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Abstract: Humans are a vision-dominated species; what we perceive depends on where we look.
Therefore, eye movements (EMs) are essential to our interactions with the environment, and ex-
perimental findings show EMs are affected in neurodegenerative disorders (ND). This could be a
reason for some cognitive and movement disorders in ND. Therefore, we aim to establish whether
changes in EM-evoked responses can tell us about the progression of ND, such as Alzheimer’s
(AD) and Parkinson’s diseases (PD), in different stages. In the present review, we have analyzed
the results of psychological, neurological, and EM (saccades, antisaccades, pursuit) tests to predict
disease progression with machine learning (ML) methods. Thanks to ML algorithms, from the
high-dimensional parameter space, we were able to find significant EM changes related to ND symp-
toms that gave us insights into ND mechanisms. The predictive algorithms described use various
approaches, including granular computing, Naive Bayes, Decision Trees/Tables, logistic regression,
C-/Linear SVC, KNC, and Random Forest. We demonstrated that EM is a robust biomarker for
assessing symptom progression in PD and AD. There are navigation problems in 3D space in both
diseases. Consequently, we investigated EM experiments in the virtual space and how they may help
find neurodegeneration-related brain changes, e.g., related to place or/and orientation problems.
In conclusion, EM parameters with clinical symptoms are powerful precision instruments that, in
addition to their potential for predictions of ND progression with the help of ML, could be used to
indicate the different preclinical stages of both diseases.

Keywords: Alzheimer’s disease; Parkinson’s disease; eye movements; Rough Set; machine learning

1. Introduction

Neurodegenerative brain changes start about two decades before the first detectable
symptoms [1,2]. During this period, everyone develops various plastic compensatory brain
mechanisms. The rates and processes of neurodegenerative disease (ND) progressions
have a vast patient-specific spectrum. The main aim of this review is to look, from this
perspective, at the early processes related to neurodegenerative changes and to precisely
characterize them by using granular computing (GC) or other ML methods. Our leading
candidate for a possible early biomarker is related to eye movements (EM). We have
concentrated on reflexive EM, such as reflexive saccades (RS), antisaccades (AS), and
pursuit EM. Generally, these movements slow down and become less precise with aging,
but these changes are more pronounced due to ND. It means that one needs to differentiate
between processes related to aging and those related to ND, which is one of the major
problems with early ND biomarkers. We base our approach on identifying similarities
between different groups of patients and whether patients’ EM and symptoms become
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more like those of patients in the advanced stages of ND with disease progression. We
have demonstrated this approach in different groups of Parkinson’s disease (PD) patients.
In the next step, we assumed that more minor cognitive and motor symptoms might be
related to more minor changes in EM parameters. This could be a possible approach for
the early detection of preclinical ND.

There are three kinds of symptoms in neurodegenerative disease. As different symp-
toms are related to different structures in the brain, there is an essential question as to
whether ND processes are independent of or specific to different parts of the brain. The
three kinds of symptoms are as follows:

- Cognitive symptoms are dominant in Alzheimer’s disease (AD) but are secondary in
Parkinson’s disease (PD);

- Motor symptoms are characteristic of PD and less evident for AD;
- Emotional symptoms are mostly related to depression and are observed in both

diseases but are characteristic of LOAD (late-onset AD) [3,4].

It is widely recognized that neurodegenerative processes start from the basal ganglia
in PD and typically from the hippocampus in AD. In PD, the structure that degenerates
first is the substantia nigra (part of the basal ganglia), whose neurons are responsible for
releasing dopamine. The lack of dopamine slows down and affects movement regulation
(GO—NOGO antagonism) [5]. In addition, there is a connection between the striatum and
the prefrontal cortex that influences memory and cognition [5]. Finally, as dopamine is the
reward neurotransmitter, it affects the reward systems (pleasure feelings) and might lead
to depression [3].

The place cells in the hippocampus are responsible for orientation deficiency (naviga-
tion problems) in AD, and connections between the hippocampus and the frontal cortex are
responsible for memory and cognitive problems. Through its connections to the striatum,
the prefrontal cortex might also affect movement in AD. Depression is the main reason for
the late onset of AD (LOAD) in older subjects (over 65 years of age) [4].

This review is mainly based on work with Parkinson’s patients under different ther-
apies and at various stages of the disease. We have demonstrated how different ML
algorithms can help to predict disease development and how, by using ML, we can com-
pare PD symptoms of less and more advanced patients. Therefore, the main question
is: if we can predict disease development, can we also predict the start of ND disease?
This question might also be related to looking for sensitive biomarkers that might indicate
neurodegenerative brain changes even before the first observable symptoms. We have
extensively tested and evaluated eye movement (EM) as a potential biomarker in PD.

Multiple studies have demonstrated that EM helps to predict peripheral movement
disorders as well as cognitive and emotional symptom progressions. EM is also affected
in AD, so it could be an excellent biomarker for both diseases. One very characteristic
parameter of EM in both PD and AD is the delay of the reflexive saccades (RSLat—the time
difference between the light spot position change and the start of eye movement). However,
RSLat is also related to aging and, to be a significant biomarker, must also be linked to
changes in many other, still unidentified, parameters.

To find practical consequences of changes in EM and other ND-related parameters for
everyday life, we can immerse the user in a virtual reality (VR) world. The advantage of
VR in comparison to the real environment is that one can control significant features of the
VR world and test the influence of different parameters on the subject’s behavior.

Hence, one needs to test a high-dimensional and noisy parameter space, and we
suggest that ML methods are the right tool for it.

2. Eye Movements and Neurodegenerative Diseases
2.1. Standard Neurological Approach

Experienced neurologists use their clinical knowledge and experience from many years
of practice to estimate symptom development and the best treatment for an individual
Parkinson’s disease (PD) patient. However, because of the long period of compensatory
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mechanisms unique to each patient, there is a famous saying that “No two people face
Parkinson’s in quite the same way.” Therefore, a neurologist must consider not only motor
symptoms, but many others, and must even try to understand a patient’s cognitive and
emotional symptoms through the Theory of Mind space [6,7] to estimate disease progression
in the individual patient.

Typically, eye movement analysis coexists in the broader context of other neuropsy-
chological measurements. They can be related to the following tests: PDQ-39/PDQ-8—a
39/8-question test related to health difficulties in everyday living (summaries of both
tests are strongly correlated), ESS—Epworth sleeping scale results (related to sleepiness
problems, predominantly during the day), BDI—Beck’s depression inventory (21-item
quantitative measure of symptoms of depression), TMT A and TMT B tests (Trail Making
Test—part A measures psychomotor speed and part B is related to executive function).
Another test, AIMS—Abnormal Involuntary Movement Score—measures the involuntary
movements of patients. Additionally, neurologists can use more wide-ranging cognitive
tests, such as MoCA (Montreal cognitive assessment) for the detection of MCI (mild cog-
nitive impairment) for PD and AD or dementia (AD), or the similar, but shorter, MMSE
(Mini-Mental State Examination), which is less sensitive than MoCA, but has established
clinical values. Another important test, the FAS (Phonemic Verbal Fluency) test involves
orally producing words that start with the letters F, A, and S, evaluates the cognitive func-
tion and measures language-related executive functioning. The most common decisive
attribute is the UPDRS (Unified Parkinson’s Disease Rating Scale), an essential neurological
test for the effects of PD long-treatment effects. The UPDRS score estimates daily activity
(non-motor—UPDRS I and motor—UPDRS II) and motor-related problems (UPDRS III). It
is the so-called “Gold Standard” for determining PD progressions. Alzheimer’s disease
progression is mainly related to cognitive changes (normal, MCI, dementia), and disease
progression is determined by the CDR (Cognitive Dementia Rating) scale as the decision
attribute.

