
Citation: Vaño, R.; Lacalle, I.;

Sowiński, P.; S-Julián, R.; Palau, C.E.

Cloud-Native Workload

Orchestration at the Edge: A

Deployment Review and Future

Directions. Sensors 2023, 23, 2215.

https://doi.org/10.3390/s23042215

Academic Editor: Anfeng Liu

Received: 14 January 2023

Revised: 13 February 2023

Accepted: 14 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Cloud-Native Workload Orchestration at the Edge: A
Deployment Review and Future Directions
Rafael Vaño 1 , Ignacio Lacalle 1,* , Piotr Sowiński 2,3 , Raúl S-Julián 1 and Carlos E. Palau 1

1 Communications Department, Universitat Politècnica de València, 46022 Valencia, Spain
2 Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
3 Warsaw University of Technology, pl. Politechniki 1, 00-661 Warsaw, Poland
* Correspondence: iglaub@upv.es

Abstract: Cloud-native computing principles such as virtualization and orchestration are key to
transferring to the promising paradigm of edge computing. Challenges of containerization, operative
models and scarce availability of established tools make a thorough review indispensable. Therefore,
the authors have described the practical methods and tools found in the literature as well as in
current community-led development projects, and have thoroughly exposed the future directions
of the field. Container virtualization and its orchestration through Kubernetes have dominated
the cloud computing domain, while major efforts have been recently recorded focused on the
adaptation of these technologies to the edge. Such initiatives have addressed either the reduction of
container engines and the development of specific tailored operating systems or the development of
smaller K8s distributions and edge-focused adaptations (such as KubeEdge). Finally, new workload
virtualization approaches, such as WebAssembly modules together with the joint orchestration of
these heterogeneous workloads, seem to be the topics to pay attention to in the short to medium term.

Keywords: edge computing; cloud computing; edge-to-cloud computing continuum; edge-native;
cloud-native; container; Kubernetes; microVM; Unikernel; WebAssembly

1. Introduction

The leading technological companies have been focused for the last ten to fifteen years
on developing their systems and services in “the cloud”, where computing capabilities and
infrastructure are offered remotely on demand. It involves different concepts depending
on the requested service: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
Software as a Service (SaaS) and Functions as a Service (FaaS). A characteristic of this
paradigm is that the supporting hardware (which is usually located in datacenters) is
highly homogenous. Usually, all machines that are part of a cloud deployment have uni-
form configurations, for instance, the same ad hoc operating systems that might have been
customized by vendors to achieve a better global performance bearing in mind the type of
service provided. High network bandwidth and reliability are often guaranteed in cloud
computing as well. However, there is a recent observable trend to move the computation
to more local environments, favoring the so-called edge computing. Here, devices located
at the edge tier of the computing continuum are charged with more processing duties,
reducing the work to be delivered by the cloud. In this environment, the underlying com-
puting hardware is entirely diverse; heterogeneous in CPU architectures and constrained in
resources, not fully controlled by system owners (less customizable and less powerful) and
deployed in the field, where network connection is often non-reliable [1]. Although much
work and effort is being put towards realizing this new paradigm, it is still undeniable that
cloud computing has a grade of maturity not achieved by the edge [2]. Looking widely
at the currently existing gaps, there are two that stand out: orchestration and Continuous
Integration/Continuous Deployment (CI/CD). Cloud computing has achieved a high level

Sensors 2023, 23, 2215. https://doi.org/10.3390/s23042215 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2372-6253
https://orcid.org/0000-0002-6002-4050
https://orcid.org/0000-0002-2543-9461
https://orcid.org/0000-0003-3052-3200
https://orcid.org/0000-0002-3795-5404
https://doi.org/10.3390/s23042215
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042215?type=check_update&version=2


Sensors 2023, 23, 2215 2 of 27

of automation thanks to well-explored techniques ranging from virtualization, container-
ization, container orchestration, microservices or DevOps, to CI/CD pipelines, which allow
cloud deployments to be very dynamic and efficient. The relevance of these features has
made the community refer to them as cloud-native traits. Such techniques, despite having
many different implementations, can be considered vendor-agnostic de facto standards,
starting from the most relevant single tool: Kubernetes (K8s). Thus, the gap is evident
when comparing both paradigms, as there are no equivalent edge-native techniques yet, or
those are in an early development stage. The goal of such techniques should be to devise
vendor-agnostic standards that would allow efficient CI/CD and orchestration of services
in the same way that has been created for the cloud, and as much as possible, recycling
or adapting those to the edge, taking advantage of their long-term production stage. The
goal of this paper is to perform a review from a deployment point of view of the progress
exerted by the scientific community to realize such cloud (now, edge) native techniques for
the edge computing paradigm.

The review has been performed following a deployment-first orientation together
with a literature analysis methodology. First, the specific scope of the paper was clearly
identified. Afterwards, a series of searches in usual article databases considering the
target knowledge domain (such as IEEE, Elsevier, Springer, Google Scholar), among which
results were selected with those that included similar reviews or analyses. In parallel, a
thorough analysis of alternative sources was conducted. Among those, authors priorities
open repositories (e.g., GitHub tools and collections of reference sources), deliverables
and whitepapers distributed by research projects and relevant, well-known clusters or
standardization entities (such as Cloud Native Computing Foundation or Alliance of
Internet of Things Initiative). Once those efforts were performed, the analyzed pieces
were categorized by the type of virtualization addressed, whether they presented (or not)
commercial approaches, focused on orchestration, focused on the deployment of workloads,
and those that were focused on future trends and promises rather than on current cases.

This paper is organized as follows. In Section 2, a succinct analysis of the context and
the compelling need for such a review is carried out. Section 3 reviews the first and foremost
cloud-native technique to be applied to the edge: service virtualization and deployment in
constrained devices. Section 4 provides an overview of the holistic commercial solutions
that have been specifically addressed to the edge from a cloud-native perspective. After
that, Section 5 lists the deployment options of the most common type of service workloads
(containers) within the edge paradigm, while Section 6 analyzes the orchestration of those
containers using frameworks such as K8s. In Section 7, the authors describe the most recent
trends that are paving the way for the future of edge-native deployments: moving beyond
containers only. Finally, Section 8 embodies the reflections and conclusions obtained by the
authors after the conducted review.

2. Background

Edge-native as a concept was first introduced by Satyanarayanan et al. in 2019 [3].
After that, it has been used in multiple fora by companies such as IBM, Cisco, and oth-
ers, settling as the most popular term to refer to the application of cloud-native design
principles on edge computing devices. These cornerstone principles are microservices-
centricity (achieving modular distributed system deployment), containerization, dynamic
management, orchestration and scheduling, and DevOps [4].

There is a growing interest in research on transferring technologies and tools to the
edge to comply with such principles, applying agility, adaptability, affordability, and
accessibility traits to edge scenarios. This interest is mostly manifested by the launching
of so-called projects, particularly those promoted by renowned open-source initiatives
like Linux Foundation (LF Edge line [5]) or Eclipse Foundation (Edge Native Working
Group [6]). Especially relevant is here the Cloud Native Computing Foundation (CNCF),
the vendor-neutral hub that has standardized and fostered cloud-native principles and
technologies like Kubernetes, etcd, CoreDNS, gRPC, and many others. CNCF has launched



Sensors 2023, 23, 2215 3 of 27

a series of incubated and sandbox projects under their umbrella specifically pursuing
edge-native goals [7]. In addition, ad hoc funding tenders have been scheduled by public
entities such as the European Commission (EC) [8], such as the development of meta
operating systems (meta-OS) to be installed in edge computing nodes [9], or distributed
smart orchestration of various workloads across the edge and cloud computing fabric using
Artificial Intelligence (AI) [10]. The former aims at realizing the so-called IoT-edge-cloud
computing continuum, which roots its success on applying cloud-native techniques along
the entire computational spectrum. Following the open-source spirit of Eclipse and CNCF,
the EC has launched an ambitious initiative: EUCloudEdgeIoT.eu, that aims to bring
together all European research actions seeking to devise such computing continuums with
a common stack of open-source technologies [11].

It is precisely under the IoT-edge-cloud computing continuum working action where
this article was born. Authors have participated in two EC-funded actions investigating
aspects related to edge computing. First, the ASSIST-IoT research and innovation action [12]
pursues to develop a reference architecture for next-generation Internet of Things (IoT)
leveraging cloud-native orchestration (i.e., using K8s distributions) to manage IoT work-
loads and provide specific advanced features. Second, the aerOS action [13] intends to
build a generic meta-OS (to be run by many heterogeneous nodes) that lays infrastructure
management on secure, trusted, and automated AI mechanisms. During the former, the
authors identified a series of CNCF-promoted tools and lightweight K8s versions, which
might be applicable across the continuum; however, there has not been enough grounding
or proof of success to consolidate a single reference yet. Through the latter, authors are
investigating how to simultaneously harmonize edge and cloud clusters using different
virtualization and workload management techniques.

The authors found several recent surveys [2,14] describing the actual status of edge
computing. Those range from general analyses of architectures and potential use cases to nar-
rowly focused research on specific aspects of the edge, such as security [15], networking [16]
or mobile edge computing (MEC) [17,18]—mainly addressed by telecom operators more
concerned to 5G innovations. Found surveys and reviews often compare edge to cloud, but
only a few delve into the deployment and orchestration options [19], which is the scope
of this work. In fact, a common reality was faced; first during both formerly described
EC-funded actions and then after the review of existing relevant works: namely, the lack
of a serious review of the available options for bringing containerization, orchestration
and workloads management to the edge in a way that is adapted to the requirements of
heterogeneous, resource-constrained scenarios. It was noticed that even though there exist
some theoretical investigations [4], as well as specific descriptions of how some elements
(e.g., containers) should be adapted to the edge [20], a practical, systematic consolidation
of the existing deployable technologies with a summative evaluation was still missing. The
previous, in turn, prevents scientists and engineers from tackling the practical problem of
realizing cloud-inspired virtualization and orchestration of the edge in a straightforward
manner. Addressing such a problem is, indeed, of special importance as it lies right at the
core of the current challenges and issues of the edge computing field. Among the most com-
pelling challenges, there is reliability assurance in terms of security in data exchange, better
DevOps and CI/CD and network availability for microservice operations [21]. Besides,
finding an operating model seems to also be one of the most prominent barriers. According
to works, that could be alleviated by applying a combination of the already-successful
microservices and cloud-native principles in the edge [22]. As a note, for the foreseeable
future, overweight imposed by usual container management frameworks might also be a
challenge. Thus, this article was initiated.

The main motivation behind this work is to allow those specialists to understand
the current options and issues in a holistic way, as well as to provide critical insight
into the short- and medium-term trends. It is worth mentioning that, being a deployment-
oriented review, it has gone beyond pure scientific literature analysis (that would most likely
transpire outdated results) and has broadened its scope to other sources such as open-source



Sensors 2023, 23, 2215 4 of 27

development projects or successful use cases. Indeed, agile, dynamic opensource software
initiatives are now the forerunners to the advances in this field. Thus, scientific reviews
must include this perspective in the analysis so that it is up-to-date and provide useful
insights for the research community. Consequently, this strategy seems to be appropriate
for this research field, as the outcomes are usually more likely to be published in public
code repositories, blogs or websites (primarily from reference institutions such as the
CNCF and enterprises such as Docker Inc., Palo Alto, CA, USA) rather than in formalized
scientific publications.

3. Virtualization: From Cloud Computing to Constrained Environments

One of the main keystones behind the success of cloud computing is the capacity to vir-
tualize the available resources and the ability to manage workloads (services/applications)
in an efficient way over virtualized hardware [23]. Virtual Machines (VMs) were the first
attempt, enabling the creation of smaller instances of machines over the same physical
infrastructure. This paradigm dominated the cloud computing arena for several years until
new approaches appeared aiming to solve several shortcomings of VMs. First, the over-
head created by the need to install multiple OSs to support different VMs was hindering
the potential to devote those resources to actual workloads. In addition, the workloads
became very diverse and heterogeneous (video streaming, sensor data processing, AI . . .),
requiring dynamicity in the installation and management, something that VM hypervisors
were not able to provide [24]. Furthermore, the utilization of hypervisors required system
owners and developers to be aware of the needed resources and the infrastructure to be
selected to deploy their services or applications. Several initiatives appeared with the aim
of overcoming those issues, having major success in the cloud computing field. In this
subsection, those initiatives are described from the viewpoint of edge computing.

To solve the latter problem (required knowledge of underlying hardware and re-
sources), a paradigm arose called serverless. Serverless architectures are widely adopted by
public cloud providers, offering their customers the possibility of running their applications
without having to take care of: (1) the infrastructure where it will be really deployed and
(2) for how long to reserve it. This paradigm has been especially successful in the public
cloud as it builds upon the assumption that the available computing resources are well
identified (e.g., as in datacenters) and that the infrastructure is easily manageable and acces-
sible in a uniform way by a single operator (cloud provider). However, these principles are
exactly orthogonal to the reality of edge computing, where a software architect cannot omit
the insights regarding the infrastructure when an application’s deployment must take into
account the underlying heterogeneity of resources. Notwithstanding, some initiatives for
applying serverless mechanisms to the edge have arisen. Especially relevant are those that
rely on the temporal dynamicity of services deployment in order to downscale or upscale
on demand the resources devoted to services, optimizing resource consumption (which is
of paramount importance on the edge). Examples following this approach are projects such
as OpenFaaS [25] and Knative [26], which take advantage of the Kubernetes technology
(see Section 6). Knative (which is an incubating project of the CNCF) also provides a
complete event-driven engine based on CloudEvents, a specification to standardize event
data descriptions, which opens a wide range of possibilities in K8s-based architectures on
the edge [27]. With the inclusion of this event-driven engine, the deployed services can
trigger different events to activate some functionalities or workloads without modifying
the source code.

