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Abstract: In the production process of steel products, it is very important to find defects, which can
not only reduce the failure rate of industrial production but also can reduce economic losses. All deep
learning-based methods need many labeled samples for training. However, in the industrial field,
there is a lack of sufficient training samples, especially in steel surface defects. It is almost impossible
to collect enough samples that can be used for training. To solve this kind of problem, different from
traditional data enhancement methods, this paper constructed a data enhancement model dependent
on GAN, using our designed EDCGAN to generate abundant samples that can be used for training.
Finally, we mixed different proportions of the generated samples with the original samples and tested
them through the MobileNet V2 classification model. The test results showed that if we added the
samples generated by EDCGAN to the original samples, the classification results would gradually
improve. When the ratio reaches 80%, the overall classification result reaches the highest, achieving
an accuracy rate of more than 99%. The experimental process proves the effectiveness of this method
and can improve the quality of steel processing.

Keywords: defect classification; image processing; generative adversarial networks; data augmenta-
tion; multi-training; deep learning

1. Introduction

In industrial production, defect classification is an essential step in the steel manufac-
turing process. However, this step is usually performed manually and mainly relies on the
human eyes to observe defects on the steel surface. Therefore, production efficiency and
product quality are generally low. The manual detection method is difficult to guarantee
the detection effect. Even using human eyes to find defects for a long time may cause
damage to human health. So, automatically detecting defects to replace manual labor in
industrial manufacturing has become an important research direction [1,2].

In the industrial manufacturing environment, there are many difficulties in steel
surface defect detection, such as slight differences, low contrast, too many noises, etc. [3].
The methods based on traditional machine learning are generally to preprocess the collected
images, feature extraction, then use a classifier to determine different types of defects. The
classifier needs to extract characteristics from the steel surfaces figure. Widely used features
include LBP [4], Haar [5], HOG [6], multi-scale analysis, etc. For example, S. R. Aghdam
proposed a method to detect steel surface defects based on decision trees [7]. S. Ghorai
et al. use a three-level Haar feature to design an automatic detection algorithm applied
to production defects on the surface of steel [8]. Shumin D et al. propose a traditional
model, which is based on the SVM method, for detecting fabric defects [9]. Although
these methods can reduce manual labor, the features used by the classifier still need to be
designed manually. Moreover, these detection results using traditional machine learning
methods still have obvious deficiencies.
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Recently, deep learning technology has exhibited excellent performance in many fields
of AI. This method builds multiple layers of neural network models, to continuously adjust
model parameters in the training process, and finally fits the task [10]. There are many
methods for defect classification on the mental surface. For instance, Fu et al. designed an
end-to-end SqueezeNet-based model for this kind of classification [11]. Z. Huang et al. use a
DARCNN, which was applied to classify hot-rolled steel strip defects [12]. Li J et al. propose
a method for real-time classification according to the model of deep CNN [13]. Tao X et al.
propose a novel cascaded autoencoder (CASAE) architecture that successfully detects metal
defects under various conditions [14]. He Y et al. propose a novel defect detection system
and focus on steel plate defect detection [15]. Li M et al. propose a detection technology for
steel strip surface defects according to the improved YOLO algorithm, embed the attention
mechanism in the model, modify the path aggregation network, and strengthen the feature
extraction performance of the model [16].

Although these methods design various deep learning models, their results mainly
rely on the supervised training process. For the shortage of large, labeled defect samples,
they have to use networks with few layers, which are usually not deep enough and have
no solid, expressive ability. The insufficient labeled training samples also lead to the risk of
overfitting, resulting in this trained network model seeming to be less robust when testing
in the natural environment. The deep learning network with insufficient labeled training
samples is a problem in training deep networks and may seriously affect the expressiveness
of the model. Therefore, for the task of supervised learning, a sufficient training dataset is
essential [17].