2.2. EM in PD—Saccades

There is pervasive, clinically oriented, literature related to reflexive saccade (RS) la-
tency in PD in comparison to same-age healthy controls showing different, contradictory
results [8]. However, a meta-analytic review [9] demonstrated, by analyzing 47 represen-
tative studies (from 1529 references), that the RS latency depends on which method was
used by different authors: gap, step, or overlap. Different methods are determined by the
time difference (∆t) between the fixation point disappearance and the target appearance:
if ∆t > 0, then it is the gap method; if ∆t = 0, then it is the step method; and if ∆t < 0, it is
the overlap method. By using quantitative pooling analysis, Chambers and Prescott [9]
demonstrated that the slowed response time in PD, compared to a control, is strongest in
the step method (∆t = 0), weaker in the gap method (∆t > 0), and negligible in the overlap
method (∆t < 0).

In a study [10], standard neurological attributes and PDQ39, Epworth, and AIMS were
measured, as well as EM—reflexive saccades (Figure 1). The authors compared different
algorithms for the classification of UPDRS, UPDRS II, and UPDRS III in 10 PD patients.
A six-fold cross-validation method was used. For the accuracy measure of UPDRS, the
best results were given by RSES (Rough Set Exploration System based on Rough Set theory,
which is an important implementation of GC—granular computing) with a global accuracy
of 0.90, the second was Random Forest, which had a global accuracy of 0.68, and the third
was a Tree Ensemble, with 0.65 global accuracy. For UPDRS II, the best results were for the
Random Forest with an accuracy of 0.80, the second was RSES with 0.79, and the third was
Bayesian classification, which gave an accuracy of 0.77. For the UPDRS III, the best was
RSES classification, which gave a 0.82 accuracy, and the Decision Table (with Weka), which
gave an accuracy of 0.77.
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PD patients in different stages of the disease: the blue curve denotes EM at the beginning of the 
disease, and the green curve at advanced PD. Notice the significant difference in response latencies 
[11]. 

The results above agree in general with a recent publication [12] where they tested 
horizontal and vertical saccades and antisaccades (AS) for healthy control and PD subjects 
in different stages of the disease, measured by Hoehn and Yahr stages (H&Y2 and H&Y3). 
The PD group displayed decreased vertical saccade amplitudes and increased vertical sac-
cade and AS latencies. AS latency increased for H&Y2 and H&Y3 patients, but AS errors 
(correlated with MoCA—Montreal cognitive assessment test’s score) were similar for con-
trol and H&Y2 subjects, but larger for H&Y3 subjects. Levodopa has increased vertical 
saccade latency but decreased AS latency. This work has described many different diffi-
cult-to-analyze mechanisms that might be easier to put through machine learning meth-
ods. 

In one study [13], it was demonstrated that saccades could predict cognitive decline 
in PD patients. In 140 PD and 90 age-matched participants, the authors evaluated differ-
ences in RS metrics between early-PD and healthy age-matched adults. They assessed RS 
and cognition at baseline at 18, 36, and 54 months. RS parameters were latency, duration, 
amplitude, peak velocity, and average velocity, and the cognitive assessment contained 
executive function, attention, fluctuating attention, and memory. RS parameters, with the 
help of linear mixed-effects models, were used as predictors of cognitive decline over 54 
months. At the baseline, RS was impaired in PD patients compared to the control group. 
RS parameters predicted a decline in global cognition, executive function (verbal fluency), 
attention, and memory over 54 months in PD patients. However, only reductions in global 
cognition and attention were predicted by RS parameters in age-matched subjects, which 
means that cognitive changes were not just age-related [13]. The dependence between RS 
latency and executive functions was also confirmed earlier [14]. In addition, manual and 
saccadic performances are uncorrelated in the average population, but both are similarly 
affected by PD [15]. 

Abasi et al. [16] tested whether vestibular therapy exercises might recover both ocu-
lomotor functions and postural control (in the upright position) in patients with PD. Ves-
tibular therapy is a set of exercises that affect the basic elements of central sensorimotor 

Figure 1. Saccades at various stages of PD. Recordings were performed with different UPDRS
measured in clinical conditions under a doctor’s supervision. The red line is related to light spot
movements, and the blue and green curves are related to reflexive saccades performed by two
different PD patients in different stages of the disease: the blue curve denotes EM at the beginning
of the disease, and the green curve at advanced PD. Notice the significant difference in response
latencies [11].

The results above agree in general with a recent publication [12] where they tested
horizontal and vertical saccades and antisaccades (AS) for healthy control and PD subjects
in different stages of the disease, measured by Hoehn and Yahr stages (H&Y2 and H&Y3).
The PD group displayed decreased vertical saccade amplitudes and increased vertical
saccade and AS latencies. AS latency increased for H&Y2 and H&Y3 patients, but AS
errors (correlated with MoCA—Montreal cognitive assessment test’s score) were similar
for control and H&Y2 subjects, but larger for H&Y3 subjects. Levodopa has increased
vertical saccade latency but decreased AS latency. This work has described many different
difficult-to-analyze mechanisms that might be easier to put through machine learning
methods.

In one study [13], it was demonstrated that saccades could predict cognitive decline in
PD patients. In 140 PD and 90 age-matched participants, the authors evaluated differences
in RS metrics between early-PD and healthy age-matched adults. They assessed RS and
cognition at baseline at 18, 36, and 54 months. RS parameters were latency, duration,
amplitude, peak velocity, and average velocity, and the cognitive assessment contained
executive function, attention, fluctuating attention, and memory. RS parameters, with
the help of linear mixed-effects models, were used as predictors of cognitive decline over
54 months. At the baseline, RS was impaired in PD patients compared to the control group.
RS parameters predicted a decline in global cognition, executive function (verbal fluency),
attention, and memory over 54 months in PD patients. However, only reductions in global
cognition and attention were predicted by RS parameters in age-matched subjects, which
means that cognitive changes were not just age-related [13]. The dependence between RS
latency and executive functions was also confirmed earlier [14]. In addition, manual and
saccadic performances are uncorrelated in the average population, but both are similarly
affected by PD [15].

Abasi et al. [16] tested whether vestibular therapy exercises might recover both oculo-
motor functions and postural control (in the upright position) in patients with PD. Vestibu-
lar therapy is a set of exercises that affect the basic elements of central sensorimotor integra-
tion. They tested 11 idiopathic PD patients voluntarily contributing to the survey based on
the following criteria: central vestibular dysfunction and Hoehn and Yahr scale scores ≤ 3.
Videonystagmography (VNG) and Berg Balance Scale (BBS) scores were measured as the
control. PD patients undertook vestibular rehabilitation training for 24 sessions (3 sessions
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per week). VNG and BBS scores were appraised again 48 h after completing the last session
of the exercise. Investigators detected significant advances in balance (p ≤ 0.015), and
eye-tracking and gaze performance were statistically enhanced in seven and six patients,
respectively.

Wong et al. [17] investigated the relationship between EM parameters and execution
in different cognitive tests in Parkinson’s patients. In the eye-tracking experiment, subjects
were asked to look for a number embedded in an array of alphabets distributed randomly
on a workstation screen. Researchers calculated the average amplitude of saccades and
fixation duration and correlated these data with the results of cognitive tests. It was
established that prolonged fixation time was linked with inferior performance in verbal
fluency, as well as in visual and verbal memory, showing that EM parameters are alternate
markers for cognitive function in PD patients.

Wong et al. [18] studied the correlations between EM and cognitive functions in
patients with Parkinson’s disease. A total of 62 patients with non-demented Parkinson’s
disease and 62 controls of the same sex, similar age, and equivalent education were exposed
to cognitive and oculomotor tests. Researchers observed a negative correlation between
the length of eye fixation and functioning in semantic verbal fluency, as well as verbal and
visual memory undertakings. Researchers concluded that increased duration of visual
fixation correlates with poor results in semantic verbal fluency and verbal and visual
memory tasks in non-dementia PD. In another 2-year follow-up study, 49 of the primary
62 patients (15 cases/31% were classified as MCI (with mild cognitive impairment)) were
examined in the context of the relationship between domain-specific cognitive impairment
and the progression of visual fixation duration. Researchers noticed that the duration
of fixations increased significantly after two years. For the analysis, they used ANOVA
with repeated measurements, and according to the results, impairment of semantic verbal
fluency, visual and verbal recognition memory, and indicative attention function had a
significant effect on the extension of the duration of visual fixation [18]. Repeated measures
beyond two years showed a correlation between prolonged visual fixation and different
types of cognitive impairment associated with cholinergic dysfunction. According to
the authors, it provides preliminary evidence that the observed eye-tracking model is a
surrogate marker for the cholinergic deficit in Parkinson’s disease.

