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Abstract: The time maintenance accuracy of the navigation constellation determines the user posi-
tioning and timing performance. Especially in autonomous operation scenarios, the performance of
navigation constellation maintenance time directly affects the duration of constellation autonomous
navigation. Among them, the frequency stability of the atomic clock onboard the navigation satellite
is a key factor. In order to further improve the stability of the navigation constellation time-frequency
system, combined with the development of high-precision inter-satellite link measurement tech-
nology, the idea of constructing constellation-level synthetic atomic time has gradually become the
development trend of major GNSS systems. This paper gives a navigation constellation time scale
generation framework, and designs an improved Kalman plus weights (KPW) time scale algorithm
and time-frequency steer algorithm that integrates genetic algorithms. Finally, a 30-day autonomous
timekeeping simulation was carried out using the GPS precision clock data provided by CODE, when
the sampling interval is 300 s, the Allan deviation of the output time scale is 5.73 × 10−14, a 71%
improvement compared with the traditional KPW time scale algorithm; when the sampling interval
is 1 day, the Allan deviation is 9.17 × 10−15; when the sampling interval is 1 × 106 s, the Allan devia-
tion is 8.87 × 10−16, a 94% improvement compared with the traditional KPW time scale algorithm.
The constellation-level high-precision time scale generation technology proposed in this paper can
significantly improve the stability performance of navigation constellation autonomous timekeeping.

Keywords: time scale algorithm; time-frequency steering algorithm; digital phase locked loop;
frequency stability; genetic algorithm; autonomous navigation

1. Introduction

The basic principle of the global navigation satellite system (GNSS) is timing and
ranging. In order to ensure that GNSS provides users with high-precision navigation
positioning and timing services, it is necessary to establish and maintain a high-precision
time reference [1]. At present, the time reference of mainstream GNSS is established
and maintained by the atomic clock group of the ground master station, such as GPS
System Time (GPST) and Beidou System Time (BDT). The satellite-borne atomic clocks on
the navigation satellites obtain the satellite-ground clock difference through the satellite-
ground two-way time comparison technology, and achieves the satellite-ground time
synchronization [2]. With the development of the autonomous operation technology of
the navigation constellation, in order to maintain the continuity of the time-frequency
signal of the GNSS and reduce the dependence on the ground station, the navigation
constellation needs to independently establish and maintain a high-precision time scale
as the time-frequency reference of each single satellite [3]. The time difference of an
atomic clock can be composed of a deterministic trend term and a random term error:
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(x(t) = x0 + y0t + Dt2

2 + ε(t)), where the deterministic trend term includes the initial time
error x0, the initial frequency deviation is y0, and the linear frequency drift D is caused by
aging and temperature changes. ε(t) is the random frequency deviation of different types
of noise such as stationary noise and non-stationary noise, mainly including: WPM, FPM,
WFM, FFM and RWFM noise. Since the atomic clock is composed of various electronic
components, the five noise levels of each clock are not exactly the same, and the frequency
stability and frequency accuracy are also different. Therefore, the random noise of the
output time scale can be reduced by the time scale algorithm, and the frequency stability
can be improved.

With the development of inter-satellite link technology, the clock difference accuracy
obtained by two-way measurement of the inter-satellite link is less than 0.3 ns [2,4]. There-
fore, the satellite clocks can be formed into a large clock group through the inter-satellite
link, and the time scale algorithm can be used to obtain a more stable time scale [5]. Cur-
rently, commonly used time scale algorithms include weighted average algorithm (ALGOS
algorithm and AT1 algorithm) [6], Kalman filter algorithm [7], Kalman plus weights (KPW)
algorithm [8,9], wavelet decomposition algorithm, etc. The core idea of the ALGOS algo-
rithm and the AT1 algorithm is to assign a weight to each atomic clock, thereby increasing
the stability of the time scale. However, without eliminating or suppressing the noise of the
atomic clock, it cannot further improve the accuracy and reliability of the atomic time scale.
For the Kalman filter time scale algorithm, it can model a variety of noises and suppress
these noises at the same time. Its obtained time scale is significantly better than the ALGOS
algorithm that can only mainly suppress one kind of noise, but its incompleteness will
cause the error of the estimation result to increase with time, and the accuracy of the time
scale will decrease. The KPW algorithm proposed by Greenhall assumes that only white
frequency noise (WFM) remains in the clock data after Kalman frequency correction, and
adjusts the weight according to the strength of WFM, thus it can take into account both
short-term and long-term stability of the time scale. Since different spaceborne atomic
clocks have different time-frequency characteristics, the scheme in this paper is to divide
multiple rubidium atomic clocks and cesium atomic clocks into two clock groups according
to type, and use the genetic algorithm [10] to improve the KPW time scale algorithm.
The two clock groups use this time scale algorithm to generate two timescales. Then, the
improved time-frequency steering algorithm is used to obtain a comprehensive time scale
that takes into account the time-frequency characteristics of the two types of atomic clocks.

