversky functions are utilized [52]. As can be discerned
from Figures 3 and 4, the proportion of the foreground area is relatively small compared to
the entirety of the image. Consequently, based on the results presented in Tables 2 and 4,
the proposed DAS and LD techniques demonstrate superior performance with the Dice
function rather than the BC. Notably, conventional methods such as YOLOP and HybridNet
also employ a similar Tversky function as their loss function. Given this context, it would
be prudent to utilize the Dice or Tversky loss functions in autonomous driving applications,
taking into account the dimensions of the foreground areas.
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Table 6. System load of triple-task learning after implementing step 3 of the MDO algorithm (target
accuracy of 95% for LD, DAS, and target mAP of 0.80 for OD).

3 Tasks (DAS + OD + LD) Prev 3 Tasks

Model UNet FPN BiFPN PFPN TRN YOLOP HybridN

Perf. Req. X X O O X X X

Parameters (Mega) 4.3 3.8 3.5 4.9 3.8 7.9 12.8

Base (MB) 522 456 425 597 466 91 54

Compressed (MB) 97 76 70 99 77 - -

Lat (ms) 30 30 31 32 72 44 61

From the aforementioned results, it can be observed that the REL of the dedicated
model for the DE task, i.e., DepthFormer, demonstrates superior performance compared to
other experimental groups. It is imperative to note that even the singular task configuration
showcases a suboptimal REL metric, which further deteriorates when subjected to multi-
task operational paradigms, as exemplified by the 2-task model. From the foregoing
analysis, it becomes apparent that implementing depth estimation via MTL frameworks
is suboptimal, given the intrinsically low degree of ITC between the DE task and other
associated tasks. Furthermore, as elucidated in [64], the particular task under consideration
is not optimally aligned for integration within MTL frameworks. This is attributed to its
heightened dependence on supplementary operations external to the backbone structure
(e.g., T-Net), rather than on the primary backbone task. This aspect categorically renders it
as a technically misaligned group for MTL applications. Additionally, an examination of
the performance metrics associated with the 2-task (DAS+DE) configuration, as detailed in
Table 2, reveals a concurrent degradation in the performance of DAS, another task intricately
connected with DE. This observation underscores the inappropriateness of sharing a
common backbone between the DE and DAS tasks. However, as depicted in Table 6,
the dedicated model approach, exemplified by DepthFormer, necessitates the utilization of
additional parameters compared to the MTL methodology, resulting in augmented costs
for securing the requisite resources. Consequently, a comprehensive consideration of both
the additional resource costs and accuracy is imperative when determining the application
of MTL to DE.

6. Conclusions

This study explores MTL for maximizing the efficiency of various image recognition
tasks performed in autonomous driving, considering the task characteristics and the given
hardware conditions. Additionally, MDO algorithm, an optimal configuration algorithm
for this purpose, is proposed. The MDO algorithm targets drivable area segmentation,
object detection, lane detection, and depth estimation as the tasks for recognition, and is
comprised of three stages: minimizing latency, maximizing accuracy, and minimizing size.
Through the MDO algorithm, an optimal neural network design including the backbone
and loss functions is achieved. Additional training based on the SSL led to improvements
in all aspects—accuracy, latency, and size—compared to traditional single-task methods
and existing three-task learning approaches. The experimental results reveal that integrated
accuracy performance is crucial in the configuration and optimization of MTL, and this
integrated accuracy is determined by the ITC. Considering these characteristics, it was
proven important to design multi-task sets comprising tasks with high ITC. The proposed
MDO algorithm facilitated approximately a 12% improvement in object detection mAP
performance, a 15% enhancement in lane detection ACC, and a 27% reduction in exe-
cution time. Additionally, it has been found that depth estimation has a low ITC with
tasks such as drivable area segmentation, object detection, and lane detection. Forming a
multi-task set with these tasks could potentially lead to mutual performance degradation.
Therefore, to achieve stable performance in depth estimation, it is concluded that it should
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be implemented either through a dedicated independent neural network or conducted
using additional sensors like lidar. In the future, research is planned to extend MTL based
on sensor fusion, not only through single-sensor inputs from cameras but also incorpo-
rating inputs from lidar sensors. This expansion aims to enhance the currently limited
performance of depth estimation. Additionally, the scope of research will be extended to
encompass the entire process of perception, decision-making, and control in autonomous
driving, achieving an end-to-end learning approach. This will facilitate both horizontally
and vertically integrated optimization in the field.
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