Archibald et al. [19] assessed the error rates and visual exploration tactics of subjects
with Parkinson’s disease, in relation to the extension of their cognitive impairment, while
performing a battery of visuo-cognitive tasks. They found that error rates were significantly
higher in those PD groups with either MCI (p = 0.001) or dementia (p < 0.001) in comparison
to cognitively normal subjects with Parkinson’s. When matched to cognitively normal
Parkinson’s disease patients, the exploration tactic, as measured by EM-tracking variables,
was least efficient in the dementia group and inefficient to a lesser extent in MCI patients.
In control subjects and cognitively normal subjects with Parkinson’s, it was established that
saccade amplitude was drastically reduced in the groups with MCI or dementia.

The fixation period was stretched in all PD patients in relation to healthy control
subjects but was most prolonged for cognitively impaired PD groups. The average fixation
period was strongly related to disease severity. The authors concluded that the increase
in the fixation period, existing even in cognitively normal patients with PD, implies a
disease-specific influence on the systems directing visual search.

2.3. EM in PD—Antisaccades

One of the well-proven experimental models used to examine the inhibition of auto-
matic reflexive responses is the antisaccade task (AS) [20].

In a study [21], the significance of antisaccade (AS) parameters for the classification
of Parkinson’s disease motor and motor variations (UPDRS II and UPDRS IV) was tested.
There were 11 PD patients examined in 4 sessions. In addition to the standard neurological
attributes, AS parameters such as delay, duration, and maximum speed were measured.
RSES was used for the data discretization and attribute reduction and to perform a 5-fold
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cross-validation. The best result was obtained by the RSES Decomposition Tree, which splits
the dataset into fragments represented as a tree’s leaves [21]. The UPDRS III classification
results indicated an accuracy of 0.85 with a coverage of 0.48. Surprisingly, the UPDRS
IV was estimated with an accuracy of 0.91 and coverage of 0.39, so UPDRS IV showed a
more significant correlation with antisaccade parameters. Thus, UPDRS IV showed greater
sensitivity in predicting antisaccade parameters [21]. From the results, it also emerged
that attributes describing methods of patient treatment (again, the session attribute) and
mean duration were most sensitive in predicting the scores of both UPDRS III and IV. An
example of AS in two different PD patients is shown in Figure 2.

As described above, different analysis methods influence the RS latency [9]. In a review
meta-analysis, Waldthaler et al. [22] analyzed the influence of the paradigm (gap, step,
overlap) on AS latency and errors. They [22] compared the results of 703 PD patients with
600 healthy controls for antisaccade latency and 831 patients and 727 healthy controls for
antisaccade error rate. Over 60% of studies excluded PD with dementia. Like RS latencies,
the mean AS latency was 339.8 ms in the PD patients and 294.2 ms in the healthy group in
the gap paradigm, and 411.7 ms in the PD patients and 368.6 ms in the healthy group in the
step paradigm. This was measured for PD patients with disease duration between 0.7 and
14.7 years and UPDRS III scores between 5 and 85, from early to advanced disease stages.
In a meta-analysis, the authors [22] demonstrated that AS latency increases with disease
severity, and an increase in the levodopa dosage influences the AS error rate (negatively
moderating effect).
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Figure 2. Antisaccades (AS) at various stages of PD. The red line is related to the light spot movements,
and the blue and green curves are related to reflexive AS performed by two different PD patients in
different stages of the disease: the blue curve denotes EM at the beginning of the disease, and the
green curve in the advanced PD stage. Notice the significant difference not only in response latencies,
but also in AS speed, and that a more advanced PD patient started with a saccade that changed to
AS [21].

A study by Waldthaler et al. [23] tested whether patients with Parkinson’s taking
dopaminergic medication performed better at response inhibition during antisaccade tasks.
Levodopa intake has favorable or harmful effects on dopamine-dependent cognitive tasks
based on essential basal dopamine intensities in ventral segments of the striatum, agreeing
with the dopamine overdose theory. Thirty-five patients with Parkinson’s (and 30 healthy
subjects) completed antisaccade tasks in OFF and ON medication conditions. Investigators
computed multiple linear regressions to forecast the alterations in antisaccade delay and
directive mistakes, and to express saccade rate based on age at Parkinson’s disease onset,
disease duration, levodopa-equivalent circadian amount, motor indicator difficulties, and
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executive functions. According to their results, earlier disease onset and milder motor
symptoms in the OFF-medication status were related to diminished inhibition ability
response after levodopa intake, mirrored in enlarged express saccades and mistakes. They
concluded that levodopa might have opposite results on oculomotor reaction inhibition
contingent on the age at Parkinson’s disease onset and motor disease gravity.

During their next study, Waldthaler et al. [24] examined whether there was any cor-
relation between the development of motor and cognitive indications in 25 patients and
Parkinson’s disease (age: 61.4 +/− 6.8, disease duration: 6.0 +/− 4.5 years). A total of 10 pa-
tients from all 25 PD patients received subthalamic nucleus DBS (deep brain stimulation)
during the follow-up period (from DBS surgery to follow-up visit: 4.5 +/− 2.1 months).
All PD patients were examined in ON medication and ON-DBS states, and modifications of
dopaminergic treatment were permitted during the follow-up epoch. PD patients without
DBS who displayed substantial improvement in motor signs after one year also received
higher levodopa equivalent dosages at follow-up. Generally, the antisaccade (AS) delay
(baseline: 339 +/− 72 ms, mean change: 95 +/− 1.1 ms) and mistake rate (baseline: 0.52,
mean change: −0.02 +/− 0.3) stayed steady in the non-DBS group. In the DBS group, the AS
delay tended to increase (baseline: 295 +/− 78 ms, mean change: 48 +/− 75 ms (p = 0.09)),
but the mistake rate improved at follow-up (baseline: 0.76, mean change: −0.21 +/− 0.3
(p = 0.048)). The change in AS delay was connected to change in MDS-UPDRS III in both
groups (non-DBS group baseline: 25.7 +/− 13, mean change: 0.3 +/− 7.4; DBS group
baseline: 27.2 +/− 16.5, mean change: −5.2 +/− 17.8) and with the change in MoCA score
in the non-DBS group (25.8 +/− 3.1, mean change 1.3 +/− 3.1). The authors indicate that
AS delay may be sensitive to the development of motor and cognitive signs over time in
Parkinson’s disease patients.

2.4. EM in PD—Saccades and Antisaccades

The same group of patients as in [21] was used for UPDRS prediction based on RS
and AS measurements. The best accuracy of 0.89 was achieved by Decision Trees [11]. The
results showed that the accuracy of the predictions increased with the number of significant
attributes that were obtained by, for example, averaging RS and AS duration or by adding
the averaged standard deviations of each patient’s latencies [11].

The authors of [22] demonstrated that RS and AS latencies were correlated with the
results of neuropsychological tests in 65 PD patients, but only the results for AS latencies
concerning patients’ cognitive impairment were statistically significant. In a study [25],
19 drug-naïve PD patients and 20 age-matched controls were examined. Patients had
clinically probable idiopathic disease within three years of disease onset. Their RS latencies
were like those of the controls, but AS error rates differed significantly (PD 15% vs. 8.7%
for controls).