In the steering experiment, the deterministic trend items, x0, y0, D, are removed first.
The random noise of the atomic clock (including: five kinds of noise) is controlled, and the
purpose is to combine the steering reference in the frequency domain with the excellent
near-end noise level and the controlled frequency. Target good far-end noise levels. In
terms of time domain, it is mainly reflected in the advantages of both frequency stability
and long-term stability. Short-term stability and long-term stability correspond to the five
types of noise corresponding to different sampling intervals. The time-frequency steering
algorithm includes open-loop control and closed-loop control. The general open-loop
control adopts the clock difference prediction method of the Kalman filter, and corrects the
model prediction parameters to obtain the adjustment value. It does not depend on the
measurement, but it can only improve the time synchronization accuracy. In the closed-loop
control algorithm, the early zero-return phase modulation method will cause phase jumps,
resulting in discontinuous time error data and deteriorating signal stability. The early ping-
pong frequency modulation method based on two-state control used a specific frequency
offset to make the time error signal oscillate between two thresholds to achieve phase
continuity, but the result was not smooth [11]. The classic position-type PID closed-loop
driving algorithm has a simple control structure, but the three parameters (proportional,
integral and differential) that affect the degree of steering adjustment need to be adjusted
manually and rely more on empirical values [12–15]. The traditional optimal quadratic
Gaussian control algorithm (LQG) adjusts WQ and WR parameters through numerical
simulation, and iteratively calculates the optimal time-frequency steer value, which has
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higher reliability [16,17], but its parameter selection process is more complicated. The
Kalman filter combined with the delay structure can be equivalent to the closed-loop con-
trol method of the digital phase-locked loop (DPLL), which expands the application mode
of the traditional DPLL [18,19]. The authors of references [20,21] selected the observable
Kalman filter system, and verified the stability of the equivalent DPLL control system with
a delay structure. In references [21,22], the standard second-order type 2 DPLL and the
third-order type 3 DPLL are equivalently constructed. Because the adjustment parame-
ters in references [21,23] need to be adjusted many times, there are precision limitations
and self-adaptive approximate selection. Therefore, there is still room for optimization
and improvement in the parameter selection of the algorithm. In this paper, the genetic
optimization algorithm is used to realize the adaptive adjustment of parameters, and to
promote the system to achieve the desired optimal steering goal with higher parameter
selection accuracy and reliability.

In the second section, this paper will introduce the overall architecture of the navi-
gation constellation high-precision time scale generation scheme. In the third section, the
existing time scale algorithm is improved to obtain a time scale with higher stability than
a single clock. In the fourth section, an improved time-frequency steering algorithm is
introduced to generate a comprehensive time scale that takes into account both short-term
and long-term stability. In the fifth section, the simulation results of the analytical scheme
are summarized.

2. Time Scale Self-Generated Overall Architecture

The time scale generation scheme proposed in this paper uses each satellite-borne
atomic clock in the navigation constellation as the time-frequency source, and each satellite-
borne atomic clock forms two clock groups according to the type of clock through the
inter-satellite link: the rubidium atomic clock group and the cesium atomic clock group.
The relative clock difference can be calculated by inter-satellite link two-way ranging
between satellites. Before the system enters the autonomous operation state, use the
historical clock difference data of each atomic clock for five days to calculate the frequency
stability, and select the atomic clock with the smallest Allan variance when the sampling
interval is 10,000 s as the reference clock. Using the improved time scale algorithm, the
time scale TA(Rb) of the rubidium clock group and the time scale TA(Cs) of the cesium
clock group are respectively obtained. The frequency stability of two time scales is better
than that of the single clock in the respective clock group.

In the part of time-frequency steer, select TA(Cs) as the control reference, TA(Rb)
as the frequency standard to be steered, measure the relative clock difference between
the control reference TA(Cs) and the TA(Rb) to be steered, and construct a third-order
DPLLcontrol system equivalent to a Kalman filter combined with delay structure. On this
basis, combined with the genetic algorithm to design the fitness function to control the
adaptive iterative optimization of the system parameters, use the steer reference to obtain
the optimal time-frequency steer value, and finally steer TA(Rb) efficiently to obtain the
desired optimal comprehensive time scale. The structure diagram is shown in Figure 1.Sensors 2023, 23, x FOR PEER REVIEW 4 of 22 
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3. Time Scale Algorithm Principle

The principle of the time scale algorithm is to firstly obtain the observed clock dif-
ference of each atomic clock in an atomic clock group relative to the reference clock. The
observed clock difference is calculated to obtain a virtual clock difference sequence. The
virtual clock difference sequence can be regarded as the time on paper. The stability of the
time on the paper is better than any clock in the clock group. This section first introduces
the KPW time scale algorithm, and then uses the genetic algorithm for optimization to
obtain our desired time scale or paper time.