To solve the former problem (overheads caused by installing one OS per each virtual
machine), a paradigm arose called container virtualization. Container virtualization implies
the use of containers to isolate applications and their dependencies into smaller units that
contain the service to be deployed. The ruling principle of container virtualization is that no
hypervisor (plus OS per machine) is needed; in contrast, the host’s single OS is virtualized,
allowing containers to be deployed isolated, but still sharing the same kernel [28]. This
makes containers much more lightweight and scalable. Because of all these advantages, con-



Sensors 2023, 23, 2215 5 of 27

tainers have become the de facto standard for running virtualized deployments in the cloud
(cloud-native) and also are the natural evolution of the legacy VM-based deployments [29].
Several container technologies exist (e.g., LXC [30]—LinuX Containers—was one of the first
developed container runtimes), but since Docker was released in 2013, this technology has
been the standard solution for this virtualization technique. Docker has been successfully
tested and adopted in production-grade deployments around the industry’s public and
private clouds for different purposes. The objective of this review work is not to explain
the functioning of the containers along with the technology that is behind them (there
are strong works in the literature aiming at this purpose, such as [24,29] or [31]), but to
review from a deployment perspective how these mechanisms are used in the field of edge
computing. Although the hardware limitations of edge devices can make it impossible to
run the Docker Engine on them (which is the most used container engine and has remained
the de facto standard for the container virtualization), authors have found that containers
are widely used in edge scenarios with a variety of deployment options, as described
in Section 5.

It should be noted that the area of systems based on cloud-native computing prin-
ciples is evolving rapidly to meet the shifting demands of the industry. Current chal-
lenges and open issues include unified orchestration for heterogeneous systems, federated
management domains, leveraging artificial intelligence for automatic resource manage-
ment and data interoperability [32,33]. Interestingly, the surveys also acknowledge that
one of the main challenges is applying the existing cloud-native principles to the entire
edge-to-cloud continuum.

4. Current Commercial Approaches from Public Cloud Providers

Most public cloud providers have addressed edge computing as an extension of
their own cloud infrastructure scope. Consequently, the majority of available solutions
from those companies consist of their standard commercial cloud products, but assuming
customers’ premises as the central cloud locations. In addition, those providers have also
devised and created their own hardware devices for the edge adapted to run their new
(cloud) edge solutions. This way, cloud providers made sure that the selected equipment
would be plug-and-play, prepared to run their products, keeping their advantages and
service level with zero configuration needed from the final user. However, apart from
creating huge vendor lock-in environments, most of these frameworks are not actually
edge-native solutions responding to the relevant requirements; they only shift workloads
outside the cloud infrastructure but without breaking a strong dependency on the cloud or
adapting architectural paradigms to the edge. This section analyzes those solutions that are
provided by the large public cloud providers.

Amazon Web Services (AWS) offers a solution named AWS IoT Greengrass for de-
ploying processing capabilities over nodes at the edge tier of the architecture, especially
over IoT devices that gather data from various attached sensors [34]. This solution includes
serverless-based deployments in the devices using AWS Lambda, the serverless approach
of AWS. It transforms models that were previously created in the cloud into Lambda
functions, that are then shifted to the edge (where container virtualization and AI inference
equipment exist) to be run. To avoid network connectivity loss problems, Greengrass
creates a virtual twin of the device that ensures compliance with the desired state in the
cloud, as long as there is a reliable connection; otherwise, it re-synchronizes whenever it is
re-established and calibrates to reassure the desired state again. In addition, inter-device
communication is allowed inside a local network without depending on the cloud. As for
device management, AWS IoT Greengrass is highly configurable from a remote location,
allowing the addition and removal of (even customized) hardware and software modules.
Another solution by AWS for the edge is AWS Snowball Edge, a device type from the
AWS Snowball family that is designed to work at the customer’s premises [35]. Amazon
offers three versions of such a device that aim to enhance different demanded capabilities:
storage-optimized for data transfer (80TB of usable storage capacity), storage-optimized



Sensors 2023, 23, 2215 6 of 27

with EC2 compute functionality (AWS product focused on proving computing capabilities
on demand) and compute-optimized (with 104 vCPUs and 416 GB of memory). Similar to
Greengrass modules, Snowball edge devices can be managed locally and through the cloud.
Furthermore, they can run powerful workloads to move all locally stored data to the AWS
S3 storage service in the cloud and control the deployments running on the Greengrass
devices. Finally, these devices can be classified as the top layer of the edge tier of the
computing continuum because they provide great computing capabilities, approaching a
small cloud datacenter.

Microsoft Azure provides a complete stack for edge computing under its Azure IoT
Edge framework, including remote equipment management, edge-level virtualization,
and remote workload allocation and control [36]. This technology is delivered with an
open-source MIT license via the GitHub account of Azure, allowing developers to deploy
and integrate Azure’s edge stack in their own infrastructure. However, interoperability
is not complete, as the installation depends on the Azure cloud stack. Both Azure and
AWS have delivered several series of their own certified devices targeting the lowest and
medium tier of the edge computing range (some of them are based on popular embedded
boards, such as Raspberry Pi, NVIDIA Jetson and Intel boards). This certification consists
of the validation by the Azure cloud engineers that a device “can connect with Azure IoT
Hub and securely provision through the Device Provisioning Service (DPS)” [37]. Similar
to Amazon, Microsoft offers a line of powerful equipment to bring the Azure services to the
customer’s premises and remote locations (near the sources of data), lowering the amount
of data to be uploaded to the cloud by the Azure Stack Edge. This equipment is divided
into two lines of products: Edge Pro Series, a line focused on powerful products to be
located both in a local datacenter (Pro and Pro 2), and transportable equipment that can
contain an uninterruptable power supply (Pro R); Edge Mini Series, a constrained portable
device with a battery [38].

Google Cloud integrates edge computing solutions under its Google Distributed
Cloud solution. Google devised a complete edge-to-cloud continuum infrastructure by
offering services that can be deployed on all of their own-defined tiers of the edge-to-cloud
architecture layers (Google’s network edge, telecommunications operators’ edge, customers’
datacenters, and customer’ remote edge), including the telecommunication service provider
network layer and the possibility of virtualizing telcos’ 5G network elements [39].

A common aspect of all the mentioned proposals by prominent cloud providers is the
lack of interoperability and the high degree of vendor lock-in. Whereas the mechanisms
and technologies that will be introduced in further sections (K8s distributions, KubeEdge,
and other orchestrators) are open and oriented to comply with certain baselines of cloud-
native principles, the commercial systems presented here create closer ecosystems tied to
interdependencies, specific configurations, particular ways of structuring and deploying
applications, etc.

5. Container Virtualization: Deploying Container Workloads on the Edge

In 2015, the Open Container Initiative (OCI) was founded by the container technology
leaders (Docker, CoreOS, . . .) in order to specify a standard for container virtualization.
This action resulted in the creation of three specifications: the Runtime Specification
(runtime-spec, the specification for running containers), the Image Specification (image-spec,
for packaging containers in images) and the Distribution Specification (distribution-spec,
for sharing and using container images) [40]. Two years later, when the Docker engine
was established as the technological reference for containers, Docker open-sourced the
code of its container platform, divided into modules (including its high-level container
runtime—containerd [41] and its low-level container runtime—runC [42]), with the purpose
of bringing the capability of building fully customized container-based systems to system
builders. This innovation received the name the Moby Project [43]. It allowed engineers
to focus on the development of lighter container runtimes through the reduction of their
internal components and the removal of unnecessary modules in order to increase their



Sensors 2023, 23, 2215 7 of 27

performance or even to design specific operating systems incorporating such runtimes,
which appear to be interesting trends for both cloud and edge. Subsequent subsections
dig deeper into these two approaches and the initiatives that have been identified for edge
computing scenarios.

5.1. Container Engines

Container engines (e.g., Docker, Podman) are comprised of tools for building and
running container images. To achieve the latter, a high-level container runtime (also
referred to as the container manager, this block controls the transport and management of
images) interacts with a low-level container runtime (the block that receives the unpackaged
container image from the high-level runtime and finally runs the container inside the system
interacting with the host’s OS kernel), as shown in Figure 1. As mentioned in the previous
paragraph, Docker Engine’s runtime (de-facto standard) materializes in containerd and
runC. However, there are other runtime implementations that have been developed with
edge computing constraints in mind.

Sensors 2023, 23, x FOR PEER REVIEW  8  of  27 
 

 

 

Figure 1. Container workflow block architecture. 

5.2. Purpose‐Built Operating Systems 

In the same way that container runtimes are being reduced to target a wider range of 

systems, some specific OSs have appeared that take advantage of reduced and portable 

runtimes with  the main  goal  of  bringing  container  virtualization  to  increasingly  con‐

strained, as well as embedded devices. 

EVE‐OS is an operating system originally developed by ZEDEDA and then donated 

under an open‐source license to the Linux Foundation that has included it inside its edge 

research projects stack (LF‐Edge) [47]. The main purpose for the development of this OS 

is to provide edge computing devices with a universal, vendor‐agnostic and standardized 

architecture OS, following the same strategy that Google used in the smartphone market 

when it delivered Android. EVE‐OS has adopted well‐known open‐source projects such 

as Xen Project, LinuxKit and Alpine Linux  for  its development. Currently,  the  remote 

management of a fleet of devices running EVE‐OS following a Zero Trust security model 

is possible using the Adam controller, the reference implementation of an LF‐Edge API‐

compliant Controller. Furthermore, EVE‐OS provides support for running containerized 

workloads using containerd and for running Kubernetes distributions on top of it. EVE’s 

contributors have recently announced an architecture proposal for integrating EVE with 

Kubernetes at a control plane level [48]. The OS is designed for edge devices with reason‐

able computing capabilities (minimum of 512 MB of RAM memory) and has been pre‐

pared  to  be  deployed  in  a wide  range  of CPU  architectures. Moreover,  EVE‐OS  has 

enough functionalities to be deployed on bare metal and supports a wide range of work‐

loads that can be combined: Docker containers, Kubernetes clusters, and virtual machines. 

BalenaOS is a host operating system with the purpose of running Docker containers 

on embedded devices and has been made to survive harsh networking conditions and 

unexpected  shutdowns  [49]. The OS  is based on Yocto Linux, which provides a  small 

memory footprint and the possibility of easily porting it to more powerful devices across 

a variety of CPU architectures [50]. Its purpose  is to replicate cloud operating systems’ 

applications deployment in edge computing devices through the use of containers (cloud‐

native to edge‐native). For this purpose, Balena has developed its own container engine 

(balenaEngine [51]) based on Moby project technology. The engine was adapted through: 

(1) the removal of the “heavy” Docker features oriented to the cloud (Swarm, plugin sup‐

port, overlay networking drivers…) not suiting edge nodes, and also (2) through the ad‐

dition of particular  features  specifically  intended  for  less‐powerful  computing devices 

(support for the most common CPU architectures on single‐board computers, improve‐

ment of container image pulling to prevent network failures…). At this moment, the OS 

is supported by up to 20 device types. 

Figure 1. Container workflow block architecture.

crun is a low-level container runtime fully compliant with the OCI runtime specifi-
cation that is written in C, the same as LXC and the Linux kernel, unlike runC, which is
written in Go. Here, crun improves upon runC, as C can bring better performance than Go.
Furthermore, the crun binary is vastly smaller than the runC binary (300 KB versus 15 MB).
As a matter of fact, in some studies crun has proved to perform better in a test consisting of
running sequentially 100 containers. In the test, crun achieved the goal in 1.69 s, while runC
took 3.34 s [44].

Rust is a programming language that released its 1.0 version in 2020; since then it has
been established as a strong alternative to C and C++ due to remarkable improvements
in memory safety. Rust also betters Go in the implementation of system calls, which has
pushed its usage to develop youki, an OCI-compliant low-level container runtime that
shares with crun the reduction of binary size, making both suitable for environments
with constrained resources. In a similar test performed for crun, youki showed a better
performance compared to runC, while crun remained as the fastest one [45].

Focusing on the high-level runtimes, CRI-O appears to be one of the more interesting
solutions. It is a lightweight container runtime specifically designed for Kubernetes [46].
Its main advantage is the reduction of resource consumption in comparison with Docker’s
containerd, Moby or rkt (also analyzed), and its compatibility with any OCI-compliant
low-level runtime, an interesting feature that allows this runtime to run workloads not only
based on containers, a promising trend that is covered in Section 7 of this article. However,



Sensors 2023, 23, 2215 8 of 27

CRI-O has not been developed for use in low-resource embedded devices, requiring the
target device to be able to run Kubernetes. Therefore, there remains much research to do in
the field of high-level runtimes specifically designed for edge-tier devices.

5.2. Purpose-Built Operating Systems

In the same way that container runtimes are being reduced to target a wider range of
systems, some specific OSs have appeared that take advantage of reduced and portable
runtimes with the main goal of bringing container virtualization to increasingly constrained,
as well as embedded devices.

EVE-OS is an operating system originally developed by ZEDEDA and then donated
under an open-source license to the Linux Foundation that has included it inside its edge
research projects stack (LF-Edge) [47]. The main purpose for the development of this OS is
to provide edge computing devices with a universal, vendor-agnostic and standardized
architecture OS, following the same strategy that Google used in the smartphone market
when it delivered Android. EVE-OS has adopted well-known open-source projects such
as Xen Project, LinuxKit and Alpine Linux for its development. Currently, the remote
management of a fleet of devices running EVE-OS following a Zero Trust security model
is possible using the Adam controller, the reference implementation of an LF-Edge API-
compliant Controller. Furthermore, EVE-OS provides support for running containerized
workloads using containerd and for running Kubernetes distributions on top of it. EVE’s
contributors have recently announced an architecture proposal for integrating EVE with
Kubernetes at a control plane level [48]. The OS is designed for edge devices with reasonable
computing capabilities (minimum of 512 MB of RAM memory) and has been prepared
to be deployed in a wide range of CPU architectures. Moreover, EVE-OS has enough
functionalities to be deployed on bare metal and supports a wide range of workloads that
can be combined: Docker containers, Kubernetes clusters, and virtual machines.

BalenaOS is a host operating system with the purpose of running Docker containers
on embedded devices and has been made to survive harsh networking conditions and
unexpected shutdowns [49]. The OS is based on Yocto Linux, which provides a small
memory footprint and the possibility of easily porting it to more powerful devices across
a variety of CPU architectures [50]. Its purpose is to replicate cloud operating systems’
applications deployment in edge computing devices through the use of containers (cloud-
native to edge-native). For this purpose, Balena has developed its own container engine
(balenaEngine [51]) based on Moby project technology. The engine was adapted through:
(1) the removal of the “heavy” Docker features oriented to the cloud (Swarm, plugin
support, overlay networking drivers . . .) not suiting edge nodes, and also (2) through the
addition of particular features specifically intended for less-powerful computing devices
(support for the most common CPU architectures on single-board computers, improvement
of container image pulling to prevent network failures . . .). At this moment, the OS is
supported by up to 20 device types.