The training of such kinds of network models needs a large enough labeled dataset.
Yet unlike life scenes, the defect samples in the industrial field are very few. Therefore, using
data augmentation to expand the training data set is a strategy to solve the insufficient
training dataset [18,19]. We design an EDCGAN to generate massive training labels to
solve the problem of insufficient training datasets. When there are enough training samples,
the deep network model can be better trained, thereby enhancing the model’s precision.
Finally, we use experiments to compare data sets with different ratios and other classifi-
cation algorithms. The results prove that our method can effectively solve the problem
of insufficient training data samples of steel surface defects and improve the accuracy of
classification.

2. Related Work
2.1. Generative Adversarial Network

The basic principle of a generative adversarial network (GAN) is that a generative
model (G) generates fake samples through the input of random noises, then input these
generated samples into a discriminant model (D) and uses the discriminant model to
judge the origin of samples. By adversarial training of G and D, the samples generated
based on the generative model are closer and closer to real samples, and the ability of the
discriminator is also getting stronger and stronger. The network model of standard GAN
can be seen in Figure 1.

GAN uses the value function of Formula (1) to play a two-player minimax game.
pz(z) is the input noise variables, D(x) represents the probability value of X coming from
the dataset. The training task of the model is to use D to maximize the probability of
calculating the correct label for the input samples, and train G to minimize the value of
log (1− D(G(z))).

min
G

max
D

(G, D) = Epdata(x) log Dx + Epz(
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During this process, the G and the discriminator (D) are optimized simultaneously. 
For the G, it is hoped that the image it generates is as closer to the real image as possible. 
The optimization function of the G is shown as Formula 2; the smaller its value is, the 
closer the generated image is to the real sample. ∇ ∑ log 1 − 𝐷 𝐺 𝓏( )   (2)

At the same time, it is hoped that the D can correctly distinguish the true or false of 
the input images; its optimization function is shown in Formula 3. The value is positive 
correlated to the discriminator model property. ∇ ∑ log𝐷(𝑥 ) + log 1 − 𝐷 𝐺 𝓏( )    (3)

These above two functions are optimized repeatedly and alternately. Finally, the 
performance of the generator and discriminator reaches a balanced state that the generator 
cannot generate more realistic samples and the discriminator cannot correctly identify 
different samples. 

2.2. Classification Algorithms 
The advantage of the classifier based on deep learning is that it can efficiently learn 

more abstract features in the training process; without the need to design targeted artificial 
features. The classification accuracy is obviously improved. Convolutional neural 
network (CNN) is widely used in the field of surface classification due to their various 
performance advantages. CNN needs to be guided in the training process. It shows the 
characteristics of local connection, weight sharing, etc., which greatly reduces the number 
of parameters and the difficulty of model training. It can efficiently learn local data 
features and has good stability after various linear transformations of the image. In this 
process, the deep network model is mainly used to convolve; for nonlinear activation 
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During this process, the G and the discriminator (D) are optimized simultaneously.
For the G, it is hoped that the image it generates is as closer to the real image as possible.
The optimization function of the G is shown as Formula (2); the smaller its value is, the
closer the generated image is to the real sample.
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At the same time, it is hoped that the D can correctly distinguish the true or false of
the input images; its optimization function is shown in Formula (3). The value is positive
correlated to the discriminator model property.
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These above two functions are optimized repeatedly and alternately. Finally, the
performance of the generator and discriminator reaches a balanced state that the generator
cannot generate more realistic samples and the discriminator cannot correctly identify
different samples.

2.2. Classification Algorithms

The advantage of the classifier based on deep learning is that it can efficiently learn
more abstract features in the training process; without the need to design targeted artificial
features. The classification accuracy is obviously improved. Convolutional neural network
(CNN) is widely used in the field of surface classification due to their various performance
advantages. CNN needs to be guided in the training process. It shows the characteristics
of local connection, weight sharing, etc., which greatly reduces the number of parameters
and the difficulty of model training. It can efficiently learn local data features and has
good stability after various linear transformations of the image. In this process, the deep
network model is mainly used to convolve; for nonlinear activation function mapping, and
as a pooling layer to obtain the mapping relationship between variables. The structure of
the CNN model is mainly composed of multiple convolutional layers and pooling layers
with different functions. In the field of image classification, the classification network
model using CNN has been widely used. Common classification algorithms are VGG [20],
AlexNet [21], ResNet [22], MobileNet [23], and SENet [24].

