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Abstract: Breast Cancer (BC) is the most common cancer among women worldwide and is character-
ized by intra- and inter-tumor heterogeneity that strongly contributes towards its poor prognosis.
The Estrogen Receptor (ER), Progesterone Receptor (PR), Human Epidermal Growth Factor Receptor
2 (HER2), and Ki67 antigen are the most examined markers depicting BC heterogeneity and have
been shown to have a strong impact on BC prognosis. Radiomics can noninvasively predict BC
heterogeneity through the quantitative evaluation of medical images, such as Magnetic Resonance
Imaging (MRI), which has become increasingly important in the detection and characterization of BC.
However, the lack of comprehensive BC datasets in terms of molecular outcomes and MRI modalities,
and the absence of a general methodology to build and compare feature selection approaches and
predictive models, limit the routine use of radiomics in the BC clinical practice. In this work, a new
radiomic approach based on a two-step feature selection process was proposed to build predictors for
ER, PR, HER2, and Ki67 markers. An in-house dataset was used, containing 92 multiparametric MRIs
of patients with histologically proven BC and all four relevant biomarkers available. Thousands of
radiomic features were extracted from post-contrast and subtracted Dynamic Contrast-Enanched
(DCE) MRI images, Apparent Diffusion Coefficient (ADC) maps, and T2-weighted (T2) images. The
two-step feature selection approach was used to identify significant radiomic features properly and
then to build the final prediction models. They showed remarkable results in terms of F1-score
for all the biomarkers: 84%, 63%, 90%, and 72% for ER, HER2, Ki67, and PR, respectively. When
possible, the models were validated on the TCGA/TCIA Breast Cancer dataset, returning promising
results (F1-score = 88% for the ER+/ER− classification task). The developed approach efficiently
characterized BC heterogeneity according to the examined molecular biomarkers.

Keywords: radiomics; Breast Cancer; machine learning; feature selection

1. Introduction

Breast Cancer (BC) is the most commonly diagnosed cancer type in the world. The most
recent global cancer statistics estimate that there are about 2.3 million incident BC cases and
that the disease is the leading cause of cancer mortality in women worldwide [1]. Currently,
radiographic evaluation followed by a histological confirmation of malignancy on biopsy
samples is used to make the early diagnosis of BC [2,3]. Although this method allows
practitioners to safely and effectively characterize the molecular changes in breast tissue, it
has intrinsic drawbacks because of the accessibility and heterogeneity of the tumors and
the risks associated with the bioptic process [4].
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In particular, it is well-known that the heterogeneity of BC, which also depends on the
temporal variation, may lead to the failure of cancer treatments and poor prognoses [5].

The identification of numerous biomarkers through tissue biopsy or medical imaging
is necessary for assessing heterogeneity at early diagnosis, with the correct classification
of the tumor genotype being of fundamental importance for the clinical management of
this pathology [6]. However, differently from imaging, the risks of invasive procedures,
focal sampling errors, and tumoral characteristics (such as small size, location, or heteroge-
neous necrosis) represent relevant drawbacks associated with biopsies. In this perspective,
radiomic techniques may notably support the non-invasive management of BC [7].

Radiomics was defined as “the high-throughput extraction of large amounts of image
features from radiographic images” [8]. It could be used to analyze both temporal and spa-
tial BC heterogeneities through the quantitative evaluation of the radiologic images. Recent
developments in radiomics analysis showed the potential to retrieve useful incremental
information from standard imaging data in a non-invasive way.

Radiomics can be successfully applied to both morphological (such as T2-weighted—
T2—images) and functional magnetic resonance images (MRI) (such as dynamic contrast-
enhanced (DCE) and diffusion-weighted imaging (DWI)) to predict histological outcomes
in BC [9,10].

MRI is the reference imaging modality for soft tissue characterization, with func-
tional techniques such as DCE-MRI and DWI greatly supporting the characterization of
the anatomic and functional properties of BC [11,12]. In particular, MRI radiomics has
been used to predict malignancy, molecular subtypes, complete pathological response to
neoadjuvant chemotherapy, and metastasis in BC. However, both diagnostic and prognostic
outcomes depend on the underlying biological characteristics of BC.

The accurate examination of BC biology is fundamental since each BC is character-
ized by a unique biological and genetic profile, thus corresponding to a wide range of
prognoses and therapeutic options. Different molecular profiles, proliferative rates, tumor
receptors, and grades define subtypes. The Estrogen Receptor (ER), Progesterone Receptor
(PR), Human Epidermal Growth Factor Receptor 2 (HER2), and Ki67 antigen are the four
biomarkers routinely examined in BC biopsies and excision specimens due to their potential
impact on heterogeneity prognosis and clinical therapy. HER2-positive (HER2+) breast
cancers are more aggressive and show a poorer prognosis than HER2-negative (HER2−)
cancers. Positive hormonal receptor status, such as in ER-positive (ER+) and PR-positive
(PR+) tumors, presents lower risk of mortality than ER-negative (ER−) and/or PR-negative
(PR−) diseases. Ki67 is a proliferative index of BC, and a high Ki67 level is associated with
an elevated relapse rate and worse survival [13].