3.1. KPW Time Scale Algorithm

The paper time calculated by the time scale algorithm can be regarded as a virtual
atomic clock, so it can be assumed that the clock difference between it and the ideal time
scale is xe(t) [5], and the basic time scale equation is:

xe(t) =
n

∑
i=1

ωi(t)(xi(t)− x̂i(t)) (1)

where ωi(t) represents the weight of each atomic clock, xi(t) represents the clock difference
of each atomic clock, x̂i(t) represents the forecast value of each atomic clock difference;
their deterministic trend terms have the same sign. Select an atomic clock with the best
stability as a reference clock in the clock group, and its clock difference is xj(t), and the
clock difference between it and the paper time is xej(t):

xej(t) = xe(t)− xj(t) (2)

Substitute Equation (2) into Equation (1) to get:

xej(t) =
n

∑
i=1

ωi(t)(xij(t)− x̂ie(t)) (3)

where xij(t) is the observed clock difference between each atomic clock and the reference
clock, and x̂ie(t) is the clock difference prediction value of each atomic clock in the clock
group relative to the virtual atomic frequency standard. According to the atomic clock
difference model, x̂ie(t) can be expressed as

x̂ie(t) = xie(t− ∆t) + τŷie(t− ∆t) + 1/2D(t− ∆t)2 (4)

where ∆t represents the calculation interval and D represents the frequency drift of the
atomic clock. Combining Equations (3) and (4), the KPW algorithm equation [8] can be
obtained as:

xej(t) =
n

∑
i=1

ωi(t)(xij(t)− (xie(t− ∆t) + ∆tŷie(t− ∆t) + 1/2D(t− ∆t)2) (5)

It can be seen from Equation (5) that the key to the time scale algorithm is the weight ωi
and the estimated value of the frequency difference ŷie. The estimated values ŷie used in
the KPW algorithm are calculated by Kalman filtering. Since the Kalman filter algorithm
can effectively remove frequency white noise, frequency random walk noise and frequency
random run noise, it can improve the frequency stability of the time scale algorithm output.
The five basic equations of the Kalman filtering algorithm [7] are:

X̂k,k−1 = AXk−1,k−1 (a)
Pk,k−1 = APk−1,k−1 A′ + Q (b)
Kk = Pk,k−1H′[HPk,k−1H′ + R]−1 (c)
X̂k,k = X̂k,k−1 + Kk[Zk − HX̂k,k−1] (d)
Pk,k = (I − Kk H)Pk,k−1 (e)

(6)
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The Kalman filtering algorithm is a consensus in related fields, and this article will not
introduce the parameters in detail [7]. The following mainly introduces the specific pa-
rameter determination method in this paper. The system model of the atomic clock can be
represented by a three-dimensional linear discrete system: x(t + ∆t)

y(t + ∆t)
z(t + ∆t)

 =

1 t 1
2 t2

0 1 t
0 0 1

.

 x(t)
y(t)
z(t)

+

 ∆x
∆y
∆z

 (7)

where x(t), y(t), z(t) represent the three deterministic trend items of clock difference,
frequency difference and frequency drift, respectively. ∆x, ∆y, ∆z represent the errors
caused by phase noise and frequency noise independent of the deterministic trend item,
respectively. Its noise matrix is:

W =

 ∆x
∆y
∆z


(8)

The process noise covariance q of the Kalman filter is equal to the covariance matrix W [7],
as shown in Equation (9)

q = E[WW ′ ] =

q1t + q2t3/3 + q3t5/20 q2t2/2 + q3t4/8 q3t3/6
q2t2/2 + q3t4/8 q2t + q3t3/3 q3t2/2

q3t3/6 q3t2/2 q3t

 (9)

where q1, q2 and q3 represent the process noise parameters of White Frequency Modulation
(WFM), Random Walk Frequency Modulation (RWFM) and Random Run Frequency Mod-
ulation (RRFM), respectively, which are estimated by least squares fitting of Hadamard
total variance [24]:

Totalσ2
H(τ) = (10/3)q0τ−2 + q1τ−1 + q2τ/6 + 11q3τ3/120 (10)

Through Equation (5), we can see that another key factor of the KPW algorithm is the
weight. The weight selection equation of the traditional weighted time scale algorithm is
generally [8]:

ωi = [
N

∑
i=1

1
σH(τ)

]

−1

[
1

σH(τ)
] (11)

where σ2
H(τ) represents the Hadamard variance when the sampling interval is τ, τ rep-

resents the sampling interval, and N represents the number of atomic clocks in the clock
group. Since the Hadamard variance is a three-sample variance, it is not sensitive to linear
frequency drift, so it is suitable for analyzing the frequency stability of rubidium atomic
clocks. The expression for Hadamard variance [25] is:

σ2
H(τ) =

1
6(N − 3)τ2

N−3

∑
i=1

[xi+3 − 3xi+2 + 3xi+1 − xi]
2 (12)

3.2. Genetic Algorithm

Genetic Algorithm (GA) was first proposed by John Holland in the United States in
the 1970s [10]. This algorithm is designed and proposed according to the evolution law
of organisms in nature. It is a computational model of the biological evolution process
that simulates natural selection and genetics mechanisms, and a method of searching for
optimal solutions by simulating the natural evolution process. GA expresses the decision
variables in the problem space as an individual in the genetic space through a certain
coding method, which is a genotype string structure data. At the same time, the value
calculated by the fitness function is used to evaluate the quality of the individual and serve
as the basis for genetic operations. Genetic operations include the following three basic
operators (genetic operator): selection; crossover; mutation. The basic process of genetic
algorithm is shown in the Figure 2:
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Through the investigation of the literature, it is found that each time scale algorithm
either adopts an equal weight method for the clock groups composed of the same type of
clocks, or uses the Equation (11) to determine the weight [5,8,26]. When the constellation
runs autonomously for a long time, the performance of the atomic clock will change with
time, so the method of equal weight is not applicable to the actual situation. When Equation
(11) is used to determine the weight ωi, the weight changes with the change of the sampling
interval, and the final generated time scale also changes with the change of the sampling
interval. In this paper, the genetic algorithm is used to optimize τ in Equation (11); the
problem space of the GA represents the sampling interval τ in Equation (11). Then, the
calculation model of the genetic algorithm combined with KPW time scale algorithm is:

TA(P)=
N
∑

i=1
[

N
∑

m=1

1
σm(P) ]

−1

[ 1
σi(P) ](xij(t)−(xie(t−∆t)+∆tŷie(t−∆t)+1/2D(t−∆t)2)

f (P) = σTA(P)(τ)

(13)

where TA(P) is the time scale generated by calculating the problem space using the KPW
time scale algorithm in Section 3.1, σTA(P)(τ) is the Hadamard variance of this time scale,
and τ is the sampling interval corresponding to the Hadamard variance. The initial
parameters of the GA in this paper are respectively set as follows: the problem space P is
coded in decimal, the length L of the coded string of each variable is 4, the population size
M is 50, and the termination algebra T is 50. The genetic operator adopts the crossover
operator and mutation operator, respectively, and the crossover probability and mutation
probability are set to 0.9 and 0.2, respectively.

4. Time-Frequency Driving Algorithm Principle
4.1. Atomic Frequency Standard Error Model

Frequency stability is an important indicator of atomic frequency standards, which
refers to the frequency or phase changes within a specified time interval. The main causes in-
clude deterministic trend items and non-deterministic noise items. The error mathematical
model of atomic frequency standards [15] is shown in Equation (14):

x(t) = x0 + y0t +
Dt2

2
+ ε(t) (14)
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where the deterministic trend term includes the initial time error x0, the initial frequency
deviation y0, and the linear frequency drift D caused by aging and temperature changes.
ε(t) is the random frequency deviation of different types of noise such as stationary noise
and non-stationary noise, mainly including: WPM, FPM, WFM, FFM and RWFM noise,
and it can be represented by the power law noise spectrum model of the classic oscillator
given by Lesson [27]:

Sy( f ) = h2 f 2 + h1 f 1 + h0 + h−1 f−1 + h−2 f−2 (15)

where Sy( f ) represent the power spectral density; h2, h1, h0, h−1 and h−2 represent the
noise term coefficients of WPM, Flicker Phase Modulation (FPM), WFM, Flicker Frequency
Modulation (FFM) and RWFM, respectively.

Sy( f ) =
f 2

f 2
0

Sφ( f ) = 2
f 2

f 2
0

L( f ) (16)

where Sφ( f ) is the phase noise spectral density, f0 is the center frequency of the frequency
source, and f is the sideband frequency. From Equations (15) and (16), the SSB phase noise
spectral density of the frequency standard [28] can be obtained per Equation (17):

L( f ) =
f 2
0
2

(
h−2 f−4 + h−1 f−3 + h0 f−2 + h1 f−1 + h2

)
(17)

Five kinds of noise parameters can be fitted by non-negative least squares for total
Hadamard variance.

4.2. Algorithm Principle of Equivalent DPLL Steering Control System

The time-frequency steering system adopts the Kalman filter shown in Equation (6),
and the three-dimensional state-space model of phase difference, frequency difference and
frequency drift established is [19,22]:{

Xk+1 = A · Xk + Jk
Zk = H · Xk + wk

(18)

In Equation (18), the first equation is the state equation, Xk =
[
xk yk dk

]T , xk, yk and dk
respectively represent the three state variables of phase, frequency, and frequency change
rate. Jk =

[
0 0 uk

]T , uk is process noise.

A =

1 T 1
2 · T2

0 1 T
0 0 1

 (19)

where A is the state transition matrix, T is the sampling time interval. The second equation
in Equation (12) is the measurement equation, Zk is the measured value, wk is the mea-
surement noise, H =

[
1 0 0

]
is a linear connection matrix, which describes the phase

deviation process between the to-be-driven frequency standard and the driving reference
frequency standard in the time-frequency steering system. The covariance of the process
noise uk is:

Q = E
[

Jk · JT
k

]
=

0 0 0
0 0 0
0 0 E

[
u2

k
]
 =

0 0 0
0 0 0
0 0 Q33

 (20)

where uk ∼ N(0, Q33). The covariance of measurement noise wk is R = E
[
w2

k
]
, wk ∼ N(0, R).

Equations (21) and (22) represent the input–output relationship between the measured value
Zk and the estimated value x̂k of the phase state variable in the steady-state Kalman filter.

