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Abstract: The treatment of mood disorders, which can become a lifelong process, varies widely in
efficacy between individuals. Most options to monitor mood rely on subjective self-reports and
clinical visits, which can be burdensome and may not portray an accurate representation of what the
individual is experiencing. A passive method to monitor mood could be a useful tool for those with
these disorders. Some previously proposed models utilized sensors from smartphones and wearables,
such as the accelerometer. This study examined a novel approach of processing accelerometer data
collected from smartphones only while participants of the open-science branch of the BiAffect study
were typing. The data were modeled by von Mises-Fisher distributions and weighted networks to
identify clusters relating to different typing positions unique for each participant. Longitudinal fea-
tures were derived from the clustered data and used in machine learning models to predict clinically
relevant changes in depression from clinical and typing measures. Model accuracy was approxi-
mately 95%, with 97% area under the ROC curve (AUC). The accelerometer features outperformed
the vast majority of clinical and typing features, which suggested that this new approach to analyzing
accelerometer data could contribute towards unobtrusive detection of changes in depression severity
without the need for clinical input.

Keywords: mood disorders; accelerometer; mHealth; digital phenotyping

1. Introduction

Mood disorders, such as major depressive disorder and bipolar disorder, often require
treatment that is challenging and sometimes a lifelong process [1–3]. Traditional methods
to monitor mood and other symptoms of these disorders generally rely on self-reports and
infrequent clinical visits, which can be time consuming and expensive for the individual
and depict an inaccurate portrayal of daily experiences as a result of factors such as recall
bias [4–6]. While the term mood can convey different meanings, such as momentary mood,
which can fluctuate over the course of the day, clinicians instead use these methods to assess
the individual’s mood in the context of a disordered state experienced by those with mental
illness. As summarized by Hidalgo-Mazzei et al., researchers have begun to incorporate
smart technologies into the development of novel methods to monitor mood disorders
due in part to the ubiquity of smartphones and wearable devices in the recent years [7].
These devices, which are usually already integrated into the individual’s daily life, contain
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sensors that have been shown to be capable of unobtrusively detecting future changes
in mood [8–12]. The use of technology to supplement traditional treatment approaches
has been appealing due to the ability of extracting information on a more granular level
than traditional approaches without the need for active input by the user [5]. The passive
measures derived are independent of bias and might be a better reflection of everyday
life [13].

Previous studies have analyzed a range of data obtained from smartphones and
wearable devices, such as GPS location, phone and app usage patterns, voice and ambient
noise, and motion sensor information, summarized in several reviews, such as those by
Orsolini et al. and Victory et al. in 2020 [14,15]. Through harnessing these data, patterns
in an individual’s life could be analyzed to evaluate potential changes related to mood
without interrupting daily activities. Since varying moods can lead to differing activity
levels [16,17], data recorded from the accelerometer in these devices have been used in
combination with other features to passively monitor and predict mood, summarized by
Highland and Zhou [18]. Many studies tended to examine metrics from the accelerometer
related to the overall movement of the device (e.g., average displacement) as a proxy for the
activity level of the individual [10,19–23]. Information about the orientation of the phone
was disregarded, possibly due to the inability to identify the activity and location of the
phone with respect to the individual without additional information. However, positional
information during times of sedentary activities, such as identifying when the individual
is laying down versus sitting or standing during different times of the day, could also
contribute to passively tracking mood.

One way to obtain this information is by focusing on accelerometer patterns during
smartphone keyboard typing. Smartphone typing, which can be performed while sedentary
or active, is a common and frequent activity by most smartphone users. The cognitive
processes involved while typing are thought to be influenced by mood, which has been
supported in previous studies examining the relationship between typing dynamics and
symptoms of mood disorders [20,21,24]. Identifying patterns in accelerometer signals
during this specific activity could provide additional information related to individuals’
psychological wellbeing. Restricting recording to only during periods of active engagement
with the phone in a known orientation allows us to better understand the diurnal patterns
of individuals’ phone use and how diurnal changes are related to mood disorders, while
also not draining the phone battery from constantly triggering the accelerometer.