There is a growing scientific production exploring different radiomic approaches to
predict molecular outcomes of BC on MRI datasets [14–20]. Nevertheless, a common draw-
back affecting the largest part of these works was related to the absence of comprehensive
sets of molecular markers and MRI modalities that would allow for an effective comparison
of different models and feature selection approaches [9]. For instance, The Cancer Genome
Atlas BReast invasive CArcinoma (TCGA-BRCA) dataset [21], collected by the TCGA/TCIA
project, despite its limited size, still represents the largest publicly available set of breast
MRI providing also clinical, pathological, and genomic data. However, TCGA-BRCA lacks
information on the Ki67 molecular marker and does not include the DWI sequence.

This work aimed to develop a new radiomic approach based on a two-step feature
selection process to predict the most routinely examined BC biomarkers (ER, PR, HER2,
Ki67) and compare the prediction models’ performances in different settings. It exploited a
comprehensive dataset that includes multiparametric MRI (mpMRI) images from morpho-
logical T2, functional DCE-MRI images, and Apparent Diffusion Coefficient (ADC) maps
from DWI, as well as all four relevant molecular markers for BC management.
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2. Materials and Methods
2.1. Study Design

The goal of the proposed methodology was to build robust predictors for the four
biomarkers commonly used in BC molecular profiling. Two comprehensive datasets were
exploited: the MOLIM ONCO BRAIN dataset (DSM) for model development and the
TCGA-BRCA (DST) for model validation. Both included: (i) mpMRI preoperative images
of BC patients (both functional and morphological sequences), (ii) clinical information
related to at least three biomarkers (ER, PR, HER2), and (iii) BC tumour segmentations.
Figure 1 shows the steps of the radiomic pipeline used to carry out the model development
and validation: mpMRI images acquisition (Section 2.3), tumor segmentation (Section 2.4),
radiomic feature extraction (Section 2.5), a two-step feature selection and classification
(Section 2.6), and best model selection and validation using an external dataset (Section 2.7).

Figure 1. The steps of the adopted radiomics pipeline. They include MRI acquisition, tumor segmen-
tation, feature extraction, feature selection, and model analysis.

2.2. Patients

The patient cohort included two datasets of BC patients. For the DSM, 92 MRI pre-
operative examinations of patients with BC (93 lesions) were collected from February 2017
to February 2020 and retrospectively evaluated. Inclusion criteria were the following:
(1) age >18 years and (2) patients with histologically proven BC. Patients were excluded
if the histological report was unavailable and the MRI images were significantly affected
by motion artifacts. All patient information was de-identified before the data were stored
in the collection of BCU Imaging Biobank [22]. The study was approved by the Ethical
Committee IRCCS Pascale (Prot. 12/19 OSS SDN), and written informed consent was
obtained from all participants.

The DST was used to perform model validation. It included 164 MRI studies (Digiatl
Imaging and COmmunications in Medicine—DICOM—format, 88.1 GB) of 139 Breast Can-
cer patients from several American hospitals and clinics. The clinical, genetic, and patho-
logical data were acquired from the Genomic Data Commons Data Portal [23]. To reduce
potential image acquisition variation, only breast MRI studies that were similar in acquisi-
tion and technique (namely, MRIs that were acquired on a 1.5 T magnet strength using GE
(GE Medical Systems, Milwaukee, WI, USA) scanners and protocols) were analyzed. This
selection procedure resulted in a total of 93 patients. For these cases, tumor segmentations
were available in binary format [24]. One subject with missing DCE images and one with
missing genotyping data were excluded from the study. Finally, the DST consisted of
91 BC patients. The images and segmentations were downloaded and converted in NIfTI
(Neuroimaging Informatics Technology Initiative) format.

2.3. MRI Acquisition

MRI examinations of the DSM were performed using a 3 T Biograph mMR (Siemens
Healthcare, Erlangen, Germany) with a dedicated breast surface coil. T2 Turbo spin-echo
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(TSE T2) sequence was acquired on an axial plane before contrast-agent injection, and DWI
with b values of 50, 500, and 800 s/mm2 was acquired on the axial plane with their corre-
sponding ADC maps. DCE-MRI studies were obtained with intravenous administration
of paramagnetic contrast agent (Prohance, Bracco Imaging, Italy) 0.3 mmol/kg, a flow
rate of 3.5 mL/s, injected after six pre-contrast transaxial T1 Vibe with flip angles of 2◦,
5◦, 8◦, 12◦,15◦, and 20°, followed by a T1 Vibe axial dynamic (TR/TE = 5.47/1.75) with
60 measurements over a 10 min period and a temporal resolution of 9.6 s. Subtracted DCE
images (SUB) were obtained automatically by subtracting pre-contrast images from the
post-contrast (PC) images. Finally, an axial high-resolution T1 Vibe with fat suppression
(HR Vibe T1-w fat sat) was acquired. Technical details of MRI sequences are shown in
Table 1.