X̃ =
G′(z)

1− Ks1 + G′(z)
· Z̃ (21)
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G′(z) =
Ks1 ·

(
1− z−1)2

+
(

Ks2 · T + 1
2 · Ks3 · T2

)
· z−1 ·

(
1− z−1)+ Ks3 · T2 · z−2

(1− z−1)
3 (22)

where X̃, Z̃ are the z-transform forms of x̂k and Zk, respectively. Through Equation (21),
the closed-loop system transfer function structure consistent with the third-order type-
three DPLL can be obtained [23], which is a further extension of the two-dimensional
state-space model Kalman filter [22]. In order to ensure the normal and orderly output of
the time-frequency steer value in the loop filter, it is considered to add a delay device z−1.
From Equation (21) and the delay device, the open-loop system transfer function G(z),
closed-loop system transfer function H(z) and closed-loop error transfer function He(z)
equivalent to the DPLL system can be obtained, which are expressed as Equations (23)–(25):

G(z) =
z−1

1− Ks11
· G′(z) (23)

H(z) =
G(z)

1 + G(z)
(24)

He(z) =
1

1 + G(z)
(25)

The Kalman filter guarantees the stability of the system because of its complete ob-
servability, and the equivalent DPLL with a delay is represented by Equations (23) and
(24); in addition, (25) has also been verified by simulation. The noise variance parame-
ters Q22 and R are only used to determine the steady-state Kalman gain Ks equivalent
to the DPLL gain when constructing the equivalent DPLL, WU Yi-wei [22] derived and
verified the approximate relationship between the noise variance parameters Q22, R and
the steady-state Kalman gain Ks in the two-dimensional Kalman filter model. By analyzing
the five steps of Kalman filtering, Pk,k is the estimated covariance matrix, and Pk,k−1 is the
predicted covariance matrix. When the Kalman filter reaches a steady state, Pk,k and Pk,k−1
can converge to the steady state values Ps and Ps−, respectively, and the Equation (6b) can
be rewritten as

Ps−11
Ps−12
Ps−13
Ps−22
Ps−23
Ps−33

 =



1 2T T2 T2 T3 1
4 T4

0 1 T T 3
2 T2 1

2 T3

0 0 1 0 T 1
2 T2

0 0 0 1 2T T2

0 0 0 0 1 T
0 0 0 0 0 1





Ps11
Ps12
Ps13
Ps22
Ps23
Ps33

+



0
0
0
0
0

Q33

 (26)

Equation (6c) can be rewritten as

Ksi =
Ps−1i

Ps−11 + R
(i = 1, 2, 3) (27)

Through Equation (27), Equation (6e) can be rewritten as

Ps1i = Ksi · R =
R · Ps−1i

Ps−11 + R
(i = 1, 2, 3) (28)

Ps2i = Ps−2i −
Ps−12 · Ps−1i
Ps−11 + R

(i = 2, 3) (29)

Ps33 = Ps−33 −
(

Ps−13
)2

Ps−11 + R
(30)

It can be known from experiments that Ps−11 << R. From Equations (26), (27) and (30), we
can get

Ks3 ≈
√

Q33

R
(31)
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Combining Equations (26), (27) and (29) to get

Ks2 =
√

2 · Ks1 · Ks3 (32)

Combining Equations (26)–(29) and (32) to get

Ps−11 =
2Ks2T

Ks1 − Ks2T + 1
2 Ks3T2

R (33)

It can be known from experiments that Ks2 · T << Ks1, 1
2 · Ks3 · T2 << Ks1. Combine

Equations (27) and (31)–(33) to get

Ks2 ≈ 2 · 3
√

T · Ks32 ≈ 2 · 3

√
T · Q33

R
(34)

Ks1 ≈
√

2T ·
√

Ks2 ≈ 2 · 6

√
T4 · Q33

R
(35)

From Equations (31), (34) and (35), it can be seen that if T has been determined, the noise
variance parameter can be proportionally composed of parameter R

Q33
to calculate the

DPLL gain. The final Equations (24) and (25) completely determine the performance of
the steering control system of the equivalent DPLL. The functional block diagram of the
equivalent third-order DPLL steering control system is shown in Figure 3:
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Equation (36) can be obtained from the Figure 3:

z · TAsteered(Rb) = G(z) · (TA(Cs)− TAsteered(Rb)) + TA(Rb) (36)

where TA(Cs) is the driving reference, TA(Rb) is to be driven, and TAsteered(Rb) is TA(Rb)
after being steered. From Equations (23), (24) and (36), we can get:

z · TAsteered(Rb)− TA(Rb) = G(z) · Err(z) =
1

(1− Ks1)
·
(

Ks1 ·
z−1

1− z−1 +

(
Ks2 +

1
2

Ks3 · T
)
·
(

T · z−1

1− z−1

)2

+ Ks3 ·
(

T · z−1

1− z−1

)3)
· Err(z) (37)

where Err(z) = TA(Cs)− TAsteered(Rb) is the steering error of TA(Cs) and TAsteered(Rb). After Equation (37) is
inversely transformed, the control value Equation (38) for each sampling moment i of the TA(Rb) and the control
reference TA(Cs) in the time domain can be obtained:

1
(1− Ks1)

·
i

∑
j=1

(
Ks1 · Err(j) +

j−1

∑
k=1

T ·
((

Ks2 +
1
2

Ks3 · T
)
· Err(k) +

k−1

∑
l=1

T · Ks3 · Err(l)

))
(38)

4.3. Using GA to Improve Control System Parameter Selection

Use Equation (17) to draw the SSB phase noise spectral density curves L( f )TA(Cs)
and He( f ), use the frequency value of the intersection point of the two curves as a fixed
reference value f (L( f )). Then, substituting z = ej2π f T into Equations (24) and (25), the
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amplitude–frequency response curves H( f ) and He( f ) of the system transfer function H(z)
and system error transfer function He(z) in the frequency domain can be obtained [22].