In those with mood disorders, diurnal patterns have been found to be disrupted
relative to healthy individuals [25,26]. Fluctuations in mood have been noted throughout
the day, with mornings generally characterized by worse mood and overall improvement
seen as the day progressed [25]. Continued disruptions in these diurnal mood fluctuation
patterns may implicate overall deviations in mood [25]. We suspected that sustained
deviations from norms in typing position over time might relate to changes in mood. We
hypothesized that individuals tend to type on their smartphones in unique but specific
orientations depending on their body position, which would be influenced by the time
of day and week. Continuous alterations in these positions might be related to overall
changes in depression severity. As the conventional clustering algorithms k-means [27],
density-based spatial clustering of applications with noise (DBSCAN) [28], and Gaussian
mixture models (GMM) were shown to be insufficient in clustering the accelerometer data to
identify the preferred phone orientations for all participants, the objective of this study was
to develop a novel approach of processing and analyzing accelerometer data longitudinally
and to verify their utility to predict clinically relevant changes in depression severity.

2. Materials and Methods
2.1. The BiAffect iPhone Open Science Study

The participants were a part of the open science branch of the BiAffect study and
downloaded the BiAffect app from the Apple app store onto their personal iPhones without
the requirement of being a part of a controlled study. Included participants comprised
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of a combination of those recruited for a controlled study, which utilized the BiAffect
app, as well as citizen scientists, who downloaded the app of their own accord. Initially
developed to predict changes in mood and cognition for those with bipolar disorder,
the study aims to understand whether patterns passively detected through smartphone
typing behaviors can be used to monitor mood disorder symptomatology, which could
aid in symptom management without increasing the burden on the individual. The app
provides users with a custom keyboard that records typing and accelerometer metadata,
as well as active cognitive tasks, mood surveys, and rating scales for users to complete
periodically. All data collected are de-identified. The data have been used in previous
BiAffect studies that found relationships between smartphone keyboard typing patterns
and mood disorders [12,20–22,29–33].

Specifically, this app recorded the category of keypresses (alphanumeric, backspace,
punctuation, etc.) and timestamp while the person was typing using the customized
keyboard but not the actual text. Accelerometer readings were also recorded at 10 Hz
during typing sessions. In addition to recording typing events, participants were prompted
weekly to report the Patient Health Questionaire 8 (PHQ without the suicidality item),
which is a self-report of depression severity [34]. As usage of the BiAffect keyboard was
entirely voluntary, participation was not consistent. For comparison, missing values were
accounted for via two methods: (1) imputation and (2) filtering out of individuals with
missing data. Generally, models using imputation performed a few percentage points
higher than filtering in terms of accuracy and area under the ROC curve (AUC), which is
consistent with previous results [12,33]. In total, there were 295 individuals available in
this dataset when using imputation, but only 100 left when using filtering.

2.2. Accelerometer Processing

Accelerometer readings were normalized to gravity and recorded as x/y/z coordinates.
Readings were filtered to only include coordinates with a magnitude between 0.95 and
1.05 m/s2. This filtering resulted in the inclusion of only typing sessions that occurred while
the participant was sedentary (standing, sitting, etc.), which was empirically determined
using test data obtained during internal testing in various sedentary and active activities.
Data were grouped by week for each participant to account for within-week fluctuations
in routine, and the von-Mises Fisher (vMF) distribution was calculated for each group
(spherical_kde package, version 0.1.0) [35]. This type of distribution was chosen due to the
spherical nature of the accelerometer readings, which resembled the unit sphere following
normalization and filtering. The vMF distributions were sampled at 1000 equidistant
points across a unit sphere to determine the densities of the distribution at a resolution
that captured the shape of the distribution while also being sparse enough to not be too
computationally expensive [36].