The Balena company offers as a service Balena Cloud, an automated platform to
manage infrastructure running BalenaOS and the workloads deployed in such devices,
which has been optimized for the edge. Last but not least, Balena has delivered this
management software in an open-source way for advanced users or infrastructure managers
that want to host this platform on their own premises without depending on Balena. By
using this platform, developers are able to deploy application containers, push updates,
check status, and view logs of the fleet of devices that have been previously registered.

According to the Pantacor company, Docker was built without considering embedded
devices, as it requires a high level of resource availability. In order to relax those require-
ments, they developed Pantavisor, a minimal low-level container runtime written in C that
shares commonalities with crun (getting closer to the Linux kernel) [52]. Pantavisor has
the purpose of shifting systems into a set of portable microservices (materialized in Linux
containers) instead of the traditional scheme of firmware plus applications. According to
Pantacor, Pantavisor “is meant to be a single-binary init system that boots directly from the



Sensors 2023, 23, 2215 9 of 27

kernel and becomes the first process to run, which then brings up the rest of the system
as a set of well-defined micro-containers” [53]. This container runtime is compatible with
ARM, MIPS, RISC-V, x86, and PowerPC CPU architectures, has a running footprint of just
around 350 KB and requires a minimum of only 64 MB of RAM.

In contrast with the traditional container-based architectures, Pantavisor does not
need a container runtime running on top of a complete OS. This is more suitable, then, for
embedded devices as they might not use all features of a host OS. Thus, by containerizing
the host OS layer, Pantavisor transforms it into a container, embodying the traits of updata-
bility, scalability, etc. In this architecture, Pantavisor acts as the minimal container runtime
manager of the system. Same as Balena, Pantacor provides a framework (PantacorHub)
to manage the devices running Pantavisor and the workloads deployed on them. As an
interesting note, it is offered either as an open-source tool for self-hosting or as a paid
service hosted by the company itself.

6. Container Orchestration Tools for the Edge

Although containers can be managed using their own interfaces, some tools have
appeared on top of container virtualization technologies to better manage and orchestrate
the deployment, allowing scheduling, scaling and control. Kubernetes (K8s) has become
the standard for container and microservices orchestration in the cloud, gaining advan-
tage over its competitors in recent years, such as Docker Swarm or Apache Mesos [54].
Consequently, as K8s is a highly customizable and open technology, most cloud providers
have delivered their own K8s distributions that are fully compliant with the standard in
order to optimize the integration of K8s with their systems. As reviewed in the previous
section, bringing containers to edge computing deployments is possible, and it is in fact
being implemented. Therefore, to transfer cloud-native traits provided by a standardized
container orchestration tool (K8s) to the edge, an equivalent technology—adapted to edge
computing—must be found. This is a relevant point, as Kubernetes itself does not seem
to be the proper solution. Although its deployment is feasible in some computing nodes
along the computing continuum [55,56] (those that can carry powerful workloads), it does
not suit the capacities of more resource-constrained equipment such as far-edge nodes or
leaf devices. In some works (e.g., [57,58]), this problem is introduced along with some
suggested alternatives. The scope of this section is precisely to analyze potential candidates
to become the K8s alternative for container orchestration in edge-computing deployments.

The solutions that have been discovered in state-of-the-art investigations are divided
into two main groups. The first group focuses on replicating Kubernetes in edge envi-
ronments by reducing the memory footprint of this orchestration platform to broaden
the range of equipment in which K8s can be fully functional. Here, different lightweight
versions of Kubernetes can co-live with a full K8s deployment in the cloud premises,
creating a sort of multi-cluster environment so that communication and orchestration in
the computing continuum is achieved. This approach is illustrated in Figure 2a. On the
other hand, Figure 2b depicts the second trend of creating new frameworks specifically
adapted to the edge that follow Kubernetes principles but are not direct simplifications
or reductions of that technology. These solutions adapt K8s to the specific characteristics
of the edge (unstable network connectivity, difficulty of managing heterogeneous and
low-resource equipment), maintaining all its benefits achieved in the cloud and not just
limiting themselves to creating another lightweight K8s distribution without reaching a
real edge-to-cloud synergy.

In the first group, K3s stands out. K3s is a lightweight, fully compliant Kubernetes
distribution developed by Rancher. It was created for running in constrained devices,
bearing a much lower memory footprint than other available K8s distributions [59]. K3s
modifies the K8s paradigm of master and worker nodes, converting them into server and
agent nodes. On another note, it offers three possible architectures: (1) a single server with
an embedded SQLite database and (2) high-availability servers using an embedded or (3) an
external database (SQL-based or etcd). This distribution is also optimized for several CPU



Sensors 2023, 23, 2215 10 of 27

architectures, such as ARM32, ARM64, and ARMv7. Henceforth, it becomes preferrable for
edge environments (which often use embedded systems as nodes, like Raspberry Pis or
NVIDIA Jetson boards). K3s’s minimum requirements are 256 MB of RAM for an agent node,
and 512 MB for a server node with some workloads running in the agent node. Rancher
also delivered an OS for edge nodes optimized for running K3s, maintaining only minimal
resources of the underlying OS: k3OS [60]. Its low memory footprint and the ability to run
on devices having diverse CPU architectures converts K3s into the most recommended K8s
distribution for building clusters on the edge following the first approach, as mentioned
above. It is also supported by the Cloud Native Computing Foundation. As an alternative
lightweight K8s distribution, Canonical released MicroK8s, which claims to have a minimal
memory usage of around 540 MB, but its recommended memory allocation is 4 GB, which
is considerably more than K3s [61]. MicroK8s is clearly less mature and proven than K3s,
and according to the authors’ experience, it is not yet ready to be considered a robust option
for pure edge-native deployments [62]. Nevertheless, MicroK8s has the advantage of being
an easily customizable distribution (via add-ons installed by simply executing its install
command). The available add-ons include some of the most widely used K8s modules, such
as CoreDNS, Helm or Istio, and the possibility of achieving K8s High Availability features
in a straightforward way. These features make MicroK8s one of the most interesting K8s
distributions for development and testing in slightly more powerful edge devices (especially
those with more than 1 GB of available RAM). These two edge-focused distributions have
been compared between them and to a complete K8s distribution installed using Kubespray
in [63], giving as a result, a clear performance improvement against a classic distribution
without showing significant performance differences between K3s and MicroK8s. Therefore,
there is not yet a de facto standard equivalent for K8s on the edge, but K3s holds the
advantage of more popularity, better robustness, and a lower memory footprint. It is
worth mentioning that these lightweight distributions are specifically designed to deploy
K8s-like clusters on the edge tier of the architecture, but they could perfectly work in
cloud clusters since these distributions are completely functional and certified by the CNCF.
However, a classic Kubernetes installation with K8s clusters is preferred for the cloud
premises. As a matter of fact, in order to realize the cloud-to-edge continuum with cloud
principles, both topological locations in the architecture should comprise K8s(-like) clusters,
materializing the so-called multi-cluster scenario. Multi-cluster techniques are commonly
used for enabling an edge-to-cloud synergy between clusters deployed along the edge-
to-cloud continuum, but this paradigm comes with a number of drawbacks. Due to the
fact of being designed for cloud environments, the inner mechanisms of multi-cluster
tools (e.g., communication, networking, high-availability, services discovery . . .) are not
currently adapted to the particularities of edge computing. Nonetheless, this is an active
research field, and there are some projects and initiatives investigating possible solutions.
An illustrative example can be found in the EU H2020 research project ASSIST-IoT, where
a K8s-based multi-cluster architecture is devised, in which clusters (K3s is recommended
for edge premises) are registered to a smart orchestrator. The orchestrator is in charge
of connecting the clusters leveraging Cilium Multi-cluster technology [64], selecting the
optimal placement of applications in the computing continuum based on AI policies, and
managing their lifecycle [65].

In the second group, the design of the deployment differs ostensibly. Some of the
devised new frameworks that adapt K8s principles to the edge are based on maintaining
the control plane of the system in the cloud, and moving only the needed workloads
and specific controllers to the edge, converting it into an autonomous node of the system
regarding the application plane. So minimized, essential information from the control plane
is cached on the edge or in intermediate nodes in order to be accessible in case of network
connectivity issues. Among the analyzed solutions of this type, KubeEdge stands out.
KubeEdge [66] is an open-source framework based on the Kubernetes architecture with the
main purpose of bringing the full functionalities of Kubernetes to the edge. This ongoing
deployment project is officially under the umbrella of the CNCF. The main underlying idea



Sensors 2023, 23, 2215 11 of 27

of this technology is to keep the entire control plane in the cloud, where the computing
resources are more plentiful, and leave the workloads (running the containers) or the
application plane to the edge in order to dedicate all the constrained computing resources
of this tier for this purpose. Moreover, the task of controlling the communication with
far edge devices without real computing capabilities (sensors, cameras, . . .) is assigned to
the K8s edge nodes. This together translates into a low memory footprint of the EdgeCore
installation (the edge part of KubeEdge) of only around 70 MB. The KubeEdge architecture is
divided into three layers:

• Cloud: for KubeEdge to work properly, there is a need to have a running K8s dis-
tribution in the cloud that will interact with a CloudCore instance (the cloud part of
KubeEdge) deployed on the same host. This cloud part of KubeEdge includes controllers
to synchronize the status of all edge nodes and leaf devices connected to the nodes.

• Edge: the components deployed inside the EdgeCore handle communication between
application containers, connected devices, and the cloud tier. The K8s pods (workloads
that are orchestrated) are deployed in this layer, but its deployment is controlled by the
cloud. The main difference as compared to a lightweight K8s distribution is that the
edge part of KubeEdge is not a K8s node itself, disposing of the K8s API and its control
plane. The inner components of EdgeCore are illustrated in Figure 3, taken from the
official site of KubeEdge. In addition, the edge node in a KubeEdge deployment includes
an MQTT broker to interact with device mappers (the available device protocol mapper
types are Bluetooth, Modbus, and OPC-UA, but a Go library is provided to allow
developers to create mappers for other protocols). The mappers are in charge of the
interaction and control of the leaf devices, as well as of their lifecycle management.

• Devices: leaf devices with almost no computing capabilities. They interact with the
edge layer through the mappers using various industrial protocols for data exchange.

Sensors 2023, 23, x FOR PEER REVIEW  10  of  27 
 

 

computing continuum is achieved. This approach is illustrated in Figure 2a. On the other 

hand, Figure 2b depicts the second trend of creating new frameworks specifically adapted 

to the edge that follow Kubernetes principles but are not direct simplifications or reduc‐

tions of that technology. These solutions adapt K8s to the specific characteristics of the 

edge (unstable network connectivity, difficulty of managing heterogeneous and low‐re‐

source equipment), maintaining all its benefits achieved in the cloud and not just limiting 

themselves to creating another lightweight K8s distribution without reaching a real edge‐

to‐cloud synergy. 

   
(a)  (b) 

Figure 2. Comparison of architectures for K8s deployment at the edge: (a) K8s multi‐cluster archi‐

tecture using lightweight K8s distributions for the edge clusters; (b) K8s adapted to the edge com‐

puting requirements general architecture. 

In the first group, K3s stands out. K3s is a lightweight, fully compliant Kubernetes 

distribution developed by Rancher.  It was  created  for  running  in  constrained devices, 

bearing a much lower memory footprint than other available K8s distributions [59]. K3s 

modifies the K8s paradigm of master and worker nodes, converting them into server and 

agent nodes. On another note, it offers three possible architectures: (1) a single server with 

an embedded SQLite database and (2) high‐availability servers using an embedded or (3) 

an external database (SQL‐based or etcd). This distribution is also optimized for several 

CPU architectures, such as ARM32, ARM64, and ARMv7. Henceforth, it becomes prefer‐

rable for edge environments (which often use embedded systems as nodes, like Raspberry 

Pis or NVIDIA Jetson boards). K3s’s minimum requirements are 256 MB of RAM for an 

agent node, and 512 MB for a server node with some workloads running in the agent node. 

Rancher also delivered an OS for edge nodes optimized for running K3s, maintaining only 

minimal resources of the underlying OS: k3OS [60]. Its low memory footprint and the abil‐

ity to run on devices having diverse CPU architectures converts K3s into the most recom‐

mended K8s distribution for building clusters on the edge following the first approach, as 

mentioned above. It is also supported by the Cloud Native Computing Foundation. As an 

alternative  lightweight K8s distribution, Canonical  released MicroK8s, which  claims  to 

have a minimal memory usage of around 540 MB, but its recommended memory alloca‐

tion is 4 GB, which is considerably more than K3s [61]. MicroK8s is clearly less mature and 

proven than K3s, and according to the authors’ experience, it is not yet ready to be con‐

sidered a robust option for pure edge‐native deployments [62]. Nevertheless, MicroK8s 

Figure 2. Comparison of architectures for K8s deployment at the edge: (a) K8s multi-cluster architec-
ture using lightweight K8s distributions for the edge clusters; (b) K8s adapted to the edge computing
requirements general architecture.



Sensors 2023, 23, 2215 12 of 27

Sensors 2023, 23, x FOR PEER REVIEW  12  of  27 
 

 

 Edge: the components deployed inside the EdgeCore handle communication between 

application containers, connected devices, and the cloud tier. The K8s pods (work‐

loads  that are orchestrated) are deployed  in  this  layer, but  its deployment  is con‐

trolled by the cloud. The main difference as compared to a lightweight K8s distribu‐

tion is that the edge part of KubeEdge is not a K8s node itself, disposing of the K8s 

API and its control plane. The inner components of EdgeCore are illustrated in Figure 

3, taken from the official site of KubeEdge. In addition, the edge node in a KubeEdge 

deployment includes an MQTT broker to interact with device mappers (the available 

device protocol mapper types are Bluetooth, Modbus, and OPC‐UA, but a Go library 

is provided to allow developers to create mappers for other protocols). The mappers 

are  in charge of  the  interaction and control of  the  leaf devices, as well as of  their 

lifecycle management. 