2.3. MobileNet V2

CNN has been applied in the task of target classification; to pursue better accuracy,
the depth of these models is getting deeper and deeper, and the models are getting more
and more complex. However, when these models are used in real production, problems
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often happen. These models require powerful equipment and network support, but it is
usually unavailable in the industrial field. Therefore, some network models redesign the
structure to optimize the model in terms of speed and complexity. MobileNet V2 is one
of these representatives; it is a lightweight deep neural network model built using depth-
wise separable convolutions that can effectively extract data space and channel features
by equivalenting the general convolution method into two newly defined convolution
operations. Additionally, two global hyperparameters are referenced in MobileNet V2,
namely width multiplier: α and resolution multiplier: ρ to balance delay and precision. The
basic unit of MobileNet V2 is the depthwise separable convolution. The most important
improvements of MobileNet V2 are the inverted residual structure and linear bottlenecks.
The inverted residual structure is the modules connected to the residuals. First, the projec-
tion convolution is used to increase the dimension, then the depth convolution is used, and
finally, the projection convolution is used to reduce the dimension. The combined structure
of inverted residual structure and linear bottlenecks is shown in Figure 2.
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Figure 2. MobileNet V2 solves the degradation issue associated with the increase in the number of
network layers by introducing the inverted residual structure and the shortcut. (a) Is the residual
block when the step size is 1, and (b) is the residual block when the step size is 2.

Compared with traditional high-performance network models, the number of param-
eters of MobileNet V2 has been greatly optimized, while the model’s performance is not
significantly degraded. Hence, it is a lightweight network model that can ensure high
accuracy. Moreover, it can be easily and quickly deployed on the mobile terminal and can
even perform inference without network communication, so it is suitable for industrial
fields with complex environments.

For an input feature map, its size is, where the feature size is Df ×Df. If the output
feature map size is Dg ×Dg ×N, the size of its convolution kernel is Dk ×Dk ×M, the
number of parameters of that is Dk × Dk ×M ×N, and the calculation amount of the
model is Dk ×Dk ×M×N×Df ×Df. The convolution process is into two steps. The total
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computational cost of training the model is Df×Df× 1, the convolution kernel of pointwise
convolution is 1× 1×M, and the calculation amount of the model is (Df ×Df ×M) ×
M×Df ×Df. Therefore, the calculation ratio of MobileNet V2 convolution and ordinary
convolution is as follows:

Dκ ×Dκ ×M×Df ×Df + M×N×Df ×Df
Dκ ×Dκ ×M×N×Df ×Dκ

=
1
N

+ D2
κ (4)

For the general 3× 3 convolution kernel, the calculation amount of MobileNet V2
is 1/9 of the calculation amount of the ordinary convolution method. Compared with
MobileNet V1, it greatly reduces practical loss without reducing performance by optimizing
the structure. This paper applied MobileNet V2 as the base network to implement the
classification of steel surfaces.

3. Network Architecture
3.1. The Network Architecture of EDCGAN

DCGAN (deep convolution GAN) is a network model with deep convolutional layers,
which adds the CNN layers to the GAN network. It is an improvement in the network archi-
tecture of the original GAN model. In DCGAN, both the generator and discriminator use
CNN architecture; and can be properly optimized according to application requirements.
The discriminator of DCGAN retains the architecture of CNN, while the generator applies
fractional step convolution, which can better meet the performance-related requirements.

Compared with other GAN models, DCGAN can flexibly choose the activation func-
tion and loss function, and different choices can directly affect the training results of the
network model. Without the activation function, the output value can only be a linear
expression of the input value, and the school performance of this model is very poor.
The introduction of a nonlinear activation function can significantly improve the perfor-
mance of the DNN network. It can accurately approximate any function, which is of great
significance in improving the performance of the model.