2.3. Clustering

To cluster the accelerometer readings per week, the number of clusters in each distri-
bution was first determined through identifying the number of local maxima in the vMF
distributions. We reasoned that the peaks in the distribution corresponded to the locations
where the majority of the accelerometer points, as well as, subsequently, the number of
clusters, lied. Local maxima were defined as points sampled from the vMF distribution
with an associated density larger than the 8 neighboring sampled points, with neighbors
defined by the number of directly surrounding equidistant sampled points on the vMF
distribution. The local maxima with an associated density below a set threshold were
attributed to noise and discarded. The threshold was set according to the second bin value
of the vMF distribution’s histogram with fifty bins, since the first bin of the histogram
contained the portions of the vMF distribution with minimal to no accelerometer readings.
The cluster centers were labeled according to the coordinates of the local maxima on the
sampled unit sphere.
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The common methods to cluster the accelerometer data we chose to compare to our
network graph-based method were spherical k-means, DBSCAN, and GMM. The Scikit-
Learn package in Python (version 0.21.3) [37] was used to cluster the accelerometer data
for DBSCAN and GMM, and the modification of the Scikit-Learn k-means function by the
spherecluster package (version 0.1.7) [38] was used for the spherical k-means method. The
number of clusters was determined for the spherical k-means and GMM methods using
the vMF distribution-based method described above, and the distance metric used for the
DBSCAN method was cosine distance due to the spherical nature of the data. All other
parameters were left as default.

For our network graph-based method of clustering (shown in Figure 1), the accelerom-
eter readings were assigned to a cluster using graph distance. First, an adjacency matrix
was constructed for the equidistant sphere points sampled from the vMF distribution. The
edges were weighted using an average of the density sampled from the neighboring points
(vMFi,j), shown by Equation (1).

wij = e
−(vMFi+vMFj)

2 (1)
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Figure 1. Diagram of steps to cluster accelerometer data.

This weighting was used in place of the distance between the neighboring points,
since the points were all equally spaced across the unit sphere. Using the average density
between two nodes to weight the edge created a graph in which nodes located in a high-
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density region of the vMF distribution were close together, while nodes located in low
density regions were farther apart.

A network graph was constructed using the weighted adjacency matrix (networkx
package, version 2.6.3) [39], and the sampled sphere points were assigned to a clus-
ter using Dijkstra’s shortest path algorithm (illustrated in Figure 2). All accelerometer
points were matched to the closest sampled sphere point using a nearest neighbor algo-
rithm (scipy.spatial.cKDTree package, version 1.3.1) [40] and assigned the corresponding
cluster label.
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Figure 2. Each of the 1000 equidistant points (that jointly discretized the unit sphere) is assigned
to one of the local maxima by following a path of increasing kernal density (i.e., a gradient ascent
procedure on the kernal density function), as illustrated using the points marked by an X. This is
algorithmically implemented by forming a weighted graph followed by computing the shortest path
length between points.

All processing was conducted in Python, version 3.7.4 [41], using the pandas package
(version 1.2.0) [42,43] and NumPy package (version 1.17.2) [44]. Plots were constructed
using the matplotlib package, version 3.5.3 [45].

2.4. Modeling

Since the accelerometer was selectively recorded only during periods of typing activity,
the readings possible were reduced due to the generally limited phone orientations feasible
while typing. With that restriction, information about the orientation of the phone was
extracted from processed accelerometer readings for longitudinal analysis. This information
was possible to infer from the accelerometer alone, since the data were filtered to only
include readings of no accelerations aside from that with respect to gravity. By observing
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the projection of gravity onto the three axes, the relative orientations of the phones were
deduced. Orientation and time-based variables calculated from the clustering of weekly
accelerometer readings (Table 1) were used, along with typing features, which captured
typing speed and variability, as well as clinical factors developed by Bennett et al. [12], to
predict clinically relevant changes in PHQ score (difference of 4 or more) [46] using random
forest, gradient boosting, and deep learning neural networks methods. Since the majority
of the participants included in the dataset did not experience a clinically relevant change in
depression, the imbalances were adjusted using synthetic minority oversampling technique
(SMOTE) [47]. Feature rankings were determined by a filter-based feature selection method
using a random forest model in the python package Scikit-Learn, based on information
gain [48]. Odds ratios were calculated in Excel.