 Devices: leaf devices with almost no computing capabilities. They interact with the 

edge layer through the mappers using various industrial protocols for data exchange. 

 

Figure 3. KubeEdge architecture [66]. 

A remarkable feature of KubeEdge specifically intended for edge‐native deployments 

is the capability of coping with poor network connection between the cloud and the edge. 

Synchronization  is  handled  only  under  stable  network  conditions,  thus  achieving  a 

smooth management of the environment. This is a key issue for edge‐native applications 

that is not natively solved by K8s, as non‐cloud aspects were dismissed in its original de‐

sign. In addition, KubeEdge also provides the so‐called service mesh capabilities. The ser‐

vice mesh provides service‐to‐service communication and discovery for all services de‐

ployed on any layer of the continuum as long as those services are controlled by the same 

cloud master node. The service mesh  feature allows  for  transparent communication  in 

complex network environments and establishes high‐reliability scenarios foreseeing po‐

tential network issues through the distribution of network metadata across all the Edge‐

Mesh Agents and the integration of lightweight DNS servers. Its architecture is illustrated 

in Figure 4 (extracted from KubeEdge’s official site). Initially, KubeEdge’s EdgeMesh was a 

Figure 3. KubeEdge architecture [66].

A remarkable feature of KubeEdge specifically intended for edge-native deployments
is the capability of coping with poor network connection between the cloud and the edge.
Synchronization is handled only under stable network conditions, thus achieving a smooth
management of the environment. This is a key issue for edge-native applications that is
not natively solved by K8s, as non-cloud aspects were dismissed in its original design.
In addition, KubeEdge also provides the so-called service mesh capabilities. The service
mesh provides service-to-service communication and discovery for all services deployed on
any layer of the continuum as long as those services are controlled by the same cloud master
node. The service mesh feature allows for transparent communication in complex network
environments and establishes high-reliability scenarios foreseeing potential network issues
through the distribution of network metadata across all the EdgeMesh Agents and the
integration of lightweight DNS servers. Its architecture is illustrated in Figure 4 (extracted
from KubeEdge’s official site). Initially, KubeEdge’s EdgeMesh was a part of the EdgeCore
component (see Figure 3), but currently, it is delivered as a separate element that can be
installed in all edge nodes in order to enable its deployed services to join to the service
mesh [67].

KubeEdge has successfully gone through a series of scalability tests which demon-
strated that the framework was capable of orchestrating one million pods deployed across
100K edge nodes, accomplishing the K8s Service Level Indicators (SLI) and Service Level
Objectives (SLO). The solution managed the entire infrastructure as a true continuum rep-
resented by a single K8s cluster [68]. Similarly, an illustrative use case built using KubeEdge
is the deployment of more than 100K monitoring devices across the Hong Kong–Zhuhai–
Macao bridge, one of the longest bridges in the world. This work was presented during
the Kubernetes on Edge Day Europe 2021 by Huan Wei [69]. The edge tier of KubeEdge is
deployed in every device located along the bridge, and all those devices are managed
in a centralized manner by the cloud part deployed in a public cloud datacenter. Each
monitoring device gathers data from 14 different sensors (CO2, PM2.5, temperature, hu-
midity, . . .) through its specific mapper, and the data is processed locally using AI inference



Sensors 2023, 23, 2215 13 of 27

algorithms deployed on the edge nodes. Only selected data is finally uploaded to the cloud
through a reliable 5G connection, but in case of network issues, following the offloading
of the control plane strategy, a cache mechanism on the edge assures that no data is lost
in the process. Taking advantage of the edge-to-cloud synergy achieved in the KubeEdge
project, the same community of developers tried to use this technology to improve the
execution of Artificial Intelligence workloads in the edge-to-cloud continuum. For this
purpose, they have developed Sedna, a project focused on implementing collaborative
training and inference capabilities across the edge-cloud continuum [70].

Sensors 2023, 23, x FOR PEER REVIEW  13  of  27 
 

 

part of the EdgeCore component (see Figure 3), but currently, it is delivered as a separate 

element that can be installed in all edge nodes in order to enable its deployed services to 

join to the service mesh [67]. 

 

Figure 4. KubeEdge’s EdgeMesh architecture [67]. 

KubeEdge has successfully gone  through a series of scalability  tests which demon‐

strated that the framework was capable of orchestrating one million pods deployed across 

100K edge nodes, accomplishing the K8s Service Level Indicators (SLI) and Service Level 

Objectives (SLO). The solution managed the entire infrastructure as a true continuum rep‐

resented by a single K8s cluster [68]. Similarly, an illustrative use case built using KubeEdge 

is the deployment of more than 100K monitoring devices across the Hong Kong–Zhuhai–

Macao bridge, one of the longest bridges in the world. This work was presented during 

the Kubernetes on Edge Day Europe 2021 by Huan Wei [69]. The edge tier of KubeEdge  is 

deployed in every device located along the bridge, and all those devices are managed in 

a centralized manner by the cloud part deployed in a public cloud datacenter. Each mon‐

itoring device gathers data from 14 different sensors (CO2, PM2.5, temperature, humidity, 

…) through its specific mapper, and the data is processed locally using AI inference algo‐

rithms deployed on the edge nodes. Only selected data is finally uploaded to the cloud 

through a reliable 5G connection, but in case of network issues, following the offloading 

of the control plane strategy, a cache mechanism on the edge assures that no data is lost 

in the process. Taking advantage of the edge‐to‐cloud synergy achieved in the KubeEdge 

project, the same community of developers tried to use this technology to  improve the 

execution of Artificial  Intelligence workloads  in  the edge‐to‐cloud continuum. For  this 

purpose,  they have developed Sedna, a project  focused on  implementing collaborative 

training and inference capabilities across the edge‐cloud continuum [70]. 

Although KubeEdge is the main reference of the second category of approaches, it is 

not the only such framework in existence. The CNCF accepted as sandbox members two 

more projects: OpenYurt [71] (the first open‐source project carried out by the Chinese giant 

Alibaba)  and  SuperEdge  [72]  (whose  realization  is  led  by  Tencent  along  with  Intel, 

VMware, Huya, Cambricon, Captialonline, and Meituan). Both OpenYurt and SuperEdge 

are more focused on edge datacenters or relatively large edge devices due to their higher 

computational requirements as compared to KubeEdge. One of the most remarkable fea‐

tures of OpenYurt is the integration with the EdgeX Foundry for edge device management 

[73]. With regards to the required communication between the control plane (in the cloud) 

Figure 4. KubeEdge’s EdgeMesh architecture [67].

Although KubeEdge is the main reference of the second category of approaches, it is
not the only such framework in existence. The CNCF accepted as sandbox members two
more projects: OpenYurt [71] (the first open-source project carried out by the Chinese giant
Alibaba) and SuperEdge [72] (whose realization is led by Tencent along with Intel, VMware,
Huya, Cambricon, Captialonline, and Meituan). Both OpenYurt and SuperEdge are more
focused on edge datacenters or relatively large edge devices due to their higher compu-
tational requirements as compared to KubeEdge. One of the most remarkable features of
OpenYurt is the integration with the EdgeX Foundry for edge device management [73].
With regards to the required communication between the control plane (in the cloud) and
edge nodes, these two projects share the implementation of secure tunnels that overcome
the underlying connection obstacles caused by the interaction of several heterogeneous
networks to which edge nodes may belong. According to Alibaba, the principal difference
between OpenYurt and KubeEdge is that the former is less disruptive with the K8s architec-
ture, as it only enhances K8s through the usage of plugins and operators, while the latter
attempts to rewrite some components such as kubelet or kube-proxy [71]. Another interesting
technology for bringing container orchestration to the edge is Open Horizon (OH); it was
first developed by IBM and then donated to the Linux Foundation [74]. This technology
shares with KubeEdge the concept of moving the workloads to the edge tier of the archi-
tecture but maintaining the control plane (workload and edge devices management) in
the cloud or in a centralized environment. Furthermore, OH promises to manage up to
10,000 edge devices simultaneously from a single Management Hub instance. Open Horizon
architecture is divided into two main components: (1) Management Hub: located at the
centralized cloud in which a K8s distribution must be running. It oversees the control
plane regarding the deployments and the edge nodes and devices. (2) Edge Agent: this



Sensors 2023, 23, 2215 14 of 27

component is divided into two subtypes depending on the workload type that will be run
by the node. The Edge Device Agent is targeted for resource-constrained devices which are
capable of running containerized workloads through a container runtime, while the Edge
Cluster Agent is appropriate for equipment in which a K8s distribution can be installed.
Open Horizon is also gaining popularity among the edge-native community, as the EVE-OS
developers (introduced in Section 5—both are official projects of the Linux Foundation)
are planning to support OH-based workloads (K8s pods are natively supported). Baetyl
is another project which shares some key concepts with KubeEdge and Open Horizon since
its architecture is split into: (1) the Cloud Management Suite and (2) the Edge Computing
Framework [75]. However, Baetyl only supports edge nodes with a minimum of 1 GB of
RAM that are capable of running a K8s distribution (K3s is recommended for resource-
constrained environments), not being yet capable of orchestrating container workloads by
itself. This tool is also included in stage 1 of Linux Foundation Edge, and thus it also seems
to be promising, although, at the moment of this review, it is in a preliminary stage with a
clear lack of documentation.

At the beginning of this section, it was explained that there are two major types of ap-
proaches for materializing container orchestration at the edge, both following the principles
and implementation of the cloud-native reference in the cloud: Kubernetes. However, there
also exist a few other frameworks that separate from the K8s standard but that also address
such orchestration. A representative example of these alternatives is ioFog, developed by
the Eclipse Foundation. This framework presents some similarities with Kubernetes, such
as the use of the iofogctl command and the specification of microservices using YAML files.
It also has commonalities with other edge-specific technologies mentioned in this section,
such as having an architecture based on deploying a controller in the cloud in charge
of the agents running in the edge devices, which in this case is named Edge Compute
Network [76].

After reviewing all these technologies, Table 1 has been created to illustrate the differ-
ences among the most relevant container orchestration tools for the edge, paying attention
to selected key aspects.

To conclude this section, the authors deem it interesting to refer to the Akri framework,
which is also under the CNCF umbrella, as a Sandbox project. Akri focuses on the develop-
ment of a Kubernetes Resource Interface that allows exposing a range of heterogeneous
leaf devices located at the lowest tier of the continuum as resources in a K8s cluster, for
instance, IP cameras or USB devices connected to the same machine that is a K8s node [77].
This is not a K8s lightweight distribution, nor does it aim at orchestrating containers at the
edge level of the architecture. It is only a component that complements an edge instance by
allowing the very end devices to be recognized from high-level management frameworks,
providing a layer of abstraction for the devices in a similar way the CNI does for the
network. This is the main difference between Akri and the technologies presented above
(KubeEdge, Open Horizon, . . .), and the reason why it is not included in Table 1. However, it
is relevant to be considered from the viewpoint of a deployment review of the cloud-native
approach on the edge. Technically, leaf devices interact with the Akri Agent service running
on the nearest K8s node of the cluster, and thus Akri extends the K8s functionalities but
does not adapt it to edge-native scenarios in contrast to, e.g., KubeEdge. Akri relies on a
set of device Discovery Handlers based on management and communication protocols for
industrial devices such as ONVIF, udev and OPC UA, as well as the possibility of extending
this set with custom handlers [78]. When a new device is discovered by the handlers, Akri
creates a K8s service to monitor its state and provide high availability in case a node loses
network connection or breaks down.



Sensors 2023, 23, 2215 15 of 27

Table 1. Comparison of technologies for container orchestration at the edge.

Technology K8s Based Edge Service Mesh Edge Node
Autonomy

Edge Supported CPU
Architectures Production-Stage Deployments Responsible

and Status Popularity

KubeEdge Yes Yes, completely decentralized
with EdgeMesh Yes x86_64, ARMv8, ARMv7

Hong Kong–Zhuhai–Macao bridge
China Mobile’s industrial internet big

data center

CNCF
Incubating

5.5k stars
1.5k forks

OpenYurt Yes Yes, using Raven Yes x86_64, ARMv8, ARMv7
Hema Fresh’s customer goods store

AI project Video cloud migration
in transportation

CNCF
Sandbox

1.4k stars
298 forks

SuperEdge Yes Yes, through ServiceGroups Yes x86_64, ARMv8 Not documented CNCF
Sandbox

881 stars
190 forks

Open Horizon Yes No No x86_64, ARMv8,
ARMv7, ppc64le

IBM Edge
Application Manager

LF Edge
Stage 2

87 stars
62 forks

Baetyl Yes No Temporary x86_64, i386,
ARMv8, ARMv7l Not documented LF Edge

Stage 1
1.8k stars
318 forks

Project Flotta Yes No No x86_64, ARMv8 Not documented Red Hat 18 stars
21 forks

Eclipse ioFog No Yes Yes x86_64, ARMv8, ARMv7 Not documented Eclipse
Foundation

270 stars
34 forks



Sensors 2023, 23, 2215 16 of 27

7. Future Directions: The Horizon beyond Containers-Only

Section 3 has concluded that nowadays, cloud-native implementations revolve around
orchestrating workloads in the form of containers, taking advantage of container virtual-
ization techniques. Undeniably, this is the current de facto standard. However, containers
are far from being established as the final and definitive approach in a technological field
where everything is in continuous change. In fact, it is already well-known that contain-
ers are not perfect since they present some weaknesses (e.g., in security [79]) and have a
reduced capacity for improvement over their current state. Regarding the utilization of
containers in edge computing scenarios, although they are widely adopted at the moment
(see Sections 5 and 6), they still have a downside in their required technological stack and
in the large working memory footprint and container image sizes that they have. Therefore,
other virtualization techniques that could compete with containers have appeared, becom-
ing current trends in the deployment research field. According to works that compare
containers, VMs and Unikernels [80], new paradigms are arising (see Figure 5). However,
this does not necessarily mean that these technologies will substitute containers in the short
term, but they can simply be seen as a powerful complement for containers, and either one
or the other may be used in specific use cases and, most likely, together.

Sensors 2023, 23, x FOR PEER REVIEW  18  of  27 
 

 

     
(a)  (b)  (c) 

Figure 5. Comparison of the architectures of different virtualization techniques: (a) MicroVMs light‐

weight VM; (b) Containers; (c) Unikernels. 