Table 1. Technical details of acquired MRI sequences. TR = Repetition Time; TE = Time to Echo;
FA = Flip Angle; ST = Slice Thickness; FOV = Field Of View; Aver. = average; Meas. = measurements.

Sequence TR (ms) TE
(ms) FA (◦) Slices ST

(mm) Voxel Size Matrix FOV
(mm) Aver. Meas. Time

(min)
b-Value
(s/mm2)

TSE T2 5440 81 80 40 4.0 0.8 × 0.8 448 340 2 - 03:34 -

DWI ax 9600 74 90 25 4.0 1.8 × 1.8 192 340 3 - 04:48 50/500/800

DCE 5.47 1.75 20 36
(slab1) 3.6 1.7 × 1.7 192 320 1 60 09:39 -

HR Vibe T1-w
fat sat 8.69 4.33 15 176

(slab1) 0.9 0.8 × 0.8 448 340 1 - 03:21 -

2.4. Image Processing and 3D ROI Segmentation

ADC images were non-rigidly coregistered on SUB PC DCE-MRI images using Elastix
software (v4.9.0) to correct for typical spatial distortion arising from DWI acquisition. T2
images were all resliced on DCE-MRI images. Lesion segmentation was performed on
SUB DCE images by an experienced radiologist using an in-house developed software
for region labeling. During the segmentation procedure, the radiologist was blinded to
both the histological results and all clinical information relative to the retrospective breast
mpMRI images. The delineated ROIs were then copied and pasted into the PC DCE-MRI,
registered ADC, and resliced T2 images (refer to Figure 2 for an example of primary BC
lesion). Before radiomic feature extraction, normalization was applied on T2 and PC image
intensities. Specifically, intensities were normalized by centering them at their respective
mean value with a standard deviation of all grey values in the original image [25].

2.5. Feature Extraction

The extraction of radiomic features from 3D Regions of Interest (ROIs) on DCE-
MRI subtraction series with the highest mean signal intensity within the ROI [26–28],
PC DCE-MRI, registered ADC, and resliced T2 images was performed using the open
source PyRadiomics package [29]. The obtained features can be classified into five classes:
(i) shape features (n = 14); (ii) first-order features (n = 18); (iii) 73 s-order textural statistics
including grey-level co-occurrence matrix (GLCM) (n = 24), grey-level run length matrix
(GLRLM) (n = 16), grey-level size zone matrix (GLSZM) (n = 16), neighboring grey tone
difference matrix (NGTDM) (n = 5), and grey-level dependence matrix (GLDM) (n = 14);
1092 transformed first-order and textural features including (iv) 728 wavelet features in
frequency channels LHL, LLH, HHH, HLH, HLL, HHL, LHH, and LLL, where L and H are
low- and high-pass filters, respectively; and (v) 364 Laplacian of Gaussian filtered features
with sigma ranging from 2.0 to 5.0, with a step size = 1.
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Figure 2. Example of primary BC lesion shown on a pretreatment breast MRI: (a) post-contrast T1
images, (b) DCE-MRI subtraction images with the highest mean signal intensity within the ROI,
(c) ADC map, and (d) T2 images.

2.6. Two-Step Feature Selection and Learning

Since the number of extracted radiomics features was very high, using all of them
for the classification step was generally ineffective because these features are redundant
and highly correlated. Moreover, when the number of features is much higher than the
number of samples, the classification process might yield low-quality results due to the
so-called curse of dimensionality. Thus, a feature selection process has been applied to
remove redundancies while preserving features that might give greater contributions in
terms of classification [30].

Seven feature selection methods, described in Table 2, were used. These techniques
were chosen mainly because of their popularity in literature, simplicity, and computational
efficiency [31]. Table 2 classifies the methods based on their type, i.e., ranker or subset,
relation with the subsequent classification approach, and returned results [32].

Before the classification step, the Synthetic Minority Oversampling Technique (SMOTE)
algorithm [33] was applied to overcome the over-fitting problem that might arise when an
unbalanced set of data is used. New samples in feature space were produced through data
interpolation among the instances that lie together, obtaining a more balanced set. Finally,
to perform classification, six well-known ML algorithms have been exploited [34]: K-
Nearest Neighbors (KNN) [35], Naive Bayes (NB) [36], Support Vector Machine (SVM) [37],
Decision Tree (DT) [38], Multi-Layer Perceptron (MLP) [39], and Random Forest (RF) [40].
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Table 2. List of the feature selection methods used, with a brief classification of the type, approach,
and returned results. LR-RFE: Lasso Regression with Recursive Feature Elimination; CFS: Correlation-
based Feature Selection.