Table 1. Accelerometer features calculated using clustered accelerometer data.

Feature Name Feature Description

n_clusters Number of distinct phone typing orientations
per week

total_distance_between_clusters Sum of haversine distances traveled between
session cluster labels per week

avg_n_clusters_perSession Average number of cluster labels of x/y/z
readings within each session per week

avg_n_transitions_perSession
Average number of changes between

consecutive cluster labels of x/y/z readings
within each session per week

n_cluster_transitions Number of changes between consecutive
session cluster labels per week

median_X, median_Y, median_Z Median x/y/z reading of session’s cluster
center per week

sum_X_motion, sum_Y_motion,
sum_Z_motion

Sum of differences between consecutive cluster
center x/y/z readings of session cluster labels

per week

X_motion_sd, Y_motion_sd, Z_motion_sd
Standard deviation of differences between

consecutive cluster center x/y/z readings of
session cluster labels per week

arc_sum
Three-dimensional rotational motion per week

(calculated based on session cluster center
x/y/z accelerometer readings)

3. Results
3.1. Clustering

The accelerometer data collected was clustered to identify the predominant orienta-
tions each participant held their phone while typing. The clustering methods k-means,
DBSCAN, and GMM were tested on the accelerometer data itself and generally performed
well, but were found to not reliably cluster the points in the expected way that resembled
the associated vMF distribution, as shown through two users’ data in Figure 3. For the ma-
jority of the participants data, DBSCAN labeled all of the accelerometer points as belonging
to one cluster and so was not deemed a feasible method to cluster the data. The spherical
k-means algorithm clustered the data evenly between the identified cluster centers and
did not account for the density of points when labeling clusters. As seen in Figure 3A, the
spherical k-means method split grouped points into separate clusters in a linear fashion.
Additionally, unconnected points were sometimes grouped into one cluster (Figure 3B).
GMM performed somewhat similarly overall to spherical k-means but tended to group
all sparsely located accelerometer points as belonging to one cluster, rather than grouping
those points to the nearest cluster of dense accelerometer points (Figure 3A).
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Since the common clustering algorithms did not consistently cluster the accelerometer
points across different participants and weekly groupings, we developed a new approach
to label the points by cluster. Compared to the conventional clustering methods, clustering
of the accelerometer data performed using the respective vMF distribution and network
graph was found to be the most effective in correctly identifying the number of clusters and
labeling the accelerometer readings to the appropriate cluster, as determined through visual
inspection (Figure 3). By creating a network graph that resembled the vMF distribution of
the accelerometer points, the clusters were mapped to the sampled points from the vMF
distribution using the local maxima and weighted graph as a guide. Cluster labels for
the accelerometer points themselves were then transferred from the sampled points of
the vMF distribution using the nearest neighbor algorithm. This method accommodated
irregular and inconsistent cluster shapes between participants’ data by clustering based
on the individual network graph. Unlike with the DBSCAN algorithm, separate clusters
were identified within regions of overall higher density of accelerometer points within
the distribution. Moreover, clusters were allowed to encompass the entire area of higher
density, regardless of cluster shape and distance from the cluster center.