Fooken et al. [26] studied different tasks and conditions in which the oculomotor
function in Parkinson’s patients is preserved. A total of 16 patients with Parkinson’s
disease and 18 healthy, age-matched controls performed a set of tasks of saccades (RS),
anti-saccades (AS), pursuits, and rapid ‘go/no-go’ manual interventions. Compared to
the control group, PD patients showed regular impairment in tasks with fixed targets:
prosaccades were hypometric, and AS were wrongly started towards the indicated target
in 35% of the trials compared to 14% of errors in the control group. In PD subjects, task
errors were linked with short-latency saccades, demonstrating anomalies in inhibitory
control. However, the patients’ EMs in response to dynamic targets were well-preserved.
Parkinson’s disease patients can track and predict a moving target and make quick go/no-
go decisions with the same precision as healthy people. The intercepting hand movements
of the patients were slower on average but indicated adaptive processes compensating
for the motor slow down. Researchers concluded that the preservation of eye and hand
movement functions in PD is linked to a separate functional pathway through the upper
colliculus–brainstem loop that detours the frontal–basal ganglia network.
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Kocoglu et al. [27] investigated how social processes and behaviors change in PD
during spatial signaling tasks. Socially relevant directional cues, such as photos of people
looking left or right, have been found to redirect attention. In conclusion, the basal ganglia
can play a role in responding to such directional signals. In this research, patients and
healthy controls performed pro- and anti-saccade tasks in which different directional signs
preceded the appearance of the target. They analyzed reaction time, prediction errors, and
correlations with PD severity and cognitive assessment scores. Patients displayed increased
errors and answer times with the AS (antisaccade) task, but not with the RS (saccade) task.
The control subjects made the most predictive errors in the finger-pointing trials, and the
PD patients were mostly affected by the arrow, gaze, and pointing clues. It has been found
that PD patients have a reduced ability to suppress responses to directional signals, but
this effect is not specific to social signals.

Munoz et al. [28] studied whether bilateral deep stimulation of the basal ganglia–
subthalamic nucleus (STN DBS) may affect the control of inhibition of eye movement in PD.
They investigated the effect of DBS amplitude on inhibitory power during an antisaccade
procedure on 10 PD patients after their DBS surgery. Subjects without medication (12 h,
overnight) performed the antisaccade tasks with a set of different DBS stimulation ampli-
tudes (from 0—no stimulation to 5—higher levels). The prosaccade error rate (related to
a saccade at the beginning of the antisaccade) increased with increasing DBS stimulation
amplitude (p < 0.01). Moreover, the saccade error rate increased with the decrease in the
modeled volume of tissue activated (VTA) and decreased overlap of the STN stimulation
area, but this connection was determined by the stimulation amplitude (p = 0.04). They
concluded that the directional prosaccade error rate during the antisaccade task indicated
impaired inhibitory control and suggested that higher stimulation amplitude settings can
be modulatory for inhibitory control.

2.5. EM in PD—Pursuit

Another study tested how effective diagnostic parameters of slow (pursuit) eye move-
ments are for the prediction of PD symptom development [29,30]. Horizontal pursuit EM
with three different sinusoidal movement speeds was measured. The gain and accuracy
(EM measurement section) were estimated. The discretization and attribute reduction
with RSES demonstrated that the significant attributes were precise for the accuracy of
the fastest sinusoidal movement speed, and gains decreased for medium and high si-
nusoidal movement light spot speeds [29,30]. The result of the 4-fold cross-validation
gave a global accuracy of 0.77 for the UPDRS III prediction. An accuracy of 0.8 for the
session number prediction (different treatments) in 10 PD patients was found. The above
predictions were obtained for a sample of 20 patients using different binning methods
(KNIME auto-binner), which allowed the grouping of UPDRS III data in intervals of equal
frequencies. A 90% accuracy in predictions on these data was achieved with the RSES and
5-fold cross-validation [30]. When comparing the accuracy results of different classifiers,
the RSES is in first place in the ranking, ahead of SVM (59%), Naive Bayes (55%), and
Random Forest (52%) [30].

In this context, in her review, Frei [31] analyzed 29 articles (from 819 found) on smooth-
pursuit eye movements in PD patients and compared them to those in normal subjects. She
found that in 18 articles, the gain was measured and reduced in PD patients compared
to controls in 16 of these papers. In two papers, the gain was reduced for higher target
velocities. In three articles, accuracy was measured and found to be reduced in PD. There
were also correcting saccades during smooth-pursuit EM that were more dominant in
more advanced PD and for faster smooth pursuits, but quantification of saccades was
difficult [31].

In another study, deep brain stimulation (DBS) increased smooth-pursuit accuracy
(p < 0.001) and smooth-pursuit gain (p = 0.005), especially for faster smooth pursuits
(p = 0.034) [32].
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In their study, Farashi et al. [33] observed eye movements (EMs) during inactive states
(eyes closed and eyes open), measuring EM using vertical electrooculography (VEOG).
They performed the analysis in the time, frequency, and time–frequency axes of the VEOG
time series. The authors completed a categorization by comparing healthy subjects and
PD patients in OFF and ON medication conditions. They used an SVM (support vector
machine) classifier and allowed multiple-differentiation-corrected p-values. The VEOG
data achieved 69.10% and 87.27% discrimination precision for OFF and ON medication
conditions, respectively. The authors established that PD patients’ vertical EM had smaller
amplitude changes than healthy subjects in OFF medication conditions. The levodopa
treatment augmented such changes in vertical EM during the eyes-closed situation and
diminished during the eyes-open situation. As a result of levodopa treatment, VEOG time
series amplitudes may change, although vertical EM rates were not affected (frequency
contents).

2.6. EM in PD—Pupillometry

Parkinson’s disease patients develop a distorted pupillary response dependent on an
abnormality in the retinal ganglion cells. Tabashum et al. [34] illustrated an arrangement
for pupil size estimates that permits the discovery of pupil parameters to measure the
post-illumination pupillary response (PIPR) with a Kalman filter estimating the pupil center
and diameter over time. The pupillary reaction was estimated in the contralateral eye
to two diverse light stimuli (470 and 610 nm) for 19 Parkinson’s patients and 10 healthy
subjects. Net PIPR displayed different reactions to wavelengths (0.13 mm for Parkinson’s
patients and 0.61 mm for healthy subjects, proving an extremely significant differentiation
(p < 0.001)).

Tsitsi et al. [35] evaluated gaze constancy and pupil size in steady light surroundings,
as well as eye movements (EMs) during constant fixation in a group of 50 Parkinson’s
disease subjects (66% males) with unilateral to mild symptoms (Hoehn and Yahr 1–3;
Schwab and England 70–90%) and 43 control subjects (37% males) with an eye tracker
(1200 Hz) and logistic regression analysis. They examined the potency of the relationship of
EM measures with the ROC curve results of 0.817, 95% CI: 0.732–0.901, and concluded that
eye-tracking-established amounts of gaze fixation and pupil reaction might be valuable
biomarkers of Parkinson’s disease indications.

2.7. EM in PD—Multimodal Approach

Bonnet et al. [36] investigated how connections between vision and posture are exag-
gerated in Parkinson’s patients. PD subjects have been shown to display unusually low
levels of synergy in their posture self-control. These impaired reactions are related to the
neurodegeneration processes in Parkinson’s disease that affect the basal ganglia, which
facilitate the integration of both types of movements. They tested 20 PD patients (mean
age: 60) on levodopa and 20 age-matched-healthy subjects (mean age: 61) with a detailed
visual assignment (target-seeking scenarios in an image) and an inaccurate control task
(arbitrarily viewing an image) in which pictures were projected onto a large screen. Lower
back, upper back, head, and EM were registered simultaneously. To analyze behavioral
synergies, the authors computed Pearson correlations between EM and postural actions.
The associations between EM and upper- and lower-back movements were diminished in
Parkinson’s subjects. The healthy control subjects did not display important correlations
between EM and postural activities. Generally, their results revealed that the Parkinson’s
subjects were unable to correct and change their postural rigidity to achieve success in the
visual task. Moreover, these problems may occur in the early stages of Parkinson’s (an early
biomarker opportunity).