Algorithm Type
(Ranker/Subset)

Approach
(Filter/Wrapper)

Result
(Complete/Partial)

Chi Squared Ranker Filter Complete
Fisher Score Ranker Filter Complete
Gini Index Ranker Filter Complete
Mutual Information Ranker Filter Partial
ReliefF Ranker Filter Complete
LR-RFE Ranker Wrapper Partial
CFS Subset Filter Partial

There is not a universally recognized ideal approach that could be considered as a
standard choice for feature selection: indeed, different methods, combined with various
classification algorithms, might give very different results on the same dataset, as well as in
terms of the generalization ability of the extracted feature subset on new data. Moreover,
the datasets examined in this work were characterized by a small number of patients with
respect to the number of available features. To better exploit the available data, a cross-
fold validation approach was chosen rather than dividing the dataset into the training,
validation, and test set. This choice, in turn, raised the problem of merging the features
selected over the different folds.

To address the problem, a two-step approach was adopted: in the first step, complete
filter methods were exploited to greatly reduce the amount of features used for classifica-
tion, whereas, in the second step, more complex algorithms were employed to fine-tune
the selection of the most representative features. This process was inspired by similar
methodologies, such as those proposed by Ge et al. and Yang et al. [41,42], designed to
address the same issue of having a higher number of features than the input samples,
a very typical condition when dealing with biomedical data. In the first step of the pipeline,
the complete ranker filter methods (Chi Squared, Fisher Score, Gini Index, and ReliefF)
were used to delete the most redundant features. In the second step, three different ap-
proaches were considered to boost diversity: i) the Least Absolute Shrinkage and Selection
Operator (LASSO) Regression with Recursive Feature Elimination (LR-RFE), the Mutual
Information (MI) method, and Correlation-based Feature Selection (CFS). The proposed
two-step feature selection pipeline is fully described in Figure 3. In the first learning
step, the complete ranking methods were applied on all the extracted folds and using a
predefined range of feature numbers set by the threshold t1. The highest classification per-
formance, expressed in terms of F1-score, was evaluated among all the feature selection and
classification method combinations and for the different thresholds t1. Then, the associated
feature subset must be combined over the different folds used for the classification process.
Similar to homogeneous ensemble learning, in which solutions belonging to different data
splits are combined, the feature selected over the folds must be aggregated to produce a
final reference set. Following Bolon et al. [43], an aggregation strategy based on tracking the
minimal rank of each feature (minpos) and the number of times it has been chosen in that
position (numpos) over the different folds was used. The features were ordered by minpos
first and numpos after, thus obtaining a list of ordered features over all the folds. The fea-
tures reaching the position specified by the threshold t1 at least once were selected and
became the new feature set on which the second step of the pipeline was then performed.
The strategy was very similar to the previous step, with the slight difference that the num-
ber of the extracted features had to be directly specified to the selection algorithms (except
for CFS, in which the number was automatically determined). Once again, the features
were ordered as described above, but they were filtered using a lower threshold t2. It is
worth noting that the defined thresholds were applied on the minimum position reached:
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the final amount of features selected might be greater than the threshold itself, owing to
the different features extracted across the folds in the validation steps.

Figure 3. A schematic view of the ensemble feature selection and classification steps underlying the
building process of each predictive model. The first two steps involve 10-fold cross-validation on
the training dataset. The last step is based on a leave-one-out cross-validation (LOOCV) approach to
validate the combination of selected features and classification models. The best F-score values drive
the choice of the classification algorithm at each step.

2.7. Model Selection and Validation

At the end of the two-step learning phase, the list of the most relevant features was
obtained. Since the dataset size did not allow for a separate test set, and an external dataset
with the same characteristics (e.g., same image type and modalities, same annotation
markers) was missing, an LOOCV approach was applied to the original dataset to build
the predictors. Hence, to further validate the results and simultaneously determine the best
classification algorithm, a final step was performed using all the classification algorithms.
The final feature list and the chosen classification algorithm constituted the final predictor.
The bottom section of Figure 3 depicts this last step.
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To assess the generalization abilities of the models and, more generally, the validity
of the proposed two-step approach, the predictors were tested on the DST .Unfortunately,
only the predictors for the ER and PR markers can be tested since the available information
regarding HER2 was partial or totally missing as in the case of Ki67. In addition, only the
T1 and T2 images were present, whereas the ADC and SUB were unavailable. We used
the same approach described above to assign samples to the classes whenever the needed
information was available and the positive/negative official label otherwise. We ended up
with 91 patients for both the ER and PC markers, with the classes distributed as follows:
ER−/ER+ = (15.4%/84.6%) and PR−/PR+ = (20.9%/79.1%).

Therefore, only the ER and PR detection tests have been performed using the feature
subset selected in the last step of the pipeline.