Activation function can directly affect the high-dimensional mapping ability from
noises to meaningful images, so different activation functions can greatly affect the quality
of generated images. In the original DCGAN model, batch normalization is applied after
the activation function layer. However, batch normalization needs to calculate the variance
and offset of the data distribution. As the network layers get deeper and deeper, more and
more batch normalizations need to be performed, which leads to an increase in calculation
during the training process.

To enable the DCGAN model to generate better quality images, this paper constructed
an EDCGAN model that uses the ELU function to replace the ReLU activation function in
the original DCGAN. ELU activation function can not only generate a nonlinear relationship
between the input and output but also can automatically normalize the input neuron data,
eliminating the need for adding batch normalization in the DCGAN structure and reducing
the computational complexity of neural network training. ELU is an improved version of
ReLU; unlike the sparsity of the ReLU activation function, ELU can provide richer features
as it preserves computations with less than 0 inputs; its activation function is shown in
Formula (5). ELU also has the property of self-normalization, which can keep the output of
this neuron self-normalized. Normalization of parameters is essential for neural networks.
If there is no normalization process, the data distribution in a certain network layer will
likely have a certain offset phenomenon. As the number of network layers increases, this
problem will aggravate, leading to increased difficulty in model optimization; or even
impossible optimization.

f (x) =
{

x , x > 0
α(ex − 1), x ≤ 0

(5)

In the EDCGAN we proposed, only the ELU activation function is introduced in the
discriminative layer, while that in the generation layer remains unchanged. Because ELU
retains the calculation of input less than 0, the calculation time will be slightly longer during
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forward propagation and backpropagation. Suppose it is used in large quantities in the dis-
criminant network and the generation network at the same time. In that case, the difficulty
of network optimization will further be increased. The discriminative network usually
dominates the DCGAN training, and the generative network updates itself according to the
discriminative network. Through adversarial training, the change in the high-dimensional
mapping ability of the discriminative network will also be transmitted and adjusted to the
generative network. Therefore, to obtain richer features without increasing the computa-
tional complexity, this paper only uses the ELU function in the discriminant network. Its
structure of EDCGAN can be seen in flow Figure 3.
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Compared with the DCGAN model, the EDCGAN based on ELU has the following
characteristics: (1) It makes full use of the self-normalization characteristics of ELU, omits
the batch normalization layer, and reduces the special normalization calculation of pa-
rameters. (2) Only use ELU in the discriminant network and use ELU to calculate and
extract richer high-dimensional features for data less than 0. (3) To cooperate with the
characteristics of the self-normalized activation function, the normalization feature is used
in the network, which not only prevents the over-fitting problem associated with the initial
training of the discriminant but also speeds up the update speed of the network parameters.

3.2. DropOut

In the process of model training, using DropOut can discard some neural units,
thereby reducing training complexity.. For different batches of input samples, because the
discarded neural units are random each time, it is equivalent to training a different network
for each batch. Using DropOut can reduce the computational parameters during training
and overfitting. The principle of DropOut is shown in Figure 4. In the fully connected
network layer, every time the network parameters are updated, some neurons are randomly
discarded so that the complexity of the network and the amount of parameter calculation
are obviously decreased.
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In the ordinary DCGAN structure, DropOut is not used; because the BN layer is
included in those network layers, adding DropOut will complicate the calculation. The
EDCGAN does not use the BN layer. The discriminant network and the generation network
are mutually influenced, and they keep changing dynamically and alternately during the
training process; there is no fixed number of iterations. Therefore, the introduction of
DropOut can not only alleviate the over-fitting issue associated with the easy training of
the discriminant network but also accelerate the speed of network updates.

Using DropOut is usually to set an activation value x; and set its probability to 1− q,
where 0 < q ≤ 1. This kind of DropOut is very suitable for correcting linear units, such
as ReLU activation functions. However, for the ELU activation function, since the scaled
linear exponential unit is used, a parameterized a_Dropout method can be used to obtain
better results. First, make α = min

x→0
ELu(x) = −λx. The value of λ is usually a number from

0 to 1, we set it as 0.5.