The clusters Identified represented the phone orientations that each participant used
each week. For example, in Figure 4, one participant held their phone in multiple orien-
tations throughout the course of a week, ranging from deviations of upright (gray, beige,
and green clusters) to facing upwards (orange cluster) to horizontally (teal, yellow, and
blue clusters).
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3.2. Changes in Phone Orientation over Time

The labeled accelerometer data was used to identify consistency or changes in typing
orientation over time that were unique to each individual. The predominant cluster label
per hour was identified and plotted to analyze shifts in typing orientation over time,
shown in Figure 5. Some participants had consistent typing orientations, shown by the
zero distance from previous cluster on the plot, while other participants shifted typing
orientation regularly throughout the day and weeks, which was visualized by frequent
changes in the distance from previous cluster on the plot. Larger distances between
consecutive clusters corresponded to a more drastic phone orientation change, while
smaller distances corresponded to only slight changes in phone orientation. In Figure 5,
participant A shifted typing orientation frequently for the majority of the time using the
BiAffect keyboard, but spent one week typing only in one orientation. Participant B, on the
other hand, predominantly typed in one orientation over the course of a month.
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Figure 5. Two participants’ plots of the haversine distance between consecutive cluster centers per
hour over the weeks using the BiAffect keyboard.

Accelerometer features were calculated from the clustered data to determine their
efficacy in predicting clinically relevant changes in PHQ score when combined with typing
and clinical features. Model accuracy ranged from 94 to 95.5% (2% standard deviation),
with 96 to 98% AUC, similar to that reported in [33]. Importantly, the accelerometer
features calculated from the cluster labels contributed greatly to model predictions, even
performing better than some otherwise highly ranked clinical features previously reported
in the literature [12,49], as can be seen in Table 2.

Table 2. Feature rankings based on information gain filter-based method (using a random forest
model) [48] with accelerometer features calculated from cluster labels in bold.

Feature Ranking

median_Y

median_X

Age

n_clusters

median_Z

BD

n_cluster_transitions

sum_Z_motion

BD_binary

MDQdiag

phoneSize

Gender

Anxiety

medianPressDur

PTSD

sum_Y_motion

sum_X_motion

Depression

OCD

percent_upright_night

medianDistCenter

arc_sum

avg_n_transitions_perSession
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Table 2. Cont.

Feature Ranking

ADHD

count_X_horizontal

n_XYZ

avg_n_clusters_perSession

X_motion_sd

NoneOfTheseDiag

total_distance_between_clusters

distToCenterPrevRatioAA

autocorrectRate_wkSD

medianIKD

Avg90PercentileAA

autocorrectRate

AvgVarAB

SubstanceAddictionDisorder

backspaceRate

AvgVarAA

Z_motion_sd

medIKD_wkSD

Avg_nBackspace

percent_upright_afternoon

percent_upright_morning

bkspRate_wkSD

Avg_nAutocorrect

AvgVarBB

percent_upright

SeasonalAffectiveDisorder

nKeypresses

Y_motion_sd

percent_upright_evening

AvgMedAA

Avg_medPressDuration

AvgMAD_AA

Diag_PreferNotAnswer

AvgMedAB

Avg_nAlphanum

Schizophrenia

AvgMedBB

To understand the directionality of how these PHQ changes were affected by the
features, odds ratios were also calculated. The odds ratios for number of clusters and
cluster transitions were 1.26 and 1.2, respectively, which suggested that participants with
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a larger number of clusters and cluster transitions per week had a higher probability of a
clinically relevant change in PHQ.

4. Discussion

Understanding patterns in a person’s phone orientation while typing could uncover
information about changes in their depression severity. While many studies have primarily
examined the movement of the phone or wearable device compiled over all activities in
analyses using the accelerometer [10,19–23], we sought to determine how the orientation
of the phone specifically during typing related to changes in depression severity instead.
By limiting the recording times to only during smartphone typing, we were exploring the
utility of passive tracking during activities that individuals generally already do on a daily
basis while also reducing the toll on the smartphone’s battery. In this study, we developed
a novel method of processing accelerometer data to discover how personalized features
related to phone orientation can predict clinically relevant changes in depression.