One step ahead of MicroVMs and Unikernels is the most recent and most promising 

trend  in workload virtualization: WebAssembly  (Wasm). Wasm  is “a binary  instruction 

format for stack‐based virtual machines” developed as an open standard by the World Wide 

Web Consortium (W3C), that seeks to establish itself as a strong alternative to containers. 

Wasm allows software to be written in several high‐level languages (C++, Go, Kotlin, …) 

to be compiled and executed with near‐native performance in web applications that are 

designed to run in web browsers [94,95]. Still, some works have been conducted following 

the SPEC (Standard Performance Evaluation Corporation) benchmarks and have shown 

an underperformance of Wasm as compared with native code by a factor of 1.45 for Fire‐

fox and 1.55 for Chrome [96]. This technology was first designed to enhance the perfor‐

mance of demanding applications that perform poorly when written in JavaScript instead 

of languages specifically tailored for its working purpose. At a high level, the functioning 

of Wasm is simple: native code functions are compiled into Wasm modules that then are 

loaded and used by a web application (in JavaScript code) in a similar way to how ES6 

modules are managed. Related to these pre‐built modules, the work of [97] has researched 

the possibility of using them as a newer obfuscation technique for inserting malware in‐

side web applications, making it harder to detect by malware analyzers. This drawback 

can be seen as an example of the new risks that groundbreaking technologies always bring 

with them. 

In recent times, developers have attempted to move Wasm outside web browsers, or, 

in other words,  from  the  (web) client side  to  the server side  for a standalone mode of 

operation. Wasm binaries’ tiny size, low memory footprint, great isolation, fast booting 

(up to 100 times faster than containers), and response times make Wasm perfect for run‐

ning workloads in edge and IoT devices. Adopting Wasm in edge environments (where 

resource‐constrained nodes  struggle  to  run  container workloads)  could  lead  to  an  in‐

creased number of simultaneously running services as compared with the current con‐

tainer throughput in the same environment [98,99]. Digging deeper into Wasm function‐

ing, it is worth noting that when a Wasm binary is executed in the web browser, it uses 

the web APIs provided by the browser to interact with the required external components 

through appropriate system calls. However, when engineers started trying to run Wasm 

modules outside the web framework, an equivalent of such an API did not exist. It was 

required to establish such a “bridge” software to enable the interaction between a Wasm 

module and the host operating system calls. Thus, efforts were focused on delivering a 

standard set of APIs prepared to facilitate standalone Wasm module deployment. This 

was done while upholding two main Wasm principles: portability, which means being 

Figure 5. Comparison of the architectures of different virtualization techniques: (a) MicroVMs
lightweight VM; (b) Containers; (c) Unikernels.

In Section 3, a short review of the advantages of containers versus VMs is presented.
While those arguments do hold true, the isolation capabilities of the latter (due to not
sharing the same kernel among virtualized instances but using a hypervisor) are interesting
from an edge computing perspective. Separating the instances at a lower level may allow
for better security of user workloads, as, in contrast with containers, there would not be
multi-tenant untrusted environments. Realizing the previous findings, a new approach
for workload virtualization has arisen, keeping the isolation trait while skipping some
inconveniences of the VMs. This is reached by reducing the size and requirements of
VMs, achieving the so-called microVMs or lightweight VMs that intend to be even lighter
and faster than containers. However, no clear results to date would demonstrate this
reliably. Some works [81] have compared the performance of container (runC) and microVM
(Kata Container) runtimes, showing better performance of the former. It was argued that
this underperformance might be caused by the longer boot times of microVMs (3.7 s
on average), as compared to containers (0.633 s on average). The microVM technology
utilized for the comparison (Kata Containers) is an OpenStack tool whose main goal is to
run lighter VMs instead of containers while remaining compliant with the OCI runtime



Sensors 2023, 23, 2215 17 of 27

and image specifications (see Section 5). By sticking to OCI, Kata allows Docker images
previously built from Dockerfiles to be deployed as microVMs (Kata containers) [82]. This
underperformance has been addressed through the development of a lighter container
runtime oriented to running microVM-based workloads, but also OCI-compliant: RunD,
especially focused on solving the bottleneck in serverless function deployments. RunD has
been adopted by Alibaba as its serverless container runtime, serving more than 1 million
functions and almost 4 billion invocations daily. Furthermore, RunD has been able to start
200 lightweight VMs in a second and to successfully deploy 2500 of them in a machine with
384 GB of memory [83].

Another approach to replace or complement containers with microVMs are Uniker-
nels. According to [84], “Unikernels are single-purpose appliances that are compile-time
specialized into standalone kernels and sealed against modification when deployed to a
cloud platform”. The main idea beyond Unikernels is to use only the strictly necessary
part of the user and kernel space of an operating system to obtain a customized OS that
will be run by a type 1 hypervisor. Such customized OS is achieved through the usage
of a library operating system (library OS or libOS), removing the need for a whole guest
OS [85]. This is translated into a reduction of image size and their booting time, as well
as their footprint and possible attack surface. However, this virtualization technology has
many disadvantages, the most prominent being the lack of standardization as compared
with containers, in addition to the need of a complete library operating system rebuild for
every new application with any minimal changes, followed by the limitation of debugging
and monitoring capabilities [86]. Unikernel applications are also language-specific (there
are Unikernel development systems only for a few languages), being also a considerable
limitation for developers. As an example, MirageOS is a library OS that builds Unikernels
using the OCaml language together with libraries that provide networking, storage and
concurrency support [87]. Nabla containers is an IBM research project focused on building
a platform to handle Unikernel workloads (for instance, workloads built using MirageOS)
through the usage of its own low-level container runtime runnc [88,89]. While runnc is
OCI-compliant, Nabla’s image specification is not, thus, software packaged with container
image specifications other than Nabla’s one is not supported by this technology. In addition,
unfortunately, the Nabla project seems to be in a frozen state. Notwithstanding, newer
approaches to Unikernels have emerged with the aim of making this paradigm a reasonable
option with better integration in the cloud-native virtualization environment. Unikraft
is a Linux-based “automated system for building Unikernels” under the umbrella of the
Linux Foundation (inside its Xen Project) and partially funded by the EU H2020 project
UNICORE [90]. While other similar initiatives exist, such as Lupine, Unikraft presents an
improved performance in comparison to its peers and other virtualization technologies,
such as Docker (regarding boot time, image size, and memory consumption). Unikraft
leverages an OCI-compliant runtime (runu) along with libvirt (a toolkit for interacting with
the hypervisor) for running Unikernels. The novelty is that runu natively supports the
execution of workloads previously packaged following the OCI Image Specification (unlike
Nabla), enabling Unikraft-built Unikernels’ interaction with containers and cloud-native
platforms like K8s [91,92]. However, this promising Unikernel approach is still in a pre-
liminary stage and is yet to cope with some challenges regarding, for instance: (1) the
improvement of Unikernel applications packaging as OCI images and (2) the distribution of
those images in OCI registries (e.g., the support of images for different CPU architectures).
Furthermore, the source code of runu has not been delivered yet due to its instability and it
being in a continuous improvement stage [93].

One step ahead of MicroVMs and Unikernels is the most recent and most promising
trend in workload virtualization: WebAssembly (Wasm). Wasm is “a binary instruction
format for stack-based virtual machines” developed as an open standard by the World Wide
Web Consortium (W3C), that seeks to establish itself as a strong alternative to containers.
Wasm allows software to be written in several high-level languages (C++, Go, Kotlin, . . .)
to be compiled and executed with near-native performance in web applications that are



Sensors 2023, 23, 2215 18 of 27

designed to run in web browsers [94,95]. Still, some works have been conducted following
the SPEC (Standard Performance Evaluation Corporation) benchmarks and have shown an
underperformance of Wasm as compared with native code by a factor of 1.45 for Firefox
and 1.55 for Chrome [96]. This technology was first designed to enhance the performance
of demanding applications that perform poorly when written in JavaScript instead of
languages specifically tailored for its working purpose. At a high level, the functioning
of Wasm is simple: native code functions are compiled into Wasm modules that then are
loaded and used by a web application (in JavaScript code) in a similar way to how ES6
modules are managed. Related to these pre-built modules, the work of [97] has researched
the possibility of using them as a newer obfuscation technique for inserting malware inside
web applications, making it harder to detect by malware analyzers. This drawback can
be seen as an example of the new risks that groundbreaking technologies always bring
with them.

In recent times, developers have attempted to move Wasm outside web browsers,
or, in other words, from the (web) client side to the server side for a standalone mode of
operation. Wasm binaries’ tiny size, low memory footprint, great isolation, fast booting
(up to 100 times faster than containers), and response times make Wasm perfect for running
workloads in edge and IoT devices. Adopting Wasm in edge environments (where resource-
constrained nodes struggle to run container workloads) could lead to an increased number
of simultaneously running services as compared with the current container throughput in
the same environment [98,99]. Digging deeper into Wasm functioning, it is worth noting
that when a Wasm binary is executed in the web browser, it uses the web APIs provided by
the browser to interact with the required external components through appropriate system
calls. However, when engineers started trying to run Wasm modules outside the web
framework, an equivalent of such an API did not exist. It was required to establish such a
“bridge” software to enable the interaction between a Wasm module and the host operating
system calls. Thus, efforts were focused on delivering a standard set of APIs prepared to
facilitate standalone Wasm module deployment. This was done while upholding two main
Wasm principles: portability, which means being able to run the same code across different
systems, and security. This research led to the creation of the WebAssembly System Interface
(WASI), a “modular system interface for WebAssembly” with the main purpose of enabling
the execution of Wasm on the server side through the creation and standardization of
APIs. Realizing the above-mentioned security concerns, WASI was carefully designed to
minimize the attack surface and prevent malicious Wasm modules from compromising
the host system. Furthermore, WASI was designed to be independent of the used Wasm
runtime (the component in charge of running Wasm modules or applications, it can be
feasibly compared with the low-level container runtimes in terms of functionalities as both
are the components that actually run the workloads) [100,101]. Wasm modules make WASI
calls to a Wasm runtime that are then translated into the appropriate system calls to finally
interact with the OS kernel [102], as depicted in Figure 6. Nowadays, WASI is still in the
process of being standardized, promoted by a subgroup of the WebAssembly Community
Group of W3C through a set of standardization proposals (HTTP, filesystem, machine
learning, . . .). The proposals are grouped into 5 phases of development following the Phase
Process of the aforementioned community group. Currently, the most mature proposals
are in phase 2, which can be seen as another indicator of this technology’s novelty [103].

Sensors 2023, 23, x FOR PEER REVIEW  19  of  27 
 

 

able to run the same code across different systems, and security. This research led to the 

creation of the WebAssembly System Interface (WASI), a “modular system interface for 

WebAssembly” with the main purpose of enabling the execution of Wasm on the server 

side  through  the creation and standardization of APIs. Realizing  the above‐mentioned 

security concerns, WASI was carefully designed to minimize the attack surface and pre‐

vent malicious Wasm modules from compromising the host system. Furthermore, WASI 

was designed to be independent of the used Wasm runtime (the component in charge of 

running Wasm modules or applications, it can be feasibly compared with the low‐level 

container runtimes in terms of functionalities as both are the components that actually run 

the workloads) [100,101]. Wasm modules make WASI calls to a Wasm runtime that are 

then  translated  into  the appropriate  system calls  to  finally  interact with  the OS kernel 

[102], as depicted in Figure 6. Nowadays, WASI is still in the process of being standard‐

ized, promoted by a subgroup of the WebAssembly Community Group of W3C through 

a set of standardization proposals (HTTP, filesystem, machine learning, …). The proposals 

are grouped into 5 phases of development following the Phase Process of the aforemen‐

tioned community group. Currently, the most mature proposals are in phase 2, which can 

be seen as another indicator of this technology’s novelty [103]. 

 

Figure 6. Architecture for running WebAssembly workloads on the server side. 

Naturally, WebAssembly runtimes are an essential element of the Wasm stack, since, 

at  the end of  the day,  the execution of Wasm modules relies on  them.  In recent years, 

several Wasm runtimes have been developed  that move  the execution of Wasm work‐

loads outside the browser. Interestingly, most of them have realized the potential in the 

edge‐cloud continuum field, as they are specifically adapted to work in edge computing 

scenarios. These runtimes differ  from each other  in  the supported WASI specifications 

and  in  the providence of programming SDK or  implementation APIs  to  let developers 

load Wasm modules  in  the source code of  their applications, among other aspects. An 

interesting,  identified feature  is  that some runtimes (Wasmer  [104], Wasmtime  [105] and 

WasmEdge [106]) are natively supported in the low‐level container runtime crun to achieve 

integration with containerized workloads, a trend that will be explained in detail  later. 

For a better understanding of the differences among the existing runtimes, and with the 

final purpose of becoming a helpful resource for developers, Table 2 has been created, 

which compares carefully selected Wasm runtimes. 

Apart from the industry, some works related to Wasm runtimes are being conducted 

in the research world. In [102] is presented Wasmachine, an OS that tries to move the WASI 

specification to its kernel written in Rust (the benefits of Rust compared to C have already 

been discussed in Section 5), so it can avoid the overload of the system calls introduced 

by the Wasm runtime in order to achieve a faster performance compared to native code 

directly executed on Linux. The results presented in this paper show an increase in the 

execution speed of 21%. On another note, Twine  is a Wasm runtime resulting from the 

interaction between the industry and the H2020 research project VEDLIoT due to the fact 

that it is based on WAMR (see Table 2) but more focused on embedded and trusted envi‐

ronments [107]. 

Figure 6. Architecture for running WebAssembly workloads on the server side.



Sensors 2023, 23, 2215 19 of 27

Naturally, WebAssembly runtimes are an essential element of the Wasm stack, since, at
the end of the day, the execution of Wasm modules relies on them. In recent years, several
Wasm runtimes have been developed that move the execution of Wasm workloads outside
the browser. Interestingly, most of them have realized the potential in the edge-cloud
continuum field, as they are specifically adapted to work in edge computing scenarios.
These runtimes differ from each other in the supported WASI specifications and in the
providence of programming SDK or implementation APIs to let developers load Wasm
modules in the source code of their applications, among other aspects. An interesting,
identified feature is that some runtimes (Wasmer [104], Wasmtime [105] and WasmEdge [106])
are natively supported in the low-level container runtime crun to achieve integration
with containerized workloads, a trend that will be explained in detail later. For a better
understanding of the differences among the existing runtimes, and with the final purpose
of becoming a helpful resource for developers, Table 2 has been created, which compares
carefully selected Wasm runtimes.