H( f ) and He( f ) respectively have the characteristics of low-pass and high-pass fil-
ters in the frequency domain, and the frequency intersection value of the two frequency
response curves is used as the dynamic debugging value f (H). Based on the principle of
optimal overall frequency stability, when the output signal of the driving system fully takes
into account the frequency stability advantages of TA(Cs) and TA(Rb), it is necessary to
make the dynamic tuning value f (H) consistent with the fixed reference value f (L( f )) as
much as possible. However, the existing parameter adjustment of the equivalent DPLL
steering control system requires multiple discrete debugging and approximate selection, so
there are precision limitations and adaptive reliability problems, thus further improvement
is necessary. In this section, a genetic algorithm is introduced to improve the selection
process of noise variance parameter pairs. The driving system expects the overall frequency
stability of the output signal to be better, so the more consistent the dynamic debugging
value f (H) is with the fixed reference value f (L( f )), the better. The fitness function to
establish the minimization of the deviation of the control intersection frequency value is
as follows:

Fcos t = | f (H)− f (L( f ))|α
=
∣∣∣ fup

fdown
f ind(min|H( f )− He( f )|)α −

fup
fdown

f ind
(

min
∣∣∣L( f )TA(Cs) − L( f )TA(Rb)

∣∣∣)
α

∣∣∣ (39)

where || means to obtain the absolute value of the deviation,
fup
fdown

f ind(min||)α means to
search for the corresponding frequency value at the intersection of two frequency domain
curves with the minimum resolution a within the frequency search threshold given in[

fdown, fup
]
.

The genetic algorithm in this section adopts the decimal coding method. The length L
of the coding string of each variable is 10, the population size M is 100, and the termination
algebra T is 100. Genetic operators that use crossover and mutation, Pc and Pm, are 0.9 and
0.2, respectively.

5. Simulation Results and Analysis
5.1. Experimental Analysis of Time Scale Algorithm

The experimental data in this paper used the 300-s precision clock difference data
provided by the Center for Orbit Determination in Europe (CODE), and the data collection
time is from 2220 weeks to 2226 weeks of GPS. Satellites G1, G3, G4, G6, G9, G11, G14, G18,
G24, G27, G30 are rubidium clocks; satellite numbers are G2, G5, G7, G12, G15, G16, G17,
G19, G20, G21, G22, G29, G31 are cesium clocks. In this paper, clocks are divided into two
clock groups according to their types: rubidium clock group and cesium clock group. The
two clock groups use the KPW time scale algorithm respectively, and use Equation (11)
to assign weights. The two time scales obtained are TA(Rb) and TA(Cs), respectively, and
the frequency stability of the single clocks in their respective clock groups are shown in
Figures 4 and 5.

It can be seen from Figures 4 and 5 that the stability of TA(Rb) and TA(Cs) is better
than any single clock in their respective clock groups.

Next, the value range of τ in Equation (11) is [300, 1.5 × 105], and 10 values are
randomly selected within this range. The two clock groups use the KPW algorithm to
calculate seven time scales respectively. Their stability is as follows:

It can be seen from Figure 6 that when using the KPW algorithm, with the change of 1,
the stability of the two output time scales TA(Rb) and TA(Cs) will also change. When the
sampling interval is less than 8 × 104, TA(Rb) is better in stability than TA(Cs), and when
the sampling interval is greater than 8 × 104, the stability of TA(Rb) is worse than TA(Cs).
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This paper intends to adopt the time-frequency steering algorithm, using TA(Cs) to
drive TA(Rb), the short-term stability and long-term stability of the time scale after driving
depend on TA(Rb) and TA(Cs), respectively. Therefore, the genetic algorithm is used to
optimize the sampling interval τ, so that the stability of TA(Rb) is optimal before 8 × 104,
and the stability of TA(Cs) is optimal after 8 × 104 s. In the end, the overall stability of the
time-frequency steering algorithm is a relatively good time scale. Let the fitness function of
the GA of the rubidium clock group be f (P) = σTA(P)(2× 104), the fitness function of the
genetic algorithm of the cesium clock group be f (P) = σTA(P)(5× 105), and the optimal
range of both be

[
300 ∼ 1.5× 105]. The results of the genetic algorithm simulation are

as follows:
The red point in Figure 7 is the minimum fitness obtained by the genetic algorithm,

and the two points correspond to 9300 and 132,659, respectively. The two red curves in
Figure 7 are the stability of the time scale calculated using the minimum fitness value. It
can be seen from the left figure of Figure 8 that when τ = 9300, the frequency stability of
TA(Rb) is the smallest in the interval [300–8 × 104], and it can be seen from the right figure
of Figure 8 that when τ = 132, 659, the frequency stability of TA(Cs) is the smallest in the
interval [8 × 104–1 × 106].
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frequency steering, let TA(Cs) be used as the steering reference, and TA(Rb) be used as the
signal to be steered. The specific simulation results are introduced in detail in Section 5.2.
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5.2. Experimental Analysis of Time-Frequency Steering Algorithm

According to the physical parameters of the time scale TA(Rb) and TA(Cs), the fitness
function for optimal parameter selection introduced in the previous section can be con-
structed through Equations (17), (24), (25) and (41).The SSB phase noise spectral densities
of TA(Cs) and TA(Rb) are L( f )TA(Cs) and L( f )TA(Rb); the intersection point of L( f )TA(Cs)
and L( f )TA(Rb) is f (L( f )) = 5.4236× 10−6(Hz). Therefore, the optimization range of the
genetic algorithm is