To identify individualized phone orientation tendencies that each participant preferred,
clustering of the accelerometer data was performed on a weekly basis to account for day-
to-day fluctuations in participants’ schedules due to work and other activities. After first
testing the efficacy of conventional clustering methods, we discovered that these algorithms
did not consistently provide adequate identification of the different clusters present for all
of the participants. As shown in Figure 3, spherical k-means, DBSCAN, and GMM were
applied to the accelerometer data and compared to one another.

Although DBSCAN did not require prior knowledge about the number of clusters
in the data unlike the other methods used, the algorithm labeled clusters based on the
density of the points. Since the accelerometer points for the vast majority of the participants
were not well separated between clusters, all points were labeled as belonging to one large
cluster, and no distinctions were made between areas of higher and lower densities within
the distribution, shown in Figure 3. This method might have worked better if there were
clear distinctions between the phone orientations used by the participants, but the overall
spread of the points prevented any clear separations.

The spherical k-means algorithm performed well for many of the participants’ data
and could reasonable replicate the vMF distributions overall. However, the method works
by partitioning the points into clusters, such that each point is labeled as belonging to
the nearest cluster center, independent of its location in the distribution [27]. The clusters
formed when using this method follow a circular shape, which was not accurate for every
instance in our data. Using this method, points that appeared to lie on the edges of a
larger cluster might instead be assigned to another cluster solely due to the distance to each
cluster center instead of taking into account the shape of the distribution. Moreover, points
that were physically separated were sometimes grouped together due to their distances
from the cluster centers (Figure 3B).

GMM was an improvement from the spherical k-means algorithm since the algorithm
could handle non-circular cluster shapes, but did not seem to handle the sparse points well
likely due to noise in the data, as seen in Figure 3A. The distribution of the accelerometer
data did not follow a normal distribution, which might have contributed to the subpar
performance of the algorithm on the participants’ data overall.

Since the conventional clustering methods tested did not appropriately identify and
label the accelerometer data into clusters for all participants, a new approach was developed,
outlined in Figures 1 and 2. At the step of clustering the data, the points had already
been modeled by vMF distributions in order to determine the number of clusters in each
distribution. We then used this representation of the data to create a customized mapping of
each distribution for the clustering to preserve their unique characteristics. The clustering
using this method was able to accommodate irregular and inconsistent cluster shapes
across data from different participants, as well as take into account the varying densities
in the vMF distributions when forming the clusters, shown in Figure 3. These clusters
represented the different phone orientations participants used each week and depending
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on the data could suggest several different corresponding body positions, ranging from
standing or sitting upright to lounging or laying down, as shown through one participant’s
data in Figure 4.

Accelerometer features were then designed as a proxy for body positioning while
typing to provide more information about the individual’s environment in models to
predict changes in depression severity (Table 1). It is well known that sleep and behavior
can be disrupted during periods of depression [50–52]. Therefore, we investigated patterns
derived from the clustered accelerometer data over time to reveal information about the
state of the individual. Reinersten et al. outlined several studies describing that changes in
activity can be indicative of changes in depression [16], so we speculated that individuals
who typed inconsistent to their usual typing patterns might show signs of a change in
depressed mood relative to their previous state. As seen in the comparison between two
participants in Figure 5, the patterns of movement between clusters throughout days and
weeks ranged in consistency between participants and within participants over time. One
participant typed in one orientation over the course of a month aside from a few instances
generally in the mornings and nights in which the shift in phone orientation was drastic
due to the large distance between consecutive clusters. On the other hand, the other
participant had regular shifts in phone orientation throughout the day for many weeks,
with some being minor shifts in phone orientation (small distances between consecutive
clusters) and others being major shifts in phone orientation (larger distances between
consecutive clusters), which suggested that their body position changed from an upright
position to variations of lounging or laying down multiple times throughout the day on a
regular basis. The shift to consistent phone orientation in week 4 suggested a change in
the participant’s behavior during that time, which might have been the result of a change
in depression severity. We derived features to capture this information in order to further
investigate the relationship between participants’ chosen phone orientation while typing
and changes in depression severity. We suspected that how often and the degree to which
phone orientations (and therefore body positions) changed over time would be related to
participants’ depression severity, with major shifts being more indicative of a change.