Apart from the industry, some works related to Wasm runtimes are being conducted
in the research world. In [102] is presented Wasmachine, an OS that tries to move the WASI
specification to its kernel written in Rust (the benefits of Rust compared to C have already
been discussed in Section 5), so it can avoid the overload of the system calls introduced
by the Wasm runtime in order to achieve a faster performance compared to native code
directly executed on Linux. The results presented in this paper show an increase in the
execution speed of 21%. On another note, Twine is a Wasm runtime resulting from the
interaction between the industry and the H2020 research project VEDLIoT due to the
fact that it is based on WAMR (see Table 2) but more focused on embedded and trusted
environments [107].

The hype about this technology is such that Docker cofounder Solomon Hykes stated
in 2019, that if Wasm along with WASI had existed in 2008, they would not have needed
to create Docker [108]. However, this does not mean that these two types of workloads
are incompatible or that one technology is expected to replace the other in the future; both
can be combined, and the choice of the working technology should be made depending
on the final business use case. For instance, containers are a better fit for strong filesystem
control and intensive I/O operations, while Wasm is better for setting up simple web
servers [109]. In addition, Docker has recently announced the compatibility of the Docker
Engine with Wasm through the usage of WasmEdge as its Wasm runtime for running such
specific workloads. However, to do so, the developers must ensure that the Wasm modules
are packaged as OCI-compliant images [110], so that the high-level runtime of the Docker
Engine (containerd) can properly cope with the workload through the specifically created
containerd-wasm-shim. Native compatibility is completed as this shim interacts with the
WasmEdge Wasm runtime to run a Wasm application in the same way as it would interact
with the low-level container runtime runC to run a container (as illustrated in Figure 7).



Sensors 2023, 23, 2215 20 of 27

Table 2. Comparison of Wasm runtimes.

Technology Language
Written WASI Supported Languages for

Workload Embedding
Supported CPU

Architectures
Production-Stage Runtime

Deployments Responsible Popularity

Wasmer Rust Yes

C, C++, C#, Crystal, D, Dart,
Go, Java, JavaScript, PHP,
Postgres, Python, R, Ruby,

Rust, OCaml

x86_64, ARMv8 crun, Fluence Labs Wasmer Inc. 14.1k stars
607 forks

Wasmtime Rust Yes Bash, C, C++, Go, .NET,
Python, Ruby, Rust x86_64, ARMv8

crun, Shopify, Fastly, DFINITY,
InfinityOn, Fermyon, Mebark,

SingleStore, Microsoft, wasmCloud

Bytecode
Alliance

11.1k stars
882 forks

Wasm3 C Yes
Arduino, C, C++, Go,

JavaScript, Perl, Python,
.NET, Nim, Swift, Zig

x86_64, x86_32, ARMv8,
ARMv7, RISC-V,

XTENSA, MIPS, ARC
Shareup, wasmCloud CNCF

Sandbox
5.7k stars
367 forks

WasmEdge C++
Yes: Sockets, Crypto,

Machine learning
(wasi-nn), proxy-wasm

C, Go, Node.js, Python, Rust x86_64, ARMv8 crun, Docker Engine, Suborbital
scheduler and engine

CNCF
Sandbox

4.9k stars
446 forks

WAMR C Yes C, C++, Go, Python
x86_64, x86_32, ARMv8,

ARMv7, RISC-V,
XTENSA, MIPS, ARC

Not documented Bytecode
Alliance

3.3k stars
429 forks

wazero Go Yes Go x86_64, ARMv8,
RISC-V64 interpreter Not documented Tetrate Labs 2.4k stars

129 forks

WAVM C/C++ Yes C, C++ x86_64 Not documented CNCF
Sandbox

2.3k stars
214 forks

wasmi Rust Yes Rust Not documented Substrate blockchain Parity
Technologies

1k stars
198 forks



Sensors 2023, 23, 2215 21 of 27

Sensors 2023, 23, x FOR PEER REVIEW  21  of  27 
 

 

The hype about this technology is such that Docker cofounder Solomon Hykes stated 

in 2019, that if Wasm along with WASI had existed in 2008, they would not have needed 

to create Docker [108]. However, this does not mean that these two types of workloads 

are incompatible or that one technology is expected to replace the other in the future; both 

can be combined, and the choice of the working technology should be made depending 

on the final business use case. For instance, containers are a better fit for strong filesystem 

control and intensive I/O operations, while Wasm is better for setting up simple web serv‐

ers [109]. In addition, Docker has recently announced the compatibility of the Docker En‐

gine with Wasm through the usage of WasmEdge as its Wasm runtime for running such 

specific workloads. However, to do so, the developers must ensure that the Wasm mod‐

ules are packaged as OCI‐compliant  images [110], so that the high‐level runtime of the 

Docker Engine (containerd) can properly cope with the workload through the specifically 

created containerd‐wasm‐shim. Native compatibility is completed as this shim interacts with 

the WasmEdge Wasm runtime  to run a Wasm application  in  the same way as  it would 

interact with  the  low‐level container  runtime  runC  to  run a container  (as  illustrated  in 

Figure 7). 

 

Figure 7. Docker Engine architecture for running Wasm workloads [110]. 

The coexistence of different types of workloads puts into the scene the requirement 

of a common orchestration mechanism. In Section 6, multiple technologies have been re‐

viewed to prove that K8s is being increasingly adapted and successfully used as a con‐

tainer orchestration framework for the edge. The last part of this review article focuses on 

analyzing whether this powerful framework (K8s) could also be used to orchestrate other 

types of workloads on  the edge. Observing  the general architecture of Kubernetes,  the 

kubelet component  interacts with a high‐level container runtime (also referred to as the 

CRI runtime or CRI implementation in K8s) that implements the Kubernetes Container 

Runtime Interface (CRI) acting as a gRPC API client for launching pods and their contain‐

ers. Looking deeper into K8s functioning, a resource named Runtime Class is the key un‐

derlying component. This class is “a feature for selecting the container runtime configu‐

ration” [111], which can be  leveraged  for mapping different workload types with  their 

corresponding low‐level runtime (same architectural spot as the low‐level runtime in Fig‐

ure 1). Therefore,  the  installed high‐level container runtime  in  the cluster,  for  instance, 

Figure 7. Docker Engine architecture for running Wasm workloads [110].

The coexistence of different types of workloads puts into the scene the requirement
of a common orchestration mechanism. In Section 6, multiple technologies have been
reviewed to prove that K8s is being increasingly adapted and successfully used as a
container orchestration framework for the edge. The last part of this review article focuses
on analyzing whether this powerful framework (K8s) could also be used to orchestrate
other types of workloads on the edge. Observing the general architecture of Kubernetes,
the kubelet component interacts with a high-level container runtime (also referred to as the
CRI runtime or CRI implementation in K8s) that implements the Kubernetes Container
Runtime Interface (CRI) acting as a gRPC API client for launching pods and their containers.
Looking deeper into K8s functioning, a resource named Runtime Class is the key underlying
component. This class is “a feature for selecting the container runtime configuration” [111],
which can be leveraged for mapping different workload types with their corresponding
low-level runtime (same architectural spot as the low-level runtime in Figure 1). Therefore,
the installed high-level container runtime in the cluster, for instance, CRI-O or containerd
(see Section 5), will be able to send a request to the proper low-level runtime in order
to actually run the requested workload, as shown in Figure 8. The only requirement
is packaging the application into an OCI-compliant image previously stored in an OCI-
compliant image registry (same pre-condition as for the Docker engine).

Paying particular attention to Wasm module workloads in the K8s environment,
Krustlet is an experimental project based on the rewrite of the kubelet component using
the Rust language to run natively Wasm-based workloads. Krustlet relies on the use
of K8s tolerations for scheduling such workloads to be deployed on K8s nodes, where
the Wasmtime Wasm runtime had been previously installed [112]. As a final note, the
relationship between K8s and Wasm modules is not limited to the deployment of Wasm
applications instead of containers. Innovative studies like the one presented in [113]
propose to reduce the K8s control plane overhead, one of the principal reasons for K8s’s
heavy size, through the deployment of Wasm-based K8s operators (modules that extend
K8s API features) on demand. In that work, the replacement of traditional container-based
controllers with Wasm-based ones showed a reduced memory consumption of about 64%.



Sensors 2023, 23, 2215 22 of 27

Sensors 2023, 23, x FOR PEER REVIEW  22  of  27 
 

 

CRI‐O or containerd (see Section 5), will be able to send a request to the proper low‐level 

runtime in order to actually run the requested workload, as shown in Figure 8. The only 

requirement is packaging the application into an OCI‐compliant image previously stored 

in an OCI‐compliant image registry (same pre‐condition as for the Docker engine). 

 

Figure 8. Running different types of workloads in K8s. 

Paying particular  attention  to Wasm module workloads  in  the K8s  environment, 

Krustlet is an experimental project based on the rewrite of the kubelet component using the 

Rust language to run natively Wasm‐based workloads. Krustlet relies on the use of K8s 

tolerations  for  scheduling  such workloads  to  be  deployed  on  K8s  nodes, where  the 

Wasmtime Wasm runtime had been previously installed [112]. As a final note, the relation‐

ship between K8s and Wasm modules is not limited to the deployment of Wasm applica‐

tions instead of containers. Innovative studies like the one presented in [113] propose to 

reduce the K8s control plane overhead, one of the principal reasons for K8s’s heavy size, 

through the deployment of Wasm‐based K8s operators (modules that extend K8s API fea‐

tures) on demand. In that work, the replacement of traditional container‐based controllers 

with Wasm‐based ones showed a reduced memory consumption of about 64%. 

8. Conclusions 

The  cloud  computing paradigm has proven a great  success  in  the  last  few years, 

while, nowadays, edge computing challenges to replicate the advantageous traits posed 

by cloud (such as virtualization of workloads), moving them closer to the local action. In 

this regard, several initiatives have been analyzed, focusing on those related to the con‐

tainer virtualization mechanism. Among the most relevant findings, novel runtimes exist 

that evolve Docker Engine (current de facto standard), such as crun and CRI‐O, as well as 

specific operating systems such as EVE‐OS, BalenaOS or Pantacor. 

The most relevant challenge lies in the orchestration of such workloads considering 

the heterogeneity of computing equipment present in edge scenarios. A strong research 

line is the creation of lightweight versions of Kubernetes, which is a very popular tool in 

the cloud. Solutions to the like of K3s or MicroK8s are the current blueprints for this ap‐

proach that can be used in combination and need a centralized Kubernetes deployment 

resulting  in multi‐clusters. Nonetheless,  another  approach  is  also  gaining  popularity 

which advocates for adapting the K8s architecture to the edge requirements instead of just 

reducing K8s components’ size and footprint. The most promising here is KubeEdge, which 

Figure 8. Running different types of workloads in K8s.

8. Conclusions

The cloud computing paradigm has proven a great success in the last few years,
while, nowadays, edge computing challenges to replicate the advantageous traits posed by
cloud (such as virtualization of workloads), moving them closer to the local action. In this
regard, several initiatives have been analyzed, focusing on those related to the container
virtualization mechanism. Among the most relevant findings, novel runtimes exist that
evolve Docker Engine (current de facto standard), such as crun and CRI-O, as well as
specific operating systems such as EVE-OS, BalenaOS or Pantacor.

The most relevant challenge lies in the orchestration of such workloads considering
the heterogeneity of computing equipment present in edge scenarios. A strong research
line is the creation of lightweight versions of Kubernetes, which is a very popular tool in the
cloud. Solutions to the like of K3s or MicroK8s are the current blueprints for this approach
that can be used in combination and need a centralized Kubernetes deployment resulting in
multi-clusters. Nonetheless, another approach is also gaining popularity which advocates
for adapting the K8s architecture to the edge requirements instead of just reducing K8s
components’ size and footprint. The most promising here is KubeEdge, which already
presents several successful large-scale trials and has been officially accepted under the
umbrella of the CNCF as an Incubating project.

Nonetheless, containers do present certain disadvantages that are even worsened in
edge environments, such as large image size, non-robust security, and low isolation in the
case of multi-tenant applications, among others. Because of this, novel ways of virtualizing
workloads have emerged that are of special relevance for achieving edge-native principles.
The most important trend for the future of cloud-native workload execution at the edge
is the use of WebAssembly modules. Wasm’s benefits perfectly suit edge computing
needs, and several initiatives and open projects have been reviewed in this contribution
concluding that this approach is envisioned as the frontrunner for the next generation of
edge-cloud continuum scenarios, becoming a strong alternative to containers rather than a
full replacement of them. This emergence of novel workloads has highlighted the need for
a common orchestration mechanism, so some initiatives have been conducted under the
umbrella of Kubernetes.



Sensors 2023, 23, 2215 23 of 27

Author Contributions: Conceptualization, I.L. and R.V.; methodology, I.L.; formal analysis, R.V.;
investigation, R.V. and R.S.-J.; writing—original draft preparation, R.V. and I.L.; writing—review
and editing, I.L., R.S.-J. and P.S.; visualization, R.V.; supervision, C.E.P.; project administration, I.L.
and C.E.P.; funding acquisition, C.E.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the European Commission under the Horizon Europe project
aerOS, grant number 101069732.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data were created or analyzed in this study. Data sharing is not
applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the writing of the manuscript, or in the decision to publish the results.

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
3. Satyanarayanan, M.; Klas, G.; Silva, M.; Mangiante, S. The Seminal Role of Edge-Native Applications. In Proceedings of the 2019

IEEE International Conference on Edge Computing, EDGE 2019—Part of the 2019 IEEE World Congress on Services, Milan, Italy,
1 July 2019; Institute of Electrical and Electronics Engineers Inc.: Milan, Italy, 2019; pp. 33–40.

4. Raj, P.; Vanga, S.; Chaudhary, A. Delineating Cloud-Native Edge Computing. In Cloud-Native Computing: How to Design, Develop,
and Secure Microservices and Event-Driven Applications; Wiley-IEEE Press: Piscataway, NJ, USA, 2023; pp. 171–201.