Zhang et al. [37] investigated 49 Parkinson’s patients, including 35 early-stage (Hoehn
and Yahr: 1–2 staging) and 14 advanced PD subjects (Hoehn and Yahr scale: 3 to 5 stag-
ing) and 23 healthy subjects. In addition to clinically significant PD symptoms, video-
oculography was used to measure EM features such as eye fixation stability, horizontal and
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vertical reflexive saccade (RS), and horizontal and vertical smooth-pursuit movements. The
authors discovered that five EM features—specifically square wave jerk frequency, vertical
RS delays, the accuracy of the vertical–upward RS, and the horizontal smooth-pursuit RS
gain—were meaningfully different in Parkinson’s and normal subjects. By merging all five
features, the authors achieved a symptomatic sensitivity of 78.3% and a specificity of 95.2%.
The study discovered that more deficiencies in upward–vertical RS than in other directions
were related to disease duration and the stage of development of Parkinson’s disease.

Perkins et al. [38] investigated whether Sleep Behavior Disorder (RBD) indicates PD.
With video-based eye tracking, researchers tested saccade, pupillary, and blink responses
in RBD and isolated REM (rapid eye movement) with 22 PD and 22 RBD patients and
74 healthy controls. They found that RBD patients did not have significantly different
saccades compared to healthy controls, but PD patients differed from both healthy controls
and RBD patients. They concluded that RBD and PD patients had altered pupil and blink
behavior compared to healthy controls. Because RBD saccade parameters were comparable
to healthy controls, brain areas responsible for pupil and blink control may be impacted
before saccadic control areas, making them a potential prodrome of PD.

2.8. Prediction of Disease Progression in Different PD Groups

The goal in [39] was to predict Parkinson’s disease progression in advanced-stage
patients based on data obtained from patients under different treatments and at different
stages of the disease. Patients from the BMT group (only on medication, third visit), DBS
group (after recent deep brain stimulation surgery, third visit), and POP group (after older
DBS surgery, first visit) were used as a training dataset—a model. The model was tested on
the data obtained from the POP group during the second visit. A dedicated data science
framework written in Python was used and based on the Scikit Learn and Pandas libraries
that implemented different multiclass strategies, such as k-Nearest Neighbors Classifier,
Support Vector Classifier, Decision Tree Classifier, and Random Forest Classifier. In this
trial, the Random Forest Classifier achieved the highest overall accuracy score of 0.75 and an
accuracy of 0.7 when predicting subclasses of UPDRS for patients in advanced stages of the
disease who responded to treatment, with a global 0.57 accuracy score for all classes [39].

The purpose of another study [40] was to predict the results of different PD patient
treatments to find the optimal one. The study compared the intelligent methods based on
Rough Set theory with several different machine learning algorithms, namely Gaussian
Naive Bayes, Decision Tree, Logistic Regression, C-Support Vector, Linear SVC, and Ran-
dom Forest. Generally, the Rough Set method gave better accuracy, but less coverage, than
other algorithms. On the other hand, the Rough Set-based approach allows the creation of
more general rules without the necessity of additional data splitting (into different sessions),
which was required in the other ML models to obtain accuracies similar to those obtained
by RS. An example is the prediction of UPDRS in a DBS patient group from rules obtained
from BMT patients. Global accuracy for DBS patients was 0.64 for the first visit, 0.85 for the
second visit, and 0.74 for the third visit. Other methods gave accuracies of 0.88, 0.58, and
0.54, respectively [40].

The principal conclusion from this comparison is the observation that RS is a much
more universal method when considering medical data. Finally, it was demonstrated that it
is possible to estimate symptoms and their time development in populations treated differ-
ently, which may, in the future, lead to the discovery of universal rules of PD progression
and to the optimization of treatment.

2.9. Prediction of Disease Progression Related to Motor, Cognitive, and Emotional Longitudinal
Changes in PD Patients

In [41], two BMT groups of patients (only on medication) were tested. The first one,
less advanced, was tested three times every half year (visit 1, visit 2, visit 3). In the second
BMT group, more advanced patients were tested only once. All tests were performed with
the following condition attributes: PDQ39, Epworth, depression score (Beck test), TMT A
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and B, disease duration, and fast EM. The decision attribute was UPDRS. With the help of
Rough Set theory (RSES), rules describing the more advanced BMT group were constructed
and used to predict disease progression over three visits in the less advanced BMT group
of patients. Using all condition attributes, general rules gave accuracies as follows: visit
1—0.68, visit 2—0.86, and visit 3—0.88. When rules were related only to motor attributes,
the accuracies were as follows: visits 1—0.80, 2—0.93, and 3—1.0. For rules related to
cognitive attributes, the results were as follows: visit 1—0.50, visit 2—0.60, and visit 3—0.64.
The higher accuracy can be interpreted as more similar patient symptoms. General and
motor-related accuracies increased with disease progression (visit numbers), which means
that the less advanced group of patients became more like the advanced group. However,
this was not the case for cognition-related symptoms that gave lower accuracies, which
means that their progressions were not as strongly correlated with disease development.

The influence of the patient’s emotions on the accuracy of the predictions of disease
progression in the same group or different groups of patients was also tested through the
depression score (Beck test) [42]. The progressions of the BMT group (only on medication)
for visits 2 and 3 and the DBS group (deep brain stimulation) for visit 1 were compared
based on the BMT symptoms during visit 1. The predictions were performed with the help
of RSES and with standard neurological testing and EM parameters. Based on rules from
first visit BMT patients, the prediction of symptoms (UPDRS) of BMT for visits 2 and 3 had
accuracies of 0.7 and 0.7, but by adding the depression score, accuracies increased to 0.77
and 0.80 [42]. Similar predictions were calculated for the DBS group progression based on
first visit BMT rules. Accuracies obtained for the DBS group were as follows: visit 1—0.64,
visit 2—0.77, and visit 3—0.74. Adding the depression score to all attributes, improved
accuracies of visit 1 to 0.77, visit 2 to 0.85, and visit 3 to 0.8 were demonstrated [42]. In
summary, the depression score has a significant influence on predicting Parkinson’s disease
progression.

2.10. EM in AD vs. PD

The impairment of the oculomotor system in AD manifested with longer RS latency
along with higher variability in accuracy and speed [43]. Yang et al., 2012, found similarities
between three groups: AD patients, patients with amnestic mild cognitive impairment
(aMCI), and healthy elderly subjects [43]. All groups showed shorter latencies in the
gap tests (when there is a time delay between the disappearance of the fixation spot and
the appearance of the light spot in the periphery) than in the overlap tests (when the
above spots’ appearance overlaps in time). However, in both tests, AD patients showed
abnormally long saccade latencies. Although there was no significant difference in the
accuracy (gain) and the velocity (both mean and peak velocity) between the three groups
of subjects, AD patients showed an abnormally high coefficient of variation in the latency,
accuracy, and speed of the reflexive saccades. There was a significant correlation between
scores for the Mini-Mental State Examination (MMSE) and latencies of the saccades when
comparing the MCI subjects to healthy elderly subjects [43].

Wilcockson et al. [44] explored AS eye movements in patients with amnestic and non-
amnestic variants of MCI. There were 68 patients with dementia due to AD, 42 had amnestic
MCI (aMCI), 47 had non-amnestic MCI (naMCI), and 92 were age-matched healthy controls
(HC). The latencies for AS correction in the AD group were significantly longer than those
for the HC and naMCI groups, but AS latencies in the AD group did not differ significantly
from latencies in the aMCI group, even after age difference corrections [44]. They obtained
similar results for the percentage of uncorrected AS errors. The AD and aMCI groups had
similar and higher error rates than the naMCI and HC groups. This demonstrated that MCI
patients are more likely to develop dementia due to AD than age-matched healthy adults.
People with aMCI are at the highest risk of progressing to AD [45], and AS measurements
might be an additional prognostic tool for predicting which people with MCI are more
likely to progress to AD. It is worth noting that AS latency is a sensitive measure of the
inhibitory process and is related to disease progression in the early stages of AD and PD.
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In research by Pereira et al. [46], MCI sufferers were similarly impaired in their vol-
untary saccadic reaction times compared to AD sufferers, with a longer time to correct
erroneous saccades.