3. Results
3.1. Experiments and Settings

The proposed pipeline has been applied separately to the four molecular markers.
Data from the DSM comply with the common practice in markers annotation, with ER,
Ki67, and PR expressed in percentages (of involved cells), whereas the HER2 had discrete
values followed, in this case, by one or more plus signs. To train the classification models,
the markers’ expression values were binarized according to the following criteria: the ER
and PR markers were considered negative if their value was lower than 10% and positive
otherwise; the Ki67 marker was considered negative if it had a value lower than 14%
and positive otherwise; and HER2 was considered negative if its value was 0 or 1 and
positive otherwise [44]. The distribution of data classes obtained following those criteria is
reported in Table 3. Except for the PR marker, the class distribution is strongly unbalanced.
In the two-step feature classification process, the threshold t1, which should provide a
coarse-grained feature subset, was set to t1 = [5, 10, 15, ..., 50], whereas the t2 threshold was
used to extract a fine-grained feature subset and was set to t2 = [1, ..., 10]. These values
were selected for: (i) having a comparable number of input samples and features in the
classification steps and (ii) trying to extract a smaller, meaningful representative subset
able to generalize across datasets. Due to the reduced number of input samples, a 10-fold
cross-validation approach was used in the first two steps of the feature selection pipeline.
Generally, when working on classification models in which the dataset is unbalanced,
the F1-score, which combines precision and recall into a single metric, is a suitable measure.
Thus, the F1-score was used to select the best training models. In the next subsections,
the results of the first and second steps of the feature selection are reported separately.
Moreover, different model settings were taken into account:

• Radiomics from a single MRI sequence;
• Radiomics from all MRI sequences;
• Radiomics from a ingle MRI sequence + clinical information (i.e., patient’s age);
• Radiomics from all MRI sequences + clinical information (i.e., patient’s age).

Regarding implementation details, both classifiers and feature selection algorithms
have been implemented in Python 3.7, using the Scikit-learn framework [45] and scikit-
feature package [46], respectively. As for the over-sampling algorithm SMOTE, we adopted
the implementation provided by the Imbalanced-learn library [47].

Table 3. Thresholds used to define the DSM positive/negative classes, and the derived distribution
of the samples among them.

Marker
Name

Total
Samples

Positive
Threshold

Sample Class # (%)

Negative Positive

ER 80 ≥10% 30(37.5%) 50(62.5%)
HER2 80 ≥2 57(71%) 23(29%)
Ki67 78 ≥14% 11(14%) 67(86%)
PR 80 ≥10% 40(50%) 40(50%)
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3.2. Results of the First Feature Selection Step

All the experiments performed for the first step of the feature selection are available in
the Supplementary Materials (Tables S1–S4). However, to give the reader an idea of the
available information, some results are reported in Table 4. For each of the different input
combinations, the best F1-score is shown. Features from different image modalities were
taken all together or used separately. Considering the ER marker, the T2 modality emerged
as the one performing better when using only radiomics features and also with a combi-
nation of radiomics and clinical data. When all the image modalities were used together,
the performances decreased. Considering the HER2 marker, ADC was the modality giving
the best results, whereas for Ki67, the best performances were obtained using all the image
modalities and only the radiomics features. Finally, for the PR marker, the PC modality
gave the best results both with clinical data and without them.

Referring to the Supplementary Tables S1–S4, the classification results obtained with
the complete set of features were generally much worse than the ones obtained after the
feature selection. This result was expected since the number of features was much higher
than the number of input data. Hence, feature selection was confirmed to be a mandatory
step when performing classification in these conditions.

Table 4. Best results of the first feature selection step for all markers. For each combination of
features (i.e., single radiomics, single radiomics with clinical information) and for each combination
of modalities (i.e., all together (ALL) and single), the best mean F1-score obtained over the folds is
shown. Bold font indicates the best results for each marker.

Marker Feature Type Image
Modality

Feature
Selection

Algorithm

Feature
Threshold

t1

F1-Score
± Variance

ER

radiomics from
single modalities T2 fisher 45 0.69 ± 0.02

radiomics from
single modalities/clinical T2 fisher 25 0.68 ± 0.01

radiomics/clinical ALL chi 50 0.65 ± 0.04
radiomics ALL chi 25 0.59 ± 0.04

HER2

radiomics from
single modalities ADC reliefF 30 0.7 ± 0.03

radiomics from
single modalities/clinical ADC reliefF 10 0.69 ± 0.03

radiomics/clinical ALL gini index 10 0.68 ± 0.02
radiomics ALL reliefF 30 0.62 ± 0.02

Ki67

radiomics from
single modalities PC chi 10 0.77 ± 0.06

radiomics from
single modalities/clinical PC gini index 5 0.75 ± 0.05

radiomics/clinical ALL chi 50 0.72 ± 0.03
radiomics ALL fisher 20 0.79 ± 0.05

PR

radiomics from
single modalities PC fisher 5 0.73 ± 0.03

radiomics from
single modalities/clinical PC fisher 5 0.73 ± 0.03

radiomics/clinical ALL reliefF 15 0.67 ± 0.07
radiomics ALL reliefF 15 0.67 ± 0.07