The mean equation is : E(xd + σ(1− d)) = qµ + (1− q)σ (6)

The variance formula is : Vαr(xd + σ(1− d)) = q
(
(1− q)(σ− µ)2 + ν

)
(7)

To keep the mean and variance unchanged after adding the parameter σ, it is necessary
to use the parameters α and b to perform the affine transformation on the equation. The
transformed mean and variance formulas are:

E(α(xd + σ(1− d)) + b) = µ

Vαr(α(xd + σ(1− d)) + b) = ν (8)

After using DropOut, the calculation process formula of the previous item of the
hidden layer parameter ωi and bi of the ELU-based network is:

rl
j ∼ Bernoulli(q)

ỹl = r(l) × y(l)

z(l+1)
i + ω

(l+1)
i ỹl + b(l+1)

i

y(l+1)
i = f

(
z(l+1)

i

) (9)

In Formula (9), l represents the lth layer of the neural network, z(l)i is the input of the l
layer, yl

i represents the output of the l laye. For any layer l, γ(l) is a vector of independent
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Bernoulli random variables, each element in this vector is usually set to probability (1− q)
and multiplied by the output y(l)i , thereby reducing the number of computations involved
in the training process. Finally, by using the DropOut structure, the calculation amount of
it is decreased.

3.3. Motivation for Architecture Design

The framework we designed mainly considers two practical problems: (1) In the
industrial field, the number of data sets of metal surface defects is difficult to obtain, which
makes training difficult. (2) In the manufacturing environment, there is usually no powerful
computing equipment, so the selection of the classification algorithm is very important.

We propose to use GAN models to generate more defect datasets to address the
problem of insufficient datasets in the industrial domain. GAN is an adversarial game
thinking (see Figure 1), we chose DCGAN, which is more suitable for generating spiced
spices, as the backbone network (see Figure 3), and found that replacing the activation
function with ELU can effectively improve the performance of the generative model. In
this process, we used DropOut tricks to improve the training speed of the network. In the
classification method, we use MobileNet V2 as the backbone network, mainly because it
has a faster running speed while ensuring good classification results. In the next section,
we demonstrate the feasibility of the proposed method through experiments. In the next
section, the effectiveness and superiority of the method will be demonstrated through
experiments.

4. Experiments and Results

This part showed the experimental results of our method used for the surface defect
classification of steels. We first tested the classification results of MobileNet V2 under
different proportions of the original samples and finally compared different classification
methods. The hardware platform of all experiments is RTX3080Ti 12G graphics card with
the Intel i9-13900K processor. The operating system is Linux, and the Scientific Computing
Package Framework is Pytorch (1.13.0).

4.1. NEU-CLS Dataset

NEU-CLS (http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.
htm accessed on 10 September 2022) is a defect dataset provided by Northeastern Univer-
sity [25]. All image samples in NEU-CLS are captured by the CCD camera on hot-rolled
steel plates surface and are manually filtered and cropped to obtain the same size. NEU-
CLS contains six common representative steel surface defects: scratches (Sc), rolled-in scale
(RS), patches (Pa), pitted surface (PS), inclusion (In), and crazing (Cr). There are a total of
1800 defect samples: 6 different defect types, each with 300 samples and 200 × 200 in size,
as the result in Figure 5. For the classification task of NEU-CLS, there are two problems,
that is, different types of defects have a high degree of similarity in appearance; the images
of defects are affected by illumination changes and material deformation.

In the experimental part of this paper, we split the NEU-CLS dataset into training and
test sets with a ratio of 7: 3. Finally, we obtain a total of 1260 training samples per class
and 540 testing samples in total. Compared with other datasets with massive samples,
such as CIFAR [26], ImageNet [27], Caltech 101 [28], and PASCAL VOC [29], the NEU-CLS
is extremely small-scale. The number of samples in the NEU-CLS dataset is very small
and cannot effectively train the network model. It is for this reason that we try to use
the EDCGAN to generate more training samples to meet the learning needs of the deep
learning model. The mini-batch size is 128 for each input of the model. We train EDCGAN
using the MBGD [30] algorithm with exponential decay parameters β 1 and β 2 set to 0.8
and 0.99, respectively. EDCGAN was trained for 800 epochs with a learning rate of 0.0001.
For MobileNet V2, we use the stochastic gradient descent (SGD) [31] algorithm with a
learning rate of 0.001. We train the model for 300 epochs in the initial step, then 600 epochs
in the retraining step.