5. LF Edge Projects. Available online: https://www.lfedge.org/projects/ (accessed on 9 January 2023).
6. The Eclipse Foundation: Edge Native Working Group. Available online: https://edgenative.eclipse.org/ (accessed on

9 January 2023).
7. CNCF Cloud Native Landscape. Available online: https://landscape.cncf.io/ (accessed on 9 January 2023).
8. Shaping Europe’s Digital Future: IoT and the Future of Edge Computing in Europe. Available online: https://digital-strategy.ec.

europa.eu/en/news/iot-and-future-edge-computing-europe (accessed on 9 January 2023).
9. European Comission Funding & Tender Opportunities: “Future European Platforms for the Edge: Meta Operating Systems

(RIA)”. Available online: https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/
horizon-cl4-2021-data-01-05 (accessed on 9 January 2023).

10. European Comission Funding & Tender Opportunities: “Cognitive Cloud: AI-Enabled Computing Continuum from Cloud to
Edge (RIA)”. Available online: https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-
details/horizon-cl4-2022-data-01-02 (accessed on 9 January 2023).

11. EUCloudEdgeIOT: Building the European Cloud Edge IoT Continuum for Business and Research. Available online: https:
//eucloudedgeiot.eu/ (accessed on 9 January 2023).

12. ASSIST-IoT EU H2020 Project: Architecture for Scalable, Self-*, Human-Centric, Intelligent, Secure, and Tactile next Generation
IoT. Available online: https://assist-iot.eu/ (accessed on 9 January 2023).

13. aerOS EU HE Project: Autonomous, ScalablE, TRustworthy, Intelligent European Meta Operating System for the IoT Edge-Cloud
Continuum. Available online: https://aeros-project.eu/ (accessed on 9 January 2023).

14. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge Computing: A Survey. Future Gener. Comput. Syst. 2019, 97,
219–235. [CrossRef]

15. Zeyu, H.; Geming, X.; Zhaohang, W.; Sen, Y. Survey on Edge Computing Security. In Proceedings of the 2020 International
Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE, Fuzhou, China, 12–14 June 2020;
pp. 96–105. [CrossRef]

16. Duan, Q.; Wang, S.; Ansari, N. Convergence of Networking and Cloud/Edge Computing: Status, Challenges, and Opportunities.
IEEE Netw. 2020, 34, 148–155. [CrossRef]

17. Xu, M.; Zhou, Q.; Wu, H.; Lin, W.; Ye, K.; Xu, C. PDMA: Probabilistic Service Migration Approach for Delay-Aware and
Mobility-Aware Mobile Edge Computing. Softw. Pract. Exp. 2022, 52, 394–414. [CrossRef]

18. Chen, M.; Liu, W.; Wang, T.; Zhang, S.; Liu, A. A Game-Based Deep Reinforcement Learning Approach for Energy-Efficient
Computation in MEC Systems. Knowl. Based Syst. 2022, 235, 107660. [CrossRef]

19. Zhong, Z.; Alejandra Rodriguez, M.; Rodriguez, A.; Buyya, R.; Xu, M.; Xu, C.; Buyya, R. Machine Learning-Based Orchestration
of Containers: A Taxonomy and Future Directions. ACM Comput. Surv. 2022, 54, 1–35. [CrossRef]

20. Morabito, R.; Farris, I.; Iera, A.; Taleb, T. Evaluating Performance of Containerized IoT Services for Clustered Devices at the
Network Edge. IEEE Internet Things J. 2017, 4, 1019–1030. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/ACCESS.2020.2991734
https://www.lfedge.org/projects/
https://edgenative.eclipse.org/
https://landscape.cncf.io/
https://digital-strategy.ec.europa.eu/en/news/iot-and-future-edge-computing-europe
https://digital-strategy.ec.europa.eu/en/news/iot-and-future-edge-computing-europe
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2022-data-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2022-data-01-02
https://eucloudedgeiot.eu/
https://eucloudedgeiot.eu/
https://assist-iot.eu/
https://aeros-project.eu/
http://doi.org/10.1016/j.future.2019.02.050
http://doi.org/10.1109/ICBAIE49996.2020.00027
http://doi.org/10.1109/MNET.011.2000089
http://doi.org/10.1002/spe.3014
http://doi.org/10.1016/j.knosys.2021.107660
http://doi.org/10.1145/3510415
http://doi.org/10.1109/JIOT.2017.2714638


Sensors 2023, 23, 2215 24 of 27

21. Al-Doghman, F.; Moustafa, N.; Khalil, I.; Tari, Z.; Zomaya, A. AI-Enabled Secure Microservices in Edge Computing: Opportunities
and Challenges. In IEEE Transactions on Services Computing; IEEE: Piscataway, NL, USA, 2022. [CrossRef]

22. Kong, X.; Wu, Y.; Wang, H.; Xia, F. Edge Computing for Internet of Everything: A Survey. IEEE Internet Things J. 2022, 9,
23472–23485. [CrossRef]

23. Malhotra, L.; Agarwal, D.; Jaiswal, A. Virtualization in Cloud Computing. J. Inf. Technol. Softw. Eng. 2014, 4, 1–3. [CrossRef]
24. Bhardwaj, A.; Krishna, C.R. Virtualization in Cloud Computing: Moving from Hypervisor to Containerization—A Survey. Arab. J.

Sci. Eng. 2021, 46, 8585–8601. [CrossRef]
25. OpenFaaS: Serverless Functions Made Simple. Available online: https://www.openfaas.com/ (accessed on 9 January 2023).
26. Knative: An Open-Source Enterprise-Level Solution to Build Serverless and Event Driven Applications. Available online:

https://knative.dev/docs/ (accessed on 9 January 2023).
27. CloudEvents: A Specification for Describing Event Data in a Common Way. Available online: https://cloudevents.io/

(accessed on 9 January 2023).
28. Maenhaut, P.J.; Volckaert, B.; Ongenae, V.; de Turck, F. Resource Management in a Containerized Cloud: Status and Challenges.

J. Netw. Syst. Manag. 2020, 28, 197–246. [CrossRef]
29. Yadav, A.K.; Garg, M.L. Ritika Docker Containers versus Virtual Machine-Based Virtualization. Adv. Intell. Syst. Comput. 2019,

814, 141–150. [CrossRef]
30. Canonical Ltd. Linux Containers: LXC. Available online: https://linuxcontainers.org/lxc/introduction/ (accessed on 9 January 2023).
31. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
32. Duan, Q. Intelligent and Autonomous Management in Cloud-Native Future Networks—A Survey on Related Standards from an

Architectural Perspective. Future Internet 2021, 13, 42. [CrossRef]
33. Alonso, J.; Orue-Echevarria, L.; Casola, V.; Torre, A.I.; Huarte, M.; Osaba, E.; Lobo, J.L. Understanding the Challenges and Novel

Architectural Models of Multi-Cloud Native Applications—A Systematic Literature Review. J. Cloud Comput. 2023, 12, 1–34.
[CrossRef]

34. AWS IoT Greengrass. Available online: https://aws.amazon.com/greengrass/features/ (accessed on 9 January 2023).
35. What Is AWS Snowball Edge?—AWS Snowball Edge Developer Guide. Available online: https://docs.aws.amazon.com/

snowball/latest/developer-guide/whatisedge.html (accessed on 9 January 2023).
36. Microsoft Azure IoT Edge. Available online: https://azure.microsoft.com/en-us/products/iot-edge/#iotedge-overview

(accessed on 9 January 2023).
37. Certifying IoT Devices: Azure Certified Device Program. Available online: https://www.microsoft.com/azure/partners/azure-

certified-device (accessed on 9 January 2023).
38. Microsoft Azure Stack Edge. Available online: https://azure.microsoft.com/en-us/products/azure-stack/edge/ (accessed on

9 January 2023).
39. Google Distributed Cloud. Available online: https://cloud.google.com/distributed-cloud (accessed on 9 January 2023).
40. Open Container Initiative. Available online: https://opencontainers.org/ (accessed on 9 January 2023).
41. containerd: An Industry-Standard Container Runtime with an Emphasis on Simplicity, Robustness and Portability. Available

online: https://containerd.io/ (accessed on 9 January 2023).
42. runC: CLI Tool for Spawning and Running Containers According to the OCI Specification. Available online: https://github.com/

opencontainers/runc (accessed on 9 January 2023).
43. Moby Project. Available online: https://mobyproject.org/ (accessed on 9 January 2023).
44. crun: A Fast and Lightweight Fully Featured OCI Runtime and C Library for Running Containers. Available online: https:

//github.com/containers/crun (accessed on 9 January 2023).
45. Youki: A Container Runtime Written in Rust. Available online: https://github.com/containers/youki (accessed on 9 January 2023).
46. CRI-O. Available online: https://cri-o.io/ (accessed on 9 January 2023).
47. EVE—LF Edge. Available online: https://www.lfedge.org/projects/eve/ (accessed on 9 January 2023).
48. EVE Kubernetes Control Plane Integration—Draft. Available online: https://wiki.lfedge.org/display/EVE/EVE+Kubernetes+

Control+Plane+Integration+-+Draft (accessed on 9 January 2023).
49. BalenaOS—Run Docker Containers on Embedded IoT Devices. Available online: https://www.balena.io/os/ (accessed on

9 January 2023).
50. Yocto Project. Available online: https://www.yoctoproject.org/ (accessed on 9 January 2023).
51. BalenaEngine: A Container Engine Purpose-Built for IoT Devices. Available online: https://www.balena.io/engine/ (accessed on

9 January 2023).
52. Buehrle, A. Why Embedded Linux Needs a Container Manager Written in C. Available online: https://pantacor.com/blog/

embedded-linux-need-container-manager/ (accessed on 9 January 2023).
53. Pantavisor: A framework for containerized embedded Linux. Available online: https://pantavisor.io/ (accessed on 9 January 2023).
54. Truyen, E.; van Landuyt, D.; Preuveneers, D.; Lagaisse, B.; Joosen, W. A Comprehensive Feature Comparison Study of Open-

Source Container Orchestration Frameworks. Appl. Sci. 2019, 9, 931. [CrossRef]
55. Paszkiewicz, A.; Bolanowski, M.; Ćwikła, C.; Ganzha, M.; Paprzycki, M.; Palau, C.E.; Lacalle Úbeda, I. Network Load Balancing for

Edge-Cloud Continuum Ecosystems. In Innovations in Electrical and Electronic Engineering; Mekhilef, S., Shaw, R.N., Siano, P., Eds.;
Springer Science and Business Media Deutschland GmbH: Antalya, Turkey, 2022; Volume 894 LNEE, pp. 638–651.

http://doi.org/10.1109/TSC.2022.3155447
http://doi.org/10.1109/JIOT.2022.3200431
http://doi.org/10.4172/2165-7866.1000136
http://doi.org/10.1007/s13369-021-05553-3
https://www.openfaas.com/
https://knative.dev/docs/
https://cloudevents.io/
http://doi.org/10.1007/s10922-019-09504-0
http://doi.org/10.1007/978-981-13-1501-5_12/TABLES/1
https://linuxcontainers.org/lxc/introduction/
http://doi.org/10.1109/MCC.2014.51
http://doi.org/10.3390/fi13020042
http://doi.org/10.1186/s13677-022-00367-6
https://aws.amazon.com/greengrass/features/
https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html
https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html
https://azure.microsoft.com/en-us/products/iot-edge/#iotedge-overview
https://www.microsoft.com/azure/partners/azure-certified-device
https://www.microsoft.com/azure/partners/azure-certified-device
https://azure.microsoft.com/en-us/products/azure-stack/edge/
https://cloud.google.com/distributed-cloud
https://opencontainers.org/
https://containerd.io/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://mobyproject.org/
https://github.com/containers/crun
https://github.com/containers/crun
https://github.com/containers/youki
https://cri-o.io/
https://www.lfedge.org/projects/eve/
https://wiki.lfedge.org/display/EVE/EVE+Kubernetes+Control+Plane+Integration+-+Draft
https://wiki.lfedge.org/display/EVE/EVE+Kubernetes+Control+Plane+Integration+-+Draft
https://www.balena.io/os/
https://www.yoctoproject.org/
https://www.balena.io/engine/
https://pantacor.com/blog/embedded-linux-need-container-manager/
https://pantacor.com/blog/embedded-linux-need-container-manager/
https://pantavisor.io/
http://doi.org/10.3390/app9050931


Sensors 2023, 23, 2215 25 of 27

56. Balouek-Thomert, D.; Renart, E.G.; Zamani, A.R.; Simonet, A.; Parashar, M. Towards a Computing Continuum: Enabling
Edge-to-Cloud Integration for Data-Driven Workflows. Int. J. High Perform. Comput. Appl. 2019, 33, 1159–1174. [CrossRef]

57. Kayal, P. Kubernetes in Fog Computing: Feasibility Demonstration, Limitations and Improvement Scope. In Proceedings of
the IEEE World Forum on Internet of Things, WF-IoT 2020, New Orleans, LA, USA, 2–16 June 2020; Institute of Electrical and
Electronics Engineers Inc.: Piscataway, NJ, USA, 2020.

58. Jeffery, A.; Howard, H.; Mortier, R. Rearchitecting Kubernetes for the Edge. In Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking, EdgeSys 2021, Part of EuroSys 2021, Online Event, UK, 26 April 2021; Association for
Computing Machinery, Inc: Edinburgh, UK, 2021; pp. 7–12.

59. K3s: Lightweight Kubernetes. Available online: https://k3s.io/ (accessed on 9 January 2023).
60. K3OS: The Kubernetes Operating System. Available online: https://k3os.io/ (accessed on 9 January 2023).
61. MicroK8s—Zero-Ops Kubernetes for Developers, Edge and IoT. Available online: https://microk8s.io/ (accessed on 9 January 2023).
62. ASSIST-IoT Project D6.5 Technical Support Documentation—Initial; 30 April 2022. Available online: https://assist-iot.eu/wp-

content/uploads/2022/05/D6.5_Technical_Support_Documentation_Initial.pdf (accessed on 9 January 2023).
63. Kjorveziroski, V.; Filiposka, S. Kubernetes Distributions for the Edge: Serverless Performance Evaluation. J. Supercomput. 2022, 78,

13728–13755. [CrossRef]
64. Cilium: Linux Native, API-Aware Networking and Security for Containers. Available online: https://cilium.io/ (accessed on

9 January 2023).
65. Szmeja, P.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Ganzha, M.; Pawłowski, W.; Paprzycki, M.; Schabbink, J. ASSIST-IoT: A

Modular Implementation of a Reference Architecture for the Next Generation Internet of Things. Electronics 2023, 12, 854.
[CrossRef]

66. KubeEdge: A Kubernetes Native Edge Computing Framework. Available online: https://kubeedge.io/en/ (accessed on
9 January 2023).