The Supplementary Materials show the results obtained for all the possible combi-
nations of features, namely those using all the radiomics modalities (thus totaling more
than four thousand features for each patient), using both the radiomics and the clinical
information, and using single radiomics modalities (about one thousand features for each
patient). The two best results were considered for each feature combination, and the feature
threshold and selection algorithm used for each of them was reported. On the feature
subsets obtained from the two best results, the second pipeline step was then applied. In all
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the cases, the only clinical feature available (that is, the patient’s age) did not emerge as
an important one. Hence, only the radiomics features were used. There is no preferred
feature selection algorithm over the four biomarkers and the different feature combinations.
The Fisher Score method was one of the most used, thus suggesting that it could be a good
starting choice if one needs to perform a single feature selection step. When the imaging
modalities were used together, the ReliefF method generally gave the best results due to
its higher robustness to noise and redundancy. Nonetheless, both for the HER2 and Ki67
markers, on which ReliefF and Fisher Score gave the best results, the subsequent feature
selection step performs better when using the second best (i.e., Gini Index for HER2 and
Chi Squared method for Ki67, as reported in the following subsection). This might be due
to the classification algorithm overfitting the selected features owing to the small dataset
size. Regarding the radiomics modalities, the SUB one always gave poor results, whereas
the T2 and PC were often preferred. The ADC alone never emerged, but it proved useful in
combination with other modalities. In addition, for the t1 threshold, there is no preferred
value. The t1 value giving the best results changes widely along the different modalities,
features, and classification algorithms.

3.3. Results of the Second Feature Selection Step

The final classification results for all the markers obtained after the second feature
selection step are shown in terms of F1-score in Table 5 and in terms of accuracy, precision,
and recall in Table 6. In addition, in the second pipeline step, there was no clearly winning
feature selection algorithm. LR-RFE and CFS gave the best results, with the MI approach
performing generally worse. MLP is the classification algorithm more frequently used,
although high results were also obtained with the DT and the KNN models (for the HER2
and PR markers, respectively). In the final step, the best-performing classification algorithm
was chosen to obtain the final predictor. There was no preferred one, with MLP usually
performing as well as the SVM, with the second being more prone to overfitting or learning
a single class in the most unbalanced cases (as in Ki67).

Table 5. Results for the four markers after the proposed two-step pipeline and the model validation
and selection. The features and the learning algorithm obtained at the final LOOCV step are used
to build the model predictors. Only the best result (in terms of F1-score) is shown here for each
marker. Since the classes were unbalanced (except for the PR marker), the F1-score obtained consid-
ering both the label values as the positive class is reported. FSA: Feature Selection Algorithm; LA:
Learning Algorithm.

Best Training Results

Marker
Name

1st Step Results 2nd Step Results LOO Results

Feat.
Type FSA t1

F1-Score
± var FSA t2

F1-Score
± var LA Feat.

#
F1-Score
pos/neg

ER T2 fisher 45 0.69 ± 0.02 lr rfe 10 0.72 ± 0.01 svm 11 0.85/0.81
HER2 ALL gini 10 0.68 ± 0.02 cfs 5 0.75 ± 0.04 rf 5 0.64/0.86
Ki67 PC chi 10 0.77 ± 0.06 cfs 1 0.79 ± 0.05 mlp 2 0.9/0.84
PR PC fisher 5 0.73 ± 0.03 lr rfe 3 0.74 ± 0.03 mlp 3 0.73/0.73

The F1-scores for the LOOCV step were calculated considering the two labels in turn
as the positive class. Indeed, for these markers, both the negative and positive states are
important in defining the cancer’s molecular subtype. Especially in the case of the HER2
marker, whose class distribution was highly unbalanced, with 71% of samples belonging
to the negative class, it was very important to understand how the predictor behaved.
Being trained on a majority of negative samples, it performed better in detecting negative
samples. However, it had good abilities also with a positive sample. When the classes were
balanced, as in the PR case, there was no difference between the two values. Confusion
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matrices associated with performances of the predictors at the end of the two-step pipeline
were reported in Figure 4.

Figure 4. Confusion matrix for the four markers at the end of the two-step pipeline.

The final feature number was obtained in the LOOCV step, and the list of the extracted
features list is available in Table 7. For HER2, the best results were obtained with a
combination of features coming from two different image modalities (i.e., ADC, T2). For the
Ki67 and PR markers, the features all belong to the PC modality, whereas for the ER marker,
they belong to the T2 one.

Table 6. Results for the four markers in terms of other metrics: acc = accuracy; prec = precision; and
rec = recall.

Best Training Results (Other Metrics)

Marker
Name

1st Step Result 2nd Step Result LOO Result

acc ± var prec ± var rec ± var acc ± var prec ± var rec ± var acc prec rec

ER 0.73 ± 0.02 0.72 ± 0.02 0.7 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 0.72 ± 0.01 0.81 0.87 0.82
HER2 0.73 ± 0.02 0.71 ± 0.02 0.71 ± 0.02 0.8 ± 0.02 0.75 ± 0.04 0.77 ± 0.04 0.8 0.67 0.61
KI67 0.89 ± 0.01 0.76 ± 0.06 0.8 ± 0.06 0.87 ± 0.02 0.78 ± 0.05 0.84 ± 0.05 0.85 0.97 0.85
PR 0.74 ± 0.03 0.77 ± 0.03 0.74 ± 0.03 0.75 ± 0.02 0.79 ± 0.02 0.75 ± 0.02 0.73 0.73 0.73

Concerning the validation performed on the DST , a noteworthy F1-score of 0.88 was
obtained for the ER marker. Since other works report their performances based on the Area
Under the ROC curve (AUC), this measure was also computed for the ER marker, obtaining
an AUC = 0.77. For the PR marker, results were less encouraging. The F1-score was 0.88,
but only a single class (the positive one) was predicted on those data, thus resulting in an
AUC = 0.63, as expected for this condition. Figure 5 shows the curves obtained for the
two markers.
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Figure 5. ROC curves and Area Under the Curve (AUC) for the ER and PR markers on the DST

validation dataset.