http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.htm
http://faculty.neu.edu.cn/songkechen/zh_CN/zdylm/263270/list/index.htm
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4.2. Data Augmentation Based on EDCGAN

For the generative model, first, we fed a 100-dimensional random noise vector and
then reshaped it to the size of 4× 4× 1024 with a linear function. After deconvolution,
the size becomes 8× 8× 512; then, perform batch normalization (BN) on the value of all
tensors, and use ERelu to activate the function. The structure of the entire generative model
collectively undergoes six deconvolution processes, each with a kernel size of 3× 3 and a
stride of 2. In the end, the generator model generates a 256× 256 size image. Meanwhile,
the discriminator receives the generated and real samples as input. Similar to the generator,
the discriminator has six convolutional layers for processing tensors. The size of these
layers is also 3× 3, and the stride is 2. Since BN is already included in the ERELU activation
function, there is no need to add a BN function. Finally, the discriminator outputs a discrete
distribution probability for each input sample to judge if the input sample is a real image.
Through training, eventually, the discriminator cannot identify if the input image is from
the generator or the real sample. At this time, we can think that the model has reached the
best performance. The network architecture of the DCGAN model is shown in Table 1.

Table 1. The network framework of the EDCGAN.

Generator Type Size/Channel Size/Stride Discriminator Type Size/Channel Size/Stride

D1 deconv 8 × 8 × 512 3× 3/2 C1 conv 256 × 256 × 3 3× 3/2
E1 EReLu - - EReLu - -
D2 deconv 16 × 16 × 256 3× 3/2 C2 conv 128 × 128 × 32 3× 3/2
E2 EReLu - - EReLu - -
D3 deconv 32 × 32 × 128 3× 3/2 C3 conv 64 × 64 × 64 3× 3/2
E3 EReLU - - EReLu - -
D4 deconv 64 × 64 × 64 3× 3/2 C4 conv 32 × 32 × 128 3× 3/2
E4 EReLu - - EReLu - -
D5 deconv 128 × 128 × 32 3× 3/2 C5 conv 16 × 16 × 256 3× 3/2
E5 EReLu - - EReLu - -
D6 deconv 256 × 256 × 3 3× 3/2 C6 conv 8 × 8 × 512 3× 3/2
E6 tanh - - EReLu - -

In order to obtain more training samples, we use EDCGAN to obtain abundant fake
defect samples to train the model. We send a total number of 1260 real defect samples into
EDCGAN and, finally, gain 8000 fake defect sample images; all the sizes are 224× 224;
some of the generated samples are shown in Figure 6. According to the result in Figure 6,
for most types, EDCGAN has a good generation effect, such as Sc, Rs, Pa, and In. For these
kinds of generated samples, it is difficult to distinguish them from real sample images
or not, even if human eyes observe them. However, not all types generate good results.
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For Pa, the generated images have a certain gap with the real sample images; especially
for Ps, the generated samples are significantly different from the original images. The
improvement of classification accuracy is limited, which is also proven by the following
experimental results.
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4.3. Classification Results under Different Numbers of GAN Samples

To analyze the influence of the generated samples on classification results, we use
different proportions of the generated dataset in the training dataset. According to the
different proportions of the original samples, this paper divides the dataset into six types.
The proportion of the original samples is from high to low. In the dataset containing raw
data samples, up to 100% of the raw samples are included and then decrease initially from
70%, 50%, and 30% to 20%. We also tested a dataset entirely generated by DCGAN that
did not contain any original samples. We test the classification accuracy of MobileNet V2
under different proportions of the dataset to obtain the results, which can be seen in Table 2.
We use the average precision (AP) to evaluate the experimental results, which is a good
compromise between two important detection metrics. These metrics can be expressed
as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =
Precision + Recall

2
(12)

Table 2. Classification results from various numbers of samples.