We constructed models that examined typing dynamics and clinical measures to
predict clinically relevant changes in depression severity in order to evaluate our newly-
derived features. Model accuracy was around 95%, and importantly, we observed that
the features derived from clustered accelerometer data were very highly ranked in feature
importance (Table 2). This ranking suggested that these features, which captured infor-
mation about the participants’ position while typing, were just as, if not more, important
than demographic and clinical information in predicting whether a participant would
have a clinically relevant change in depression severity the following week. Moreover,
odds ratios, which inform on the direction of change, suggested that the higher number of
clusters (i.e., number of typing orientations per week) and number of cluster transitions (i.e.,
number of times the participant changed between typing positions per week) resulted in an
increased likelihood that the participant would experience a change in depression severity
the following week. This finding suggested that participants who chose multiple body
positions while typing on their smartphone and changed often between them were more
likely to experience a fluctuation in their mood, consistent with previous studies evaluating
the relationship between psychomotor disturbances, circadian rhythm disruptions, and
depression [53,54].

Conventionally, assessments of mood to evaluate treatment efficacy and symptom
management rely heavily on a person’s ability to accurately recall their experiences leading
up to clinical visits, which can be sparse or difficult to access [6]. These recollections have
been previously noted in the literature to often be subject to recall bias [5,55], making regular
and accurate monitoring of symptoms difficult. Our approach to processing and analyzing
accelerometer data collected during smartphone typing can help to better understand the
signals present in this modality and uncover their relationship to mood. Pending further
work, models using this approach could be more advantageous in tracking changes in
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mood due to the greater reliance on passive measures recorded on personal smartphones
already used by the majority of the population. The increased granularity of the recorded
data and input that does not necessitate access to medical professionals could benefit
many individuals by providing objective supplemental information during clinical visits
and potentially serve to identify early signs of changes in mood that otherwise might be
recognized too late [15,56]. Additional work to investigate this implementation needs
to be conducted, though, to determine the extent of beneficial effects of feedback about
depression severity, as well as to identify any potentially harmful side effects due to
incorrect predictions of changes in depression severity or other factors [57].

This analysis, however, does not come without limitations. First, as the data analyzed
belongs to the open-science branch of the BiAffect study, the demographic and clinical
information submitted by the participants is not verified by a psychologist and so might
not be as accurate as if the data was obtained through a controlled study. Even though the
adherence to using the BiAffect keyboard was less consistent as a result of the nature of the
participation, the ease to participate facilitated the recruitment and volume of participants.

Furthermore, for the analysis, we elected to filter the data to only include accelerom-
eter readings when the phone was not accelerating independent of gravity, which likely
excluded typing sessions while participants were walking or otherwise moving. This
exclusion might have impacted the results, but since we did not have any information from
other sensors, we would have been unable to deduce the rationale for the accelerations and
incorporate them into the models. Future directions could explore the inclusion of this data
and the impact on predictions of depression severity.

5. Conclusions

In recent years, focus has been placed on more effective and efficient methods to
monitor treatment and progression of mood disorder symptoms in order to relieve the
burden on individuals. Passive and unobtrusive measures obtained from smartphones
and wearable devices already incorporated into most people’s everyday lives have become
targets for models to predict future changes in symptomatology. The accelerometer, which
is found in most smart devices, has become a popular choice due in part to the ease of
information that can be gathered passively without much infringement upon the privacy
of the individual compared to other possible information gathered from these devices. This
study developed a novel approach of processing accelerometer data that has the potential
to augment predictions of changes in depression severity with less dependence on clinical
input by the individual.
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