[
fdown, fup

]
=
[
5.4× 10−6, 5.5× 10−6](Hz). The minimum resolution

for optimization is 1× 10−11Hz. Normalize the noise variance parameter R to Q33; the
genetic algorithm iteratively adjusts the normalized R and can approach the minimum
value of the fitness function. The iterative convergence of the optimal fitness value is shown
in Figure 9.
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The selection range of parameter R/Q33 in Figure 10 is
[
1020, 1030]. The green mark

represents the fitness value corresponding to the initial value of the population, and the
red circle represents the minimum value of the fitness function obtained by the genetic
algorithm. Because the minimum resolution of the fitness function is preset, when the
emergence of the optimal population minimizes the fitness function value to 0, it indicates
that the deviation between the dynamic debugging value f (H) and the fixed reference
value f (L( f )) exceeds the expected minimum resolution.
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selection values.

Using time scale TA(Cs) and TA(Rb) data, select a group of optimal noise variance
parameters obtained by genetic algorithm as group 1, make two types of intersection points
in the frequency domain, and make statistics on the frequency deviation of the two types
of intersection points, compared with the parameter groups 2–5 under the time-frequency
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steering mode of the existing discrete debugging and approximate parameter selection;
the comparison results are shown in Figure 10 and Table 1. Obviously, the improved
parameter selection method combined with the genetic algorithm has better deviation
accuracy. Substituting the optimal DPLL gain into the closed-loop system transfer function
(24), we get:

H(z) =
0.0101z2 − 0.0201z + 0.01

0.9899z3 − 2.9596z2 + 2.9496z− 0.9799

Table 1. Table of cross point deviation in frequency domain under different parameter selection.

NVP
Group

Number

NVP Pair DPLL Gains FRV DAV Intersection
Deviations

(Hz)Q33 (s2) R (s2) Ks1 Ks2 Ks3 f(L(f)) (Hz) f (H) (Hz)

No. 1 1 4.96 × 1023 0.0101 1.690 × 10−7 1.4189 × 10−12

1 × 10−5.2652

1 × 10−5.2657 4.3286 × 10−12

No. 2 1 1 × 1022 0.0193 6.215 × 10−7 1 × 10−11 1 × 10−4.9796 5.0562 × 10−6

No. 3 1 1 × 1023 0.0132 2.884 × 10−7 3.1623 × 10−12 1 × 10−5.1487 1.6776 × 10−6

No. 4 1 1 × 1024 0.009 1.338 × 10−7 1 × 10−12 1 × 10−5.3151 5.9883 × 10−7

No. 5 1 1 × 1025 0.0061 6.214 × 10−8 3.1623 × 10−13 1 × 10−5.4839 2.1421 × 10−6

We can solve a set of poles, 0.9975± 0.0043i and 0.9949, because two conjugate complex
poles and one real pole are in the unit circle of the Z plane; the DPLL system determined
by the optimal DPLL gain is stable.

Figures 11 and 12 have shown the frequency stability and steering error of the output
signal after being driven under different parameter selection situations. Parameter group 1
TA(Rb)1 is the time scale output by the time-frequency steering algorithm optimized by the
genetic algorithm. Its frequency stability does not appear to be biased and unbalanced, and
it can better take advantage of the frequency stability of each sampling interval period and
its time. The steering error is in the middle of the balance. However, the frequency stability
swing of the output signal corresponding to the parameter groups 2–4 corresponding to
the existing manual repeated debugging method is obviously larger, and is the best overall
under the balance of advantages that cannot be more accurately understood.
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Figures 10–12 and Table 1 also jointly characterize the influence of the time-frequency
steer value determined by the five parameter control groups on the driving effect. When the
noise variance parameter group is normalized by Q33, the larger R will affect the dynamic
debugging value f (H) and deviate from the fixed reference value f (H) to the left. At this
time, the time-frequency steer value determined by the parameter group will expand the
influence of the steered frequency standard TA(Rb), so that the signal output after being
steered is biased towards the improvement of short-term stability performance, which
unbalances the performance of long-term stability and increase the time control error. On
the contrary, the change of the corresponding result is the opposite.

Let TA(Cs) be used as the steering reference, TA(Rb) be used as the frequency standard
to be steered; use the genetic algorithm to optimize the selection of steering parameters,
and the time scale output after steering is TA(Streed).