Training Set Original (num.)
Overall Accuracy (%)

Sc Rs Pa Ps In Cr

1260(100%) 97.42 95.64 96.45 95.26 94.27 95.41
1680 (75%) 97.82 97.36 98.51 93.65 95.68 97.68
2520 (50%) 98.75 98.32 98.72 96.81 95.78 98.04
4200 (30%) 99.52 99.02 98.45 98.92 96.04 98.45
6300(20%) 99.94 99.67 99.05 98.05 98.74 99.25
8000(0%) 98.21 98.58 98.34 97.86 97.65 96.88
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In which TP, FP, and FN refer to the true positives; and false positives/negatives,
respectively.

According to the result in Table 2, under the condition of the training set, containing
the original image, the classification accuracy is the lowest. With the addition of DCGAN
to generate sample images, the detection results are improving. When DCGAN sample
images account for 80% of the training set, the classification result reaches the highest point.
At the same time, it can be noticed that the accuracy of In. does not increase linearly with
the increase in the dataset. When the training samples increase to 6300, the resolution
accuracy decreases slightly. This may be because DCGAN is not very good at generating In.
When the DCGAN sample data dataset is completely used, the accuracy of classification
decreases and the sample images generated by DCGAN can be delayed describing only a
part of the features of the original dataset; they cannot fully express all the feature data of
the original samples.

To test the classification results more abundantly, we selected several other classifica-
tion algorithms for comparative experiments. Specifically, the methods of Zhou [32] who
applied small CNNs based on VGG-16 [33], and ResNet-19 [34]. In the comparison process,
all the above models were reconstructed based on the Pytorch package. We use the average
accuracy rate of the six classification results as the evaluation index and tested the results
when no generated samples were added, when 80% generated samples were included,
and when only generated samples were included. Table 3 shows the results of different
classification models.

Table 3. Comparisons of different defect classifiers.

Average Accuracy(%)

Methods org. (100%) org. (20%) org. (0%)

Fully supervised
learning [32] 94.14 95.21 90.51

VGG-16 [33] 95.81 98.63 96.95
ResNet-19 [34] 97.62 99.23 98.92
MobileNet V2 95.74 99.11 97.92

From the table above, we can find that the fully supervised learning method is highly
dependent on the original sample, so when the data does not contain the original sample,
the accuracy rate is not the lowest, only 90.51%. As the data set increases, the overall
classification effect is improved for the other classification methods. When only 20% of
the original samples are included, the accuracy of VGG reaches 99.23%, while when only
generated samples are included, the accuracy drops slightly. Using the classification method
of MobileNet V2, the highest average accuracy rate reached 99.11%, which is slightly lower
than ResNet, but considering that the network structure of MobileNet V2 is simpler, it can
save training time. Therefore, this paper can obtain the result that MobileNet V2 is more
suitable for classification tasks in industrial scenarios.

5. Conclusions

This study constructed a method that depended on EDCGAN and MobileNet V2 to
classify steel surface defects. Considering the lack of original training samples, we propose
an EDCGAN method to generate abundant new training samples. The generated samples
are not transformations of the original samples, so it can better improve the diversity of the
training dataset. To confirm the validity of generated samples, we use the NEU-CLS defect
dataset as the experimental object, mix the generated samples with the original samples
in different proportions, and then train on the MobileNet V2 model, and use the training
results to test and compare the effect of including different proportions of generated samples
in the training set on the classification results. Through many experimental comparisons, it
can be shown that in the steel surface defect discrimination method, despite the number
of original samples being limited, we can still increase the training samples through our
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method, thereby improving the accuracy. Finally, we compared the evaluation accuracy
results of different algorithms. According to the result that both VGG and MobileNet V2
have higher accuracy, and MobileNet V2 has a simpler network structure, it is more suitable
for steel defect classification tasks in industrial production.
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