Table 7. Selected features at the end of the two-step pipeline for the four biomarkers.

ER

original_shape_Flatness
T2_original_glcm_Idmn
T2_wavelet-LHH_glszm_ZoneEntropy
T2_wavelet-LHH_gldm_LargeDependenceLowGrayLevelEmphasis
T2_wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis
T2_wavelet-LLH_gldm_SmallDependenceLowGrayLevelEmphasis
T2_wavelet-LLH_firstorder_Skewness
T2_log-sigma-4-0-mm-3D_glcm_Imc2
T2_log-sigma-4-0-mm-3D_firstorder_Skewness
T2_log-sigma-5-0-mm-3D_glszm_SmallAreaEmphasis
T2_log-sigma-5-0-mm-3D_firstorder_Skewness

HER2

T2_original_glrlm_RunVariance
T2_original_glrlm_LongRunEmphasis
T2_original_glszm_ZonePercentage
T2_original_gldm_DependenceNonUniformityNormalized
ADC_wavelet-LLH_firstorder_Minimum

Ki67

PC_wavelet-LHH_gldm_DependenceEntropy
PC_wavelet-HHL_gldm_SmallDependenceLowGrayLevelEmphasis

PR

original_shape_Flatness
PC_wavelet-LLH_glcm_Correlation
PC_wavelet-HHH_ngtdm_Busyness

4. Discussion

This study aimed at comparing the performance of different radiomic models in the
prediction of the four most widely used molecular markers (ER, HER2, Ki67, PR) in BC
management, using a two-step feature selection radiomic approach to extract meaningful
mpMRI feature subsets. Predictions were performed under different settings, i.e., with
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or without clinical features with radiomics and, for the latter, in all the mono- and multi-
modality combinations of MRI sequences.

The results obtained in this study demonstrated that the proposed approach was an
accurate method to pre-operatively predict the most relevant molecular markers, with the
best resulting models composed of only radiomic features and reaching F1-scores up to 0.9.
In particular, for HER2, the best results were obtained with an SVM model built with three
T2 texture features and the minimum value of ADC from the LLH wavelet transformed
ADC map. Other studies found that MRI-based features were associated with the HER2
status of patients with BC [48]. For the Ki67 and PR markers, the best results were obtained
with an MLP model built with features all belonging to the PC modality, which currently
represents the clinical standard for characterizing BC lesions [49]. These results are partially
in accordance with some previous studies investigating the power of radiomics for Ki67
and PR status prediction [50–52], although they also found promising results arising from
different sequences. Of note, shape flatness was the only shape feature that contributed
both in the PR prediction model and in the best-performing model for the ER marker
(RF), which was surprisingly built entirely on T2 features. Shape flatness characterizes
the shape of the tumor, and in particular, a small flatness value indicates an irregular
tumor shape. This feature has been shown to have power in the prognostic prediction
of BC patients [53,54]. It is worth noting that, except for the prediction of HER2+ status,
radiomics features are critical for model construction derived from a single MRI sequence.

From the methodological point of view, our two-step pipeline is novel, although it
shares some similarities with approaches used in other works. In particular, in Xie et al. [55],
a two-step pipeline was proposed to filter features, distinguishing between coarse-grained
and fine-grained feature subsets with the classification target of simultaneously classifying
the four immunohistochemically derived cancer subtypes. They reported a mean accuracy
of 0.72 on a private dataset. Apart from being different in the imaging modalities and the
learning targets used, they relied on a single statistical method for the first feature selection
step, whereas we exploited several different algorithms to choose the most suitable one
for the problem at hand. We suggested the importance of exploiting features coming from
different imaging modalities, as also reported in Liu et al. [56], where they use conventional
T2, DWI, and T1w DCE imaging to predict cancer subgroups and in particular to distinguish
between HER2-positive/negative receptor status. They evaluated the performances on a
private dataset and reported good results in the training phase (AUC = 0.78) and lower in the
testing phase (AUC = 0.62), with better performances for the models exploiting multimodal
features than monomodal ones. Notably, we found that for HER2, a multimodal feature
set is needed to classify patients properly. This intuition was confirmed by the drop in
F1-score to 0.57 when the ADC feature is removed. This result also underlines the critical
importance of DWI for BC characterization, as also reported in previous studies [57].