Figure 13 shows the phase differences of the three time scales. When the steering
enters a stable state, the phase of TA(Streed) is synchronized with the steering reference
TA(Cs), and the error is within 0.5 ns. Figure 14 shows the stability of the three time scales.
It can be seen that the frequency stability of TA(Streed) is consistent with TA(Rb) when the
sampling interval is less than 1 × 104 s, and is consistent with TA(Cs) when it is greater
than 2× 105 s. Therefore, the time-frequency signal output by the improved time-frequency
steering algorithm in this paper can better comprehensively control the frequency stability
advantages of the reference and the steered frequency standard.
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Using the traditional KPW time scale algorithm, 24 clocks are formed into a clock
group to output the time scale TA(KPW), and the time scale output by the method proposed
in this paper is TA(Steered). Their frequency stability comparison is shown in Figure 15:
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It can be seen from Figure 15 that the frequency stability of TA(Steered) in this paper
is better overall. When the sampling intervals are 300 s, 1 day, and 1 × 10−7 s, its frequency
stability is 5.73 × 10−14, 9.17 × 10−15, 4.93 × 10−16. Compared with the frequency stability
of TA(KPW), when the sampling interval is 300 s, the frequency stability is improved by
71%; when the sampling interval is 1 day, the frequency stability of the two is equivalent;
when the sampling interval is 1 × 106 s, the frequency stability is increased by 94%. Com-
pared with the traditional KPW time-scale algorithm, the method proposed in this paper
has significantly improved the short-term and long-term stability of the time-frequency
signal output.

The frequency stability comparison between TA(Steered) and 24 single clocks is shown
in Figure 16 and Table 2:
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Table 2. Table of Frequency Stability Statistics.

Atomic Time Type ADEV@3 × 102 ADEV@1 × 103 ADEV@1 × 105 ADEV@1 × 106

G1 8.71 × 10−14 4.29 × 10−14 1.54 × 10−14 1.49 × 10−13

G3 8.28 × 10−14 4.10 × 10−14 1.04 × 10−13 6.21 × 10−13

G4 8.29 × 10−14 4.05 × 10−14 2.13 × 10−14 1.62 × 10−13

G6 8.46 × 10−14 4.16 × 10−14 6.71 × 10−14 5.35 × 10−13

G2 5.49 × 10−13 1.53 × 10−13 1.64 × 10−14 8.97 × 10−14

G5 9.45 × 10−14 2.54 × 10−13 1.13 × 10−14 8.02 × 10−15

G20 8.89 × 10−13 2.68 × 10−13 9.78 × 10−15 6.30 × 10−15

G31 5.88 × 10−13 1.61 × 10−13 1.09 × 10−14 1.97 × 10−14

TA (Steered) 5.73 × 10−14 2.79 × 10−14 8.38 × 10−15 8.87 × 10−16

From Figure 16 and Table 2, it can be seen that TA(Steered) has a higher overall
advantage in stability than a single atomic clock in each period. When the sampling
interval is 300 s, it can reach the order of 5.73 × 10−14, the stability of 1000 s can reach
2.79 × 10−14, the stability of 1 × 105 s can reach 8.38 × 10−15, and the level of 1 × 106 s can
reach 8.87 × 10−16. When the sampling interval is 1 × 106 s, it is six times more stable than
the best cesium clock and three orders of magnitude better than the worst rubidium clock.
After analyzing the stability, the next step is to analyze the comprehensive atomic time
TA(Steered) and the forecast clock difference of each atomic clock. The results are shown in
Figure 17and Table 3 below:

Table 3. Clock prediction accuracy.

Atomic Time Type 1 DAY 5 DAY 10 DAY

G1 8.35 × 10−9 5.03 × 10−9 5.70 × 10−8

G3 3.89 × 10−9 6.82 × 10−8 2.38 × 10−7

G4 1.08 × 10−9 7.75 × 10−9 5.26 × 10−8

G6 6.53 × 10−9 6.09 × 10−8 2.53 × 10−7

G2 1.77 × 10−9 2.77 × 10−9 3.03 × 10−8

G5 1.79 × 10−9 3.05 × 10−9 6.06 × 10−9

G20 2.46 × 10−9 7.51 × 10−9 2.58 × 10−8

G31 1.90 × 10−9 9.05 × 10−9 3.84 × 10−8

TA 3.05 × 10−9 1.57 × 10−9 4.57 × 10−9
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From Figure 17 and Table 3, it can be seen that the time scale TA(Streed) forecast
has the smallest forecast residual for ten days, which can reach the level of 4.57 × 10−9 s,
which is two orders of magnitude higher than that of the rubidium clock G6 with the
largest forecast residual. The clock error prediction error of a single atomic clock gradually
increases with time, and can reach the order of 400 ns in ten days. Therefore, it can be seen
that the time scale generation algorithm proposed in this paper can effectively improve the
frequency stability of the output signal and improve its predictability.

6. Conclusions

This paper proposes a navigation constellation-level high-precision time scale genera-
tion method, presents the navigation constellation time scale generation framework, and
designs an improved KPW time scale algorithm and time-frequency control algorithm that
integrates genetic algorithms. Finally, the algorithm simulation of the establishment of the
constellation time scale is carried out using the GPS precision clock difference data pro-
vided by CODE. The results show that the phase deviation of time-frequency steer is kept
within ±0.2 ns, and when the sampling interval is 300 s, 1 day, and 1 × 106 s, its frequency
stability is 5.73 × 10−14, 9.17 × 10−15, and 8.87 × 10−16, respectively. Compared with
the traditional KPW time scale algorithm, the short-term (300 s) and long-term (1 × 106 s)
stability have increased by 71% and 94%, respectively, which have been greatly improved.
The constellation-level high-precision time scale generation method proposed in this paper
can significantly improve the stability performance of long-term autonomous timekeeping
of navigation constellations, which is of great significance to the research of long-term
autonomous timekeeping of navigation constellations based on inter-satellite links.
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