67. KubeEdge EdgeMesh: Simplified Network and Services for Edge Applications. Available online: https://github.com/kubeedge/
edgemesh (accessed on 9 January 2023).

68. Xu, W. Test Report on KubeEdge’s Support for 100,000 Edge Nodes. Available online: https://kubeedge.io/en/blog/scalability-
test-report/ (accessed on 9 January 2023).

69. Kubernetes on Edge Day 2021: KubeEdge and Kubernetes Help Manage All the Monitoring Devices on the World’s Longest Cross-
Sea Bridge. Available online: https://kubenetesedgedayeu21.sched.com/event/iS2I/kubeedge-and-kubernetes-help-manage-
all-the-monitoring-devices-on-the-worlds-longest-cross-sea-bridge-huan-wei-harmonycloud (accessed on 9 January 2023).

70. Sedna Documentation. Available online: https://sedna.readthedocs.io/en/latest/ (accessed on 9 January 2023).
71. OpenYurt: An Open Platform That Extends Upstream Kubernetes to Edge. Available online: https://openyurt.io/ (accessed on

9 January 2023).
72. SuperEdge: An Open-Source Container Management System for Edge Computing. It Extends Native Kubernetes to the Edge in a

Non-Intrusive WAY. Available online: https://superedge.io/ (accessed on 9 January 2023).
73. EdgeX Foundry: The Enabled Open Software Platform. Available online: https://www.edgexfoundry.org/ (accessed on

9 January 2023).
74. Open Horizon—LF Edge. Available online: https://www.lfedge.org/projects/openhorizon/ (accessed on 9 January 2023).
75. Baetyl: Baetyl, Extend Cloud Computing, Data and Service Seamlessly to Edge Devices. Available online: https://baetyl.io/en/

(accessed on 9 January 2023).
76. Eclipse IoFog. Available online: https://iofog.org/ (accessed on 9 January 2023).
77. Akri: A Kubernetes Resource Interface for the Edge. Available online: https://docs.akri.sh/ (accessed on 9 January 2023).
78. Akri: Custom Discovery Handlers. Available online: https://github.com/project-akri/akri-docs/blob/main/docs/

development/handler-development.md (accessed on 10 January 2023).
79. Sultan, S.; Ahmad, I.; Dimitriou, T. Container Security: Issues, Challenges, and the Road Ahead. IEEE Access 2019, 7, 52976–52996.

[CrossRef]
80. Morabito, R.; Cozzolino, V.; Ding, A.Y.; Beijar, N.; Ott, J. Consolidate IoT Edge Computing with Lightweight Virtualization.

IEEE Netw. 2018, 32, 102–111. [CrossRef]
81. Kumar, R.; Thangaraju, B. Performance Analysis between RunC and Kata Container Runtime. In Proceedings of the 6th IEEE

International Conference on Electronics, Computing and Communication Technologies, CONECCT 2020, Bangalore, India,
2–4 July 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020.

82. Kata Containers: Open-Source Container Runtime, Building Lightweight Virtual Machines That Seamlessly Plug into the
Containers Ecosystem. Available online: https://katacontainers.io/ (accessed on 9 January 2023).

83. Li, Z.; Group, A.; Cheng, J.; Chen, Q.; Guan, E.; Bian, Z.; Tao, Y.; Zha, B.; Wang, Q.; Han, W.; et al. RunD: A Lightweight Secure
Container Runtime for High-Density Deployment and High-Concurrency Startup in Serverless Computing. In Proceedings of the
2022 USENIX Annual Technical Conference, Carlsbad, CA, USA, 11–13 July 2022.

84. Madhavapeddy, A.; Scott, D.J. Unikernels: Rise of the Virtual Library Operating System. Queue 2013, 11, 30–44. [CrossRef]
85. Sarrigiannis, I.; Contreras, L.M.; Ramantas, K.; Antonopoulos, A.; Verikoukis, C. Fog-Enabled Scalable C-V2X Architecture for

Distributed 5G and beyond Applications. IEEE Netw. 2020, 34, 120–126. [CrossRef]

http://doi.org/10.1177/1094342019877383
https://k3s.io/
https://k3os.io/
https://microk8s.io/
https://assist-iot.eu/wp-content/uploads/2022/05/D6.5_Technical_Support_Documentation_Initial.pdf
https://assist-iot.eu/wp-content/uploads/2022/05/D6.5_Technical_Support_Documentation_Initial.pdf
http://doi.org/10.1007/s11227-022-04430-6
https://cilium.io/
http://doi.org/10.3390/electronics12040854
https://kubeedge.io/en/
https://github.com/kubeedge/edgemesh
https://github.com/kubeedge/edgemesh
https://kubeedge.io/en/blog/scalability-test-report/
https://kubeedge.io/en/blog/scalability-test-report/
https://kubenetesedgedayeu21.sched.com/event/iS2I/kubeedge-and-kubernetes-help-manage-all-the-monitoring-devices-on-the-worlds-longest-cross-sea-bridge-huan-wei-harmonycloud
https://kubenetesedgedayeu21.sched.com/event/iS2I/kubeedge-and-kubernetes-help-manage-all-the-monitoring-devices-on-the-worlds-longest-cross-sea-bridge-huan-wei-harmonycloud
https://sedna.readthedocs.io/en/latest/
https://openyurt.io/
https://superedge.io/
https://www.edgexfoundry.org/
https://www.lfedge.org/projects/openhorizon/
https://baetyl.io/en/
https://iofog.org/
https://docs.akri.sh/
https://github.com/project-akri/akri-docs/blob/main/docs/development/handler-development.md
https://github.com/project-akri/akri-docs/blob/main/docs/development/handler-development.md
http://doi.org/10.1109/ACCESS.2019.2911732
http://doi.org/10.1109/MNET.2018.1700175
https://katacontainers.io/
http://doi.org/10.1145/2557963.2566628
http://doi.org/10.1109/MNET.111.2000476


Sensors 2023, 23, 2215 26 of 27

86. Goethals, T.; Sebrechts, M.; Atrey, A.; Volckaert, B.; de Turck, F. Unikernels vs Containers: An in-Depth Benchmarking Study
in the Context of Microservice Applications. In Proceedings of the 8th IEEE International Symposium on Cloud and Services
Computing, SC2 2018, Paris, France, 18–21 November 2018; pp. 1–8. [CrossRef]

87. MirageOS: A Programming Framework for Building Type-Safe, Modular Systems. Available online: https://mirage.io/ (accessed on
9 January 2023).

88. Nabla Containers: A New Approach to Container Isolation. Available online: https://nabla-containers.github.io/ (accessed on
9 January 2023).

89. Runnc: OCI-Interfacing Container Runtime for Nabla Containers. Available online: https://github.com/nabla-containers/runnc
(accessed on 9 January 2023).

90. UNICORE EU H2020 Project. Available online: https://unicore-project.eu/ (accessed on 9 January 2023).
91. Unikraft: A Fast, Secure and Open-Source Unikernel Development Kit. Available online: https://unikraft.org/ (accessed on

9 January 2023).
92. Kuenzer, S.; Bădoiu, V.-A.; Lefeuvre, H.; Santhanam, S.; Jung, A.; Gain, G.; Soldani, C.; Lupu, C.; Răducanu, C.; Banu, C.; et al.

Unikraft: Fast, Specialized Unikernels the Easy Way. In Proceedings of the Sixteenth European Conference on Computer Systems,
Online Event, UK, 26–28 April 2021; pp. 376–394.

93. Jung, A. KubeCon + CloudNative North America 2021: Deploying Unikernels in Production with Kubernetes. Available online:
https://kccncna2021.sched.com/event/lV2y/deploying-unikernels-in-production-with-kubernetes-alexander-jung-lancaster-
university (accessed on 9 January 2023).

94. WebAssembly. Available online: https://webassembly.org/ (accessed on 9 January 2023).
95. WebAssembly Community Group WebAssembly Specification Release 2.0 (Draft 2023-02-13); 2023. Available online: https:

//webassembly.github.io/spec/core/_download/WebAssembly.pdf (accessed on 13 February 2023).
96. Jangda, A.; Powers, B.; Berger, E.D.; Guha, A. Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code.

In Proceedings of the 2019 USENIX Annual Technical Conference, Renton, WA, USA, 10 August 2019; pp. 107–120.
97. Musch, M.; Wressnegger, C.; Johns, M.; Rieck, K. New Kid on the Web: A Study on the Prevalence of Webassembly in the Wild.

In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Cham, Switzerland, 2019; Volume 11543 LNCS, pp. 23–42.

98. Ménétrey, J.; Pasin, M.; Felber, P.; Schiavoni, V. WebAssembly as a Common Layer for the Cloud-Edge Continuum. In
Proceedings of the 2nd Workshop on Flexible Resource and Application Management on the Edge, FRAME 2022, Co-Located
with HPDC 2022, Minneapolis, MN, USA, 1 July 2022; Association for Computing Machinery, Inc.: Minneapolis, MN, USA,
2022; pp. 3–8.

99. Mäkitalo, N.; Mikkonen, T.; Pautasso, C.; Bankowski, V.; Daubaris, P.; Mikkola, R.; Beletski, O. WebAssembly Modules as
Lightweight Containers for Liquid IoT Applications. In Proceedings of the Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Biarritz, France, 18–21 May 2021;
Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2021; Volume 12706 LNCS, pp. 328–336.

100. WASI: WebAssembly System Interface. Available online: https://github.com/WebAssembly/WASI (accessed on 9 January 2023).
101. Clark, L. Standardizing WASI: A System Interface to Run WebAssembly Outside the Web. Available online: https://hacks.

mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/ (accessed on 9 January 2023).
102. Wen, E.; Weber, G. Wasmachine: Bring the Edge up to Speed with a Webassembly OS. In Proceedings of the IEEE International

Conference on Cloud Computing, CLOUD, Virtual Event, 18–24 October 2020; IEEE Computer Society: Washington, DC, USA,
2020; Volume 2020, pp. 353–360.

103. WASI Standarization Proposals. Available online: https://github.com/WebAssembly/WASI/blob/main/Proposals.md
(accessed on 9 January 2023).

104. Wasmer: The Universal WebAssembly Runtime. Available online: https://wasmer.io/ (accessed on 9 January 2023).
105. Wasmtime: A Fast and Secure Runtime for WebAssembly. Available online: https://wasmtime.dev/ (accessed on

9 January 2023).
106. WasmEdge: Bring the Cloud-Native and Serverless Application Paradigms to Edge Computing. Available online: https://wasmedge.

org/ (accessed on 9 January 2023).
107. Menetrey, J.; Pasin, M.; Felber, P.; Schiavoni, V. Twine: An Embedded Trusted Runtime for WebAssembly. In Proceedings of

the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; IEEE: Piscataway,
NJ, USA, 2021; pp. 205–216.

108. Charboneau, T. Why Containers and WebAssembly Work Well Together. Available online: https://www.docker.com/blog/why-
containers-and-webassembly-work-well-together/ (accessed on 9 January 2023).

109. Gain, B.C. When WebAssembly Replaces Docker. Available online: https://thenewstack.io/when-webassembly-replaces-docker/
(accessed on 9 January 2023).

110. Irwin, M. Introducing the Docker+Wasm Technical Preview. Available online: https://www.docker.com/blog/docker-wasm-
technical-preview/ (accessed on 9 January 2023).

111. Kubernetes Reference Documentation: Runtime Class. Available online: https://kubernetes.io/docs/concepts/containers/
runtime-class/ (accessed on 9 January 2023).

http://doi.org/10.1109/SC2.2018.00008
https://mirage.io/
https://nabla-containers.github.io/
https://github.com/nabla-containers/runnc
https://unicore-project.eu/
https://unikraft.org/
https://kccncna2021.sched.com/event/lV2y/deploying-unikernels-in-production-with-kubernetes-alexander-jung-lancaster-university
https://kccncna2021.sched.com/event/lV2y/deploying-unikernels-in-production-with-kubernetes-alexander-jung-lancaster-university
https://webassembly.org/
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://github.com/WebAssembly/WASI
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://github.com/WebAssembly/WASI/blob/main/Proposals.md
https://wasmer.io/
https://wasmtime.dev/
https://wasmedge.org/
https://wasmedge.org/
https://www.docker.com/blog/why-containers-and-webassembly-work-well-together/
https://www.docker.com/blog/why-containers-and-webassembly-work-well-together/
https://thenewstack.io/when-webassembly-replaces-docker/
https://www.docker.com/blog/docker-wasm-technical-preview/
https://www.docker.com/blog/docker-wasm-technical-preview/
https://kubernetes.io/docs/concepts/containers/runtime-class/
https://kubernetes.io/docs/concepts/containers/runtime-class/


Sensors 2023, 23, 2215 27 of 27

112. Krustlet: Run WebAssembly Workloads in Your Kubernetes Cluster. Available online: https://krustlet.dev/ (accessed on
9 January 2023).

113. Sebrechts, M.; Ramlot, T.; Borny, S.; Goethals, T.; Volckaert, B.; de Turck, F. Adapting Kubernetes Controllers to the Edge: On-
Demand Control Planes Using Wasm and WASI. In Proceedings of the 11th IEEE International Conference on Cloud Networking,
Paris, France, 2 September 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://krustlet.dev/

	Introduction 
	Background 
	Virtualization: From Cloud Computing to Constrained Environments 
	Current Commercial Approaches from Public Cloud Providers 
	Container Virtualization: Deploying Container Workloads on the Edge 
	Container Engines 
	Purpose-Built Operating Systems 

	Container Orchestration Tools for the Edge 
	Future Directions: The Horizon beyond Containers-Only 
	Conclusions 
	References