Unfortunately, it was not possible to directly compare the results obtained with the
proposed methodology with similar strategies on the same learning target, owing to the
different, not publicly available dataset used. However some information could be extracted
by looking at large-scale studies such as [58]: the authors exploited feature selection and
machine learning (ML) approaches on a large private DCE-MRI dataset, obtaining an
AUC = 0.65 for the ER status using training and test sets extracted from the same dataset.
The result obtained in this study was higher, suggesting the good generalization abilities
of the proposed predictor. In Li et al. [19], about forty radiomics features were extracted
from the same TCGA-BRCA dataset we used, and the prediction ability of the features
was assessed on the four clinical biomarkers through statistical analyses. Considering the
ER biomarker prediction, they reached an AUC = 0.89. In Guo et al. [14] the authors used
logistic regression to predict different outcomes, including the ER marker on which they
obtained an AUC = 0.79. Again, a direct comparison was not possible since the predictors
were built directly on the TCGA-BRCA data, while in this work, this dataset was only used
as a test set (DST). However, it is essential to emphasize that the relevance of the obtained
result lies in having the models trained on a dataset completely different from the one
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used to test them. Concerning the PR marker, the results from the already cited works
reported AUCs of 0.62, 0.69, and 0.69, respectively. In this study, the predictor was not able
to distinguish among the PR− /PR+ classes and assigned all the patients to the PR+ class.
This was somehow expected given the differences between the used datasets and the small
size of the training data and deserves to be further explored with the usage of additional
data for the training phase. Referring to the Supplementary Materials, Table S5 reports a
comparison of the experimental design adopted by the aforementioned works.

Despite the interesting results obtained, this study suffers from some limitations. First,
the sample size for the analysis was small and, except for the PR+/PR− classification task,
unbalanced. A larger and more balanced study group is needed to perform a better radiomic
analysis and build more robust prediction models. Although the model’s performance was
corrected by using 10-fold CV in the main classification step and LOOCV for the building
of prediction models, such imbalance might have influenced the development of the ML
model and the results [59]. Second, the study was retrospective and needed to be validated
with other comprehensive external cohorts to determine the value of the developed model
in clinical practice and improve the confidence of performance. Furthermore, prospective
and multicentric studies need to be performed to define a potential standardization of
the proposed approach. Moreover, the lack of standardization in radiomic investigations,
in terms of image acquisition, processes, segmentation methods, and radiomics analysis
tools, could lead to discrepancies in radiomic feature measurements that are not due to
underlying biological variations.

Reproducibility of radiomic features is of crucial importance to clinical applications
in the field of BC [60]. Of note, to extract radiomic features, we used the PyRadiomics
software [61] which: (i) is compliant with the Image Biomarker Standardization Initiative
(IBSI) guidelines that promoted the standardization of radiomic analysis [62], (ii) allows
for a reproducible extraction of radiomic features due to the parameter files that could be
shared and re-used, and (iii) can also be used starting from DICOM input images with the
file name pointing to a DICOM Segmentation Image object, thus automatically obtaining
radiomic features without any intermediate steps. This choice allows for a reproducible
feature extraction under real clinical conditions that usually involve DICOM objects [27].
In addition, according to Lambin et al. [63], a detailed report of all the steps of the radiomic
workflow performed in the study was carried out to improve both clinical translation in
this emerging field and the reproducibility of study outcomes. Another limitation affecting
this study concerned the use of manual segmentation for the VOIs’ delineation, which is
time- and labor-consuming and prone to user variability. More accurate and automatic
tumor segmentation tools are needed to improve the quality of the radiomic analysis in
future works. On a positive note, in this study, 3D ROIs were used for lesion segmentation.
The aim was to decrease inter-reader variability by eliminating the requirement to choose
a single-slice corresponding to a portion of a lesion. Hence, a more thorough description
of the lesion is obtained by an increase in the number of points considered for feature
computation, which improved the accuracy of characterization of heterogeneous lesions
and lowered the sampling errors [64].

5. Conclusions

The MRI-based radiomic approach developed in this work, built on a comprehensive
BC dataset including MRI sequences and molecular outcomes, can efficiently characterize
BC heterogeneity according to the most examined biomarkers (ER, PR, HER2, and Ki67).
This methodology might be of great support for BC management for the following reasons:
(i) it has the advantage of being developed on an appropriate two-step feature selection
and classification technique; (ii) it implements an effective comparison of different models
and feature selection approaches); (iii) it is externally validated whenever possible; and
(iv) it addresses the well-known issues arising from the lack of available BC datasets by
exploiting a comprehensive dataset of molecular markers and MRI modalities. Moreover,
the developed two-step pipeline is general enough to be used on similar classification



Sensors 2023, 23, 1552 15 of 18

problems on different cancer types. Our results also highlighted the potential and strength
of using only mpMRI data for high-quality BC radiomics analysis. Further prospective
and multicentric studies need to be performed to define a potential standardization of
our approach. In the future, larger BC cohorts will be investigated to validate our results
more extensively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s23031552/s1, Tables S1–S4: Results of the first and second feature selection steps and of
the final classification for the tasks ER+/ER−, HER2+/HER2−,KI67+/KI67−, PR+/PR2−; Table S5:
Retrospective studies on predicting BC molecular subtypes.
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