Boxer et al. [47] compared saccade and antisaccade parameters in patients with fron-
totemporal dementia (FTD), patients with AD, and healthy subjects. The patients with AD
showed an increased saccade latency compared to the FTD group during the horizontal
saccade tasks. This might be related to the different dorsal parietal lobe roles in these two
groups of patients [47]. In the AS task, all FTD and AD patients were impaired relative
to the healthy subjects. The AD patients made fewer correct AS than controls, and they
had more difficulty correcting saccade direction when they began from saccade instead of
AS [46].

The relationships between AS parameters and measures of inhibitory control, atten-
tion, working memory, and self-monitoring showed correlations and common patterns
reflecting deficits in executive function, confirming cognitive impairment in MCI and AD
patients [46].

In Figure 3, we compared the latency of the reflexive saccades for normal subjects
with those of AD and PD patients. These are averaged values for patients in different
stages of the disease. However, latencies for AD and PD patients look similar and they are
significantly longer than the mean RS latency for normal subjects.
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Figure 3. A comparison of the average results +/− SD of the AS latencies, obtained in a group of
27 age-matched normal controls (healthy people), 10 AD subjects, and 12 patients with PD. The
averages of the control group and AD patients are derived from the research results obtained from [43]
and the average of the PD patients from the results obtained from [11].

Three studies found a reduction in pursuit gain along with an increase in correction
saccades in patients with Alzheimer’s disease [48–50].

3. Further Research

The ultimate research goal is to identify unrecognized changes in the brain which can
cause AD and PD. We think introducing the methods to a wider audience might enable the
fulfillment of the following points:

- Results must be based on a broader control group.
- Tests must ensure repeatability and reproducibility in a non-experimental environment.
- Methods must be extended with new digital biomarkers that can be observed in a

three-dimensional space.

Therefore, our research team aims to design, evaluate, and introduce modern methods
of data aggregation based on online self-assessments and virtual reality environments.
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Virtual Reality—A Research Opportunity

In recent years, advances in technology related to display, computation, and controllers
have brought to the market new solutions that have changed digital content consumption,
including virtual reality (VR) technology.

To classify this approach, Milgram et al. [51] introduced the term “virtuality contin-
uum”, relating to the mixture of classes of objects presented in any display situation. This
representation describes a superset of the user’s perception of the environment. The contin-
uum starts from the authentic environments (consisting solely of natural objects) and ends
in completely simulated, virtual environments. It includes different stages of representative
forms, such as augmented reality (AR) and virtual reality (VR). These representations of
the environment and the areas interpolated together comprise the term Extended Reality
(XR). VR refers to devices that occlude the user’s view of the physical world only, allowing
sight of digitally rendered images. VR devices can mimic stereoscopic vision by presenting
slightly different, separate images to both eyes. The main idea is to immerse the user in the
virtual world by depriving external stimuli during a content presentation. VR devices are
headsets that entirely cover the field of view (FoV) and project the image directly to both
eyes.

The wide availability of devices and improving quality mean they are being used
on an increasing scale. Therefore, VR technology could be the next gold standard in
cognitive assessment. The need for new tools has emerged from criticism of the current
cognitive screening tools because these tests often (30 of 50 classical screening tools) miss a
visuospatial component, such as the Clock Drawing Test, the Cube Drawing Test, and the
Intersecting Shapes Test [52]. Because visuospatial tasks demonstrate significant diagnostic
and prognostic potential in AD [53], VR applications have great potential as an assessment
tool in dementia [54]. One example is shown in Figure 4, where the standard executive
function Trial B test is performed in 3D instead of 2D (on the paper). In this case, in addition
to engaging executive processes related to 2D, the subject must also activate 3D orientation
processes that often fail in ND (especially in AD).
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Figure 4. The prototype of an application testing the recognition of numbers and letters in the correct
order implemented in a VR environment on an Oculus Go device. Trail B is generally thought to
be sensitive to executive functioning since it requires a wide range of skills to complete. In 2D, it
engages attention, memory, visual screening abilities, motor functioning, and cognitive processes,
and it is likely to be even more difficult in 3D. Squares in green are already marked, and in white will
be chosen in the proper order by the pointer in pink.



Sensors 2023, 23, 2145 14 of 21

One of the main concerns of VR usage might be the physiological phenomenon
called VR sickness (cybersickness). The most usual explanation is the sensory conflict
theory [55]. According to this theory, VR sickness is caused by discrepancies in the sensory
communication sent to the brain as the operator progresses through the virtual environment.
Symptoms frequently reported include general distress, headache, eyestrain, stomach
sensitivity, nausea, sweating, spite disorder (a.k.a. drowsiness), disorientation, and a
nausea response. Symptoms can last from minutes to days post-exposure, with after-effects
displaying as postural ataxia, visual displacement (e.g., altered vestibular-ocular reflex),
and altered hand–eye harmonization, among other disorders. Cybersickness (CS) has
been called the “elephant in the room” due to the possibility for it to radically limit VR
equipment’s uptake.

There are individual differences in susceptibility to VR sickness, and age is one of the
factors. Brooks [56] presented that over-50s are more likely to experience virtual reality
sickness than younger adults. Another factor is gender. Park [57] discovered that women
are more vulnerable to virtual environments in terms of motion sickness (MS) or simulator
sickness (SS). Furthermore, Kennedy [58] claimed that women are more susceptible than
men, and the main reasons could be hormone differences and that women have a wider
field of view. Depending on the immersive content, 20–95% of users typically experienced
some form of cybersickness, ranging from a slight headache to an emetic response. This
was not the conclusion in more recent research [59], which found no evidence that the
incidence of motion sickness or the severity of motion sickness symptoms differed between
the sexes.

These factors are common obstacles that impact the widespread use of technology,
particularly among the elderly. However, with improving technology (higher resolution
and frequencies), this problem seems likely to fade and should be eliminated in the future.
Caserman [60] conducted a meta-analysis and compared different head-mounted displays
(HMD) and stimuli. For example, Oculus Rift HMD vs. HTC Vive HMD and matched
stimuli vs. unmatched stimuli. The meta-analysis results show that last-generation HMD
devices have significantly fewer problems with CS, although they are still present. The
findings reveal user experience (UX) flaws that could be obstacles in medical research. Thus,
research group selection must be performed carefully and precisely until the technology
can deal with cybersickness.

Immersive virtual environments allow researchers to create realistic environments
while maintaining a high level of experimental control. For example, Garcia [61] suggests
that it is possible to create experimental conditions where a virtual human modifies tone
of voice while maintaining neutral facial expressions that would allow the study of the
impact of tone of voice on persons with dementia. Furthermore, Flynn [62] presented
findings that demonstrated that it is feasible to work in virtual environments with people
with dementia. Bek et al. [63] found differences in eye gaze for emotional expressions
which are static and dynamic. According to the researchers, PD may reduce the ability to
utilize motion in emotion recognition, and eye movements reveal subtle effects of motion
on emotion processing in PD. Researchers concluded that measuring eye gaze for moving
faces enhances understanding of emotion recognition.

Additionally, as presented in [64,65], early detection of Alzheimer’s disease can be
supported by navigation tasks. This study used an immersive virtual reality paradigm in
which participants walked through simulated environments to investigate path integration
tasks. This study shows that a virtual reality navigation task can distinguish patients with
moderate cognitive disabilities at low and high risk of developing dementia with better
classification accuracy than classic cognitive measures. Virtual reality spatial cognition
assessments have also been shown to be more sensitive than traditional visuospatial
pencil-and-paper tests, such as the Mental Rotation Test, in detecting spatial navigation
deficiencies [66]. Research papers also present a definite connection between virtual and
real-world findings, for example, proof that wayfinding navigation performance on a



Sensors 2023, 23, 2145 15 of 21

mobile app-based VR navigation task is closely correlated with real-world city street
wayfinding performance [67].

A VR environment also provides vast possibilities for diminished curiosity research,
which are behavioral changes that are extremely difficult to measure experimentally. A
particular group of studies devoted to novel visual object perception (curiosity) associated
with aging [68–71] presented that AD patients distributed their viewing time equally and
spent significantly less time than controls looking at the novel (unpredictable) stimuli
versus classical stimuli (in comparison to healthy subjects). Such novelties can be a horse
that appears to have no hind legs or a lion that appears in a children’s classroom, as
in the classical study from 1992 [68]. Because a VR environment with proper hardware
enables the simulation of real-world and synthetic objects with outstanding detail, one can
automatically measure the subject’s attention span based on eye movement registration in
3D space for prominent and less obvious examples of artifacts.

Moreover, Mandera [72] shared the opinion that virtual reality can be a supportive
therapy for patients with MCI and various forms of dementia to improve adherence to
cognitive training of older adults with cognitive impairment. This opinion is coherent with
the outcome of the meta-analysis prepared by Kashif et al. [73]. Out of nine studies on
motor function, six reported equal improvements in motor function compared to other
groups. In addition, VR groups achieved superior results in improving static balance
among patients with PD.

Our research group also evaluated the possible impact on early disease detection. We
created a prototype of an application testing the recognition of numbers and letters in the
correct order implemented in a VR environment. The test assumed that Trail B is generally
sensitive to executive functioning since the test requires multiple abilities to complete
it. Part B requires attention, memory, visual screening abilities, motor functioning, and
cognitive processes in 2D, and we intuit that it is more difficult in 3D.

In the context of previous research, it is worth noting that there are VR headsets with
eye tracking on the market, such as the HTC VIVE Pro Eye. Hence, they can be used as
standalone research environments that allow us to control the experiment remotely, without
on-site supervision. Furthermore, they add a spatial dimension to our research, connected
to the motor reaction of the eyes combined with actions executed by the subject’s hands.

4. Discussion

In this review, we have demonstrated that the parameters of reflexive eye movement
are significant in estimating Parkinson’s and Alzheimer’s disease progressions. Therefore,
they might also be good biomarkers in the preclinical stages of these ND diseases. Various
saccade abnormalities were found in Parkinson’s [74–77] and Alzheimer’s diseases, e.g.,
in reviews [78] and using computational attention models under realistic scenarios for
AD [79]. Even if many authors have demonstrated EM pathologies in AD and PD, they did
not demonstrate how we can use EM parameters to predict the disease progression of many
different patients or even patients with different treatments and symptoms. However,
in [80], the authors used LR (logistic regression), SVM (support vector machine), and
NB (Naive Bayes) algorithms to classify normal (NC), MCI, and AD subjects based on
novelty preference (NP), pupil diameter (PD), saccade orientation (SO), and re-fixation
(RE) and fixation duration (FD) differences between watching a familiar or a novel image
(see discussion above related to [68–71]). The division into NC (n = 30 subjects), MCI
(n = 10), and AD (n = 20) was assessed by clinicians based on standard assessments and
neuropsychological tests [80]. The authors used a cross-validation method on 20 NC and
all AD subjects to determine classification algorithms that distinguish between AD and
NC. In the next step, they used this algorithm to distinguish NC from MCI. They repeated
the classification process 100 times by changing partitions of NC subjects and, each time,
testing different NC subjects against all MIC patients and averaging all results. The best
results were obtained for all attributes: NP + PD + SO + RE + FD. For the SVM algorithm,
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accuracy was 0.87 and sensitivity 0.97. These are great results, giving the basis for our
proposal for VR testing.

In [81], the authors used oculomotor behavior to differentiate diagnoses between
normal subjects, AD sufferers, and behavior variants of frontotemporal dementia (bvFTD)
and a semantic variant of primary progressive aphasia (svPPA) groups. They tested RS, AS,
and pursuit EM. By comparing RS latency, AS success (successfully performed AS), and
spatial accuracies of RS, AS, and pursuit, the authors found that AD patients performed the
worst in all these tests. Additionally, the mean MMSE was 16.7 +/− 5.2 and was the lowest
for AD compared to other patients. MMSE = 15 and below signifies the probability of
total impairment, and there are such patients in this group. SVM and k-Nearest Neighbors
(k-NN) algorithms were used to classify AD vs. control, bvFTD vs. control, and AD v.
bvFTD, and they obtained a mean accuracy above 0.92. The svPPA group was too small for
the ML procedures [81].

As we have described above (see Figure 3), there are many similarities in the properties
of eye movements between AD and PD. However, in our projects, we have not only
predicted the PD stage (UPDRS) from reflexive EM and neuropsychological test results,
but also tried to predict the progression of the disease (longitudinal studies). We have also
demonstrated that we can take a group of more advanced Parkinson’s disease patients as
a ”Model”. This approach allows us to see PD progression as patients’ symptoms change
relative to the model, which means that the multidimensional sets of their values (granules)
become more similar to the set (granule) of the model. This approach allows us to compare
different rates of various patients’ disease development and relate the effectiveness of
different treatments (our different groups of PD: BMT, DBS, and POP).

Another critical issue is related to disease progression and related changes in different
parts of the brain or symptoms related to the motor/cognitive and emotional systems [41].
We have estimated PD progression by all of our (general) attributes, by only motor-related
attributes, and by only cognitive symptoms. The general and motor attributes predicted
disease progression (UPDRS changes) well, but the correlation with cognitive attributes
was much weaker [41]. The cognitive attributes do not change with disease progression in
all PD patients, and this is the opposite of Alzheimer’s disease, which is mainly related to
cognitive changes (MMSE changes).

We have demonstrated for PD patients that the depression score (measured by Beck’s
depression inventory) is an essential attribute in the estimation of disease progression, and
its value significantly increases the accuracy of UPDRS estimation [42]. In Alzheimer’s
disease, depression is a significant factor, especially for older subjects with late onset of AD
(LOAD) and for patients over 65 years of age [82]. Another essential function related to
preclinical AD relates to motor symptoms, and they can even predict MCI [83]. They are
related to muscle strength decrease and deficient grip strength [83]. Physical frailty, gait and
balance problems, and loss of other motor functions can all precede cognitive impairment
by several years. Even the trajectory of gait speed can precede MCI by 12 years [84,85].
Therefore, experiments in VR using familiar and novelty objects could also test the subject’s
motor abilities and responses to different emotions.

There are two different ML classification approaches for predicting ND symptoms.
The first one, more clinically oriented, is that based on neuropsychological and clinical
tests, experienced neurologists decide each patient’s disease stage: (1) in Alzheimer’s
disease—normal, MCI, dementia; (2) in Parkinson’s disease—normal, early-stage, medium,
or advanced, or they can use the Hoehn and Yahr scale. In the next step, different parame-
ters of EM, with the help of ML methods, attempt to classify patients following the doctors’
findings. In [80], the authors used five parameters related to novelty preference to differen-
tiate normal and MCI subjects based on training normal subjects and AD patients. There
were also five parameters related to RS, AS, and pursuit EM used to differentiate no disease
from AD and AD from FTD (frontotemporal dementia) [81]. Our approach was different,
as we took all eight neuropsychological and clinical parameters and four EM attributes
together with ten to twelve parameters (in different studies) to classify four different ranges
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of PD stages. An even higher dimension of parameters was used in the BIBIOCARD study,
where there were 181 condition parameters used to classify four stages of the disease—
normal = 1, impaired and not MCI = 2, MCI = 3, dementia = 4—in a longitudinal study
lasting over twenty-five years [86]. However, they have only used nine attributes, namely
age, education, two cognitive testing results, two MRI scan results, two cerebrospinal fluid
parameters, and APOE genotype, to predict the probability of progression from normal to
MCI in the next 5 years. We have used their 11 cognitive test results and APOE genotype
to determine, with the granular computing approach, that some of their normal patients
might already have mild/very mild dementia or questionable impairment [87].

5. Conclusions

Alzheimer’s and Parkinson’s diseases are two of the most common neurodegenerative
age-dependent diseases for which, despite many years of intensive research, we still do not
have a cure. Both diseases have complex etiology and many years of hidden, non-reversible
neurodegenerative processes (ND) with devastating effects on the brain. When the first
symptoms appear, a large part of the brain has already disappeared. One possible solution
is to find the neurodegenerative processes early enough to test possible methods to slow
them down or even cure them.

We have described many papers showing that eye movement parameters change with
disease progression and that they are also sensitive to the early stages of both diseases.
However, the parameter space describing different measured attributes and methods has a
very high dimension. To find significant subspace(s) with parameters sensitive to disease
progression, we have proposed the use of different AI (machine learning) algorithms. These
algorithms describe disease symptoms more precisely than the standard approach and can
also predict disease development. We have given several examples of such AI (ML) meth-
ods and have demonstrated their effectiveness for the most common neurodegenerative
diseases.

Therefore, the major differences between classical (statistical) and AI approaches are
not only opportunities to reduce the dimension of the parameter space, but also to ask
diverse questions about the nature of the diseases. For example, as mentioned above, many
authors found pathological saccade parameters in AD and PD, but using the AI approach,
we ask a different question: can EM parameters predict the AD/PD progression in different
individual patients having different treatments, and in diverse disease stages? Responses
to this question are related to the mechanisms of the disease.

There is a related difference between subject testing in real and virtual worlds. In
the real environment, we can find many differences in behaviors such as EM, emotions,
or peripheral body movements between ND and control subjects. We cannot control
significant features of the real world and determine how changes in this environment may
influence the subject. However, in virtual reality, we can ask the question: how do different
features in the surroundings influence the individual subject? Again, finding isolated
elements in the surroundings that, in a unique way, influence the behavior of the individual
subjects gives insight into ND mechanisms.

We think that the next research step should be into virtual reality. VR offers tremen-
dous possibilities in the experimental environment. Researchers can simulate virtually
every scenario in a strictly controlled environment where interactions can be controlled
in real time. Furthermore, the patient is always safe because the experiment occurs in the
laboratory or physician’s office. Development environments, such as Unity 3D, are offered
free of charge and enable the design and development of VR applications. Therefore,
virtual reality applications can become a valuable tool for dementia assessment if only more
interdisciplinary teams, combining health professionals and computer scientists, would
pave the way to new applications in this area. Much research has been done already, and
more research is required on the scale of its usability for patients.
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11. Śledzianowski, A.; Szymanski, A.; Drabik, A.; Szlufik, S.; Koziorowski, D.; Przybyszewski, A.W. Combining results of different
oculometric tests improved prediction of Parkinson’s disease development. In Proceedings of the Asian Conference on Intel-
ligent Information and Database Systems, Phuket, Thailand, 23–26 March 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 517–526.

12. Turner, T.H.; Renfroe, J.B.; Duppstadt-Delambo, A.; Hinson, V.K. Validation of a Behavioral Approach for Measuring Saccades in
Parkinson’s Disease. J. Mot. Behav. 2017, 49, 657–667. [CrossRef]

13. Stuart, S.; Lawson, R.A.; Yarnall, A.J.; Nell, J.; Alcock, L.; Duncan, G.W.; Khoo, T.K.; Barker, R.; Rochester, L.; Burn, D.J.; et al.
Pro-Saccades Predict Cognitive Decline in Parkinson’s Disease: ICICLE-PD. Mov. Disord. 2019, 34, 1690–1698. [CrossRef]

14. Perneczky, R.; Ghosh, B.; Hughes, L.; Carpenter, R.; Barker, R.; Rowe, J. Saccadic latency in Parkinson’s disease correlates with
executive function and brain atrophy, but not motor severity. Neurobiol. Dis. 2011, 43, 79–85. [CrossRef]

15. Antoniades, C.A.; Xu, Z.; Carpenter, R.; Barker, R. The relationship between abnormalities of saccadic and manual response times
in parkin- son’s disease. J. Park. Dis. 2013, 3, 557–563.

16. Abasi, A.; Hoseinabadi, R.; Raji, P.; Friedman, J.H.; Hadian, M.-R. Evaluating Oculomotor Tests before and after Vestibular
Rehabilitation in Patients with Parkinson’s Disease: A Pilot Pre-Post Study. Park. Dis. 2022, 2022, 6913691. [CrossRef]

17. Wong, O.W.; Fung, G.; Chan, S. Characterizing the relationship between eye movement parameters and cognitive functions in
non-demented Parkinson’s disease patients with eye tracking. JoVE (J. Vis. Exp.) 2019, 151, e60052.

18. Wong, O.W.; Chan, A.Y.; Wong, A.; Lau, C.K.; Yeung, J.H.; Mok, V.C.; Lam, L.C.; Chan, S. Eye movement parameters and cognitive
functions in Parkinson’s disease patients without dementia. Park. Relat. Disord. 2018, 52, 43–48. [CrossRef]

19. Archibald, N.K.; Hutton, S.B.; Clarke, M.P.; Mosimann, U.P.; Burn, D.J. Visual exploration in Parkinson’s disease and Parkinson’s
disease dementia. Brain 2013, 136, 739–750. [CrossRef]

20. Everling, S.; Fischer, B. The antisaccade: A review of basic research and clinical studies. Neuropsychologia 1998, 36, 885–899.
[CrossRef]

http://doi.org/10.3389/fnagi.2019.00074
http://www.ncbi.nlm.nih.gov/pubmed/31001108
http://doi.org/10.1001/archneurol.2010.135
http://www.ncbi.nlm.nih.gov/pubmed/20625084
http://doi.org/10.1002/mds.21803
http://www.ncbi.nlm.nih.gov/pubmed/17987654
http://doi.org/10.1371/journal.pone.0177044
http://www.ncbi.nlm.nih.gov/pubmed/28472200
http://doi.org/10.1016/j.neuropsychologia.2008.07.011
http://doi.org/10.1155/2019/5480913
http://doi.org/10.1007/s002210050934
http://doi.org/10.1016/j.neuropsychologia.2009.11.006
http://doi.org/10.3390/s16091498
http://doi.org/10.1080/00222895.2016.1250720
http://doi.org/10.1002/mds.27813
http://doi.org/10.1016/j.nbd.2011.01.032
http://doi.org/10.1155/2022/6913691
http://doi.org/10.1016/j.parkreldis.2018.03.013
http://doi.org/10.1093/brain/awt005
http://doi.org/10.1016/S0028-3932(98)00020-7


Sensors 2023, 23, 2145 19 of 21

21. Sledzianowski, A.; Szymanski, A.; Drabik, A.; Szlufik, S.; Koziorowski, D.M.; Przybyszewski, A.W. Measurements of antisaccades
parameters can improve the prediction of Parkinson’s disease progression. In Proceedings of the Asian Conference on Intelligent
Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 602–614.

22. Waldthaler, J.; Stock, L.; Student, J.; Sommerkorn, J.; Dowiasch, S.; Timmermann, L. Antisaccades in Parkinson’s Disease: A
Meta-Analysis. Neuropsychol. Rev. 2021, 31, 628–642. [CrossRef]

23. Waldthaler, J.; Stock, L.; Krüger-Zechlin, C.; Timmermann, L. Age at Parkinson’s disease onset modulates the effect of levodopa
on response inhibition: Support for the dopamine overdose hypothesis from the antisaccade task. Neuropsychologia 2021, 163,
108082. [CrossRef]

24. Waldthaler, J.; Stock, L.; Sommerkorn, J.; Krüger-Zechlin, C.; Timmermann, L. Antisaccade Latency Is Sensitive to Longitudinal
Change of Motor and Cognitive Symptoms in Parkinson’s Disease. Mov. Disord. 2020, 36, 266–268. [CrossRef] [PubMed]

25. Antoniades, C.A.; Demeyere, N.; Kennard, C.; Humphreys, G.W.; Hu, M.T. Antisaccades and executive dysfunction in early
drug-naive Parkinson’s disease: The discovery study. Mov. Disord. 2015, 30, 843–847. [CrossRef] [PubMed]

26. Fooken, J.; Patel, P.; Jones, C.B.; McKeown, M.J.; Spering, M. Preservation of Eye Movements in Parkinson’s Disease Is Stimulus-
and Task-Specific. J. Neurosci. 2021, 42, 487–499. [CrossRef] [PubMed]
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