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Abstract: Supervised personal training is most effective in improving the health effects of exercise
in older adults. Yet, low frequency (60 min, 1–3 sessions/week) of trainer contact limits influence
on behavior change outside sessions. Strategies to extend the effect of trainer contact outside
of supervision and that integrate meaningful and intelligent two-way communication to provide
complex and interactive problem solving may motivate older adults to “move more and sit less” and
sustain positive behaviors to further improve health. This paper describes the experimental protocol
of a 16-week pilot RCT (N = 46) that tests the impact of supplementing supervised exercise (i.e.,
control) with a technology-based behavior-aware text-based virtual “Companion” that integrates
a human-in-the-loop approach with wirelessly transmitted sensor-based activity measurement to
deliver behavior change strategies using socially engaging, contextually salient, and tailored text
message conversations in near-real-time. Primary outcomes are total-daily and patterns of habitual
physical behaviors after 16 and 24 weeks. Exploratory analyses aim to understand Companion’s
longitudinal behavior effects, its user engagement and relationship to behavior, and changes in
cardiometabolic and cognitive outcomes. Our findings may allow the development of a more
scalable hybrid AI Companion to impact the ever-growing public health epidemic of sedentariness
contributing to poor health outcomes, reduced quality of life, and early death.

Keywords: sedentary behavior; physical inactivity; move more and sit less; older adults; near-
real-time interventions; sensor-based physical activity measurement; mHealth interventions; pilot
randomized controlled trials; study protocols

1. Introduction

Supervised exercise with a trained instructor [1,2] is most effective in maximizing
health benefits, is popular among older adults >60 years, and is most common in physical
activity interventions aimed at preventing aging-related disability and disease [3–8]. Super-
vision results in higher training effects and program adherence [5,6,9,10] due to personal
attention and interaction with the trainer that motivates participants [6,9]. Drawbacks of
the model include a low frequency of trainer contact (60 min, ~1 to 3 times/week) and
ineffectiveness in changing behavior outside weekly sessions [6]. Additionally, older adults
may compensate for increased exercise by increasing sedentary behavior outside training
sessions, which attenuates positive gains in health (e.g., improved energy metabolism,
musculoskeletal, functional, cardiovascular, and psychosocial health, etc.) from supervised
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exercise [8,11–17]. Independent of physical activity, reducing sedentary time improves
cardiometabolic and functional health in older adults [18,19] and correspondingly, federal
guidelines now recommend that older adults “move more and sit less” during the day [20].
Thus, strategies to motivate older adults who participate in supervised programs to be
more active and sit less outside structured weekly training sessions are necessary. However,
there are limitations to increasing physical activity among older adults (e.g., difficulties in
accessing health facilities and professionals).

Technologies including wearables and smartphones have the potential to promote
daily positive behaviors in older adults [21]. While several interventions incorporate
these technologies to modify behavior, there is limited work on the integration of these
technologies to generate meaningful two-way communication [22] that may enable an in-
terventionist to successfully engage an older adult through timely, intelligent, and context-
sensitive dialogue to problem solve and motivate behavior change. Awareness of ongoing
or recent behavior (from wearable sensors), knowledge of the contexts of behavior/past
conversations, and individual’s preferences (gathered via two-way human-to-human com-
munication) may help in generating meaningful discourse between the interventionist and
an older adult that allows the creation of an adaptive intervention at a level that is not
currently possible. We have integrated wearable sensors with the smartphone to develop
a behavior-aware, virtual “Companion” that uses a human-in-the-loop [23] approach to
enable meaningful two-way communication. Such an intensive longitudinal data gath-
ering approach during a behavioral intervention may enable the building of rich models
of typical behavior to deliver intervention components and behavior change strategies
using socially engaging, contextually salient, and tailored text message conversations in
near-real-time.

The purpose of this paper is to describe the experimental protocol to pilot test the
efficacy of the Companion in motivating older adults to “move more and sit less”. We
will deploy Companion in a randomized clinical trial (N = 46) [24] (Stage I of NIH Stage
Model) [25,26] for 16 weeks with follow-up after 24 weeks to test if it improves and sustains
free-living physical activity and sedentary behaviors in older adults. Primary endpoints
are total-daily and patterns of habitual physical activity and sedentary behaviors mea-
sured at baseline and after the intervention. Exploratory endpoints include continuously
measured (16-week) physical behavior outcomes, Companion’s user engagement and its
relationship with continuously measured physical behaviors, and cardiometabolic health,
body composition, cognition, and psychosocial outcomes measured at baseline and after
the intervention.

2. Materials and Methods
2.1. Hypotheses and Experimental Design

Our long-term goal is to develop a semi-automated hybrid artificial intelligence (AI)
system with a human-in-the-loop approach for delivering adaptive interventions to reduce
the burden of chronic disease resulting from sedentary behaviors and physical inactivity
in older adults. Pilot testing the efficacy of the current Companion will provide proof of
concept for a subsequent Stage II NIH Stage Model [25,26] study that will aim to establish
the efficacy and scalability of a hybrid AI-based Companion among older adults.

In the current study, Companion is a meta-intervention deployed along with a super-
vised exercise program and will be experienced by the user as their “intelligent” human
trainer providing extended behavior change support outside face-to-face personal training
sessions. Companion will enable the building of contextualized and continuously refined
visualizable models of typical behavior derived using machine learning-based processing
of passive wearable sensor data and interactive two-way communications. These models
will be used to determine appropriate opportunities to deliver intervention components
and behavior change strategies using socially engaging, contextually salient, and tailored
text message conversations in near-real-time.
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This is a small sample (N = 46) 16-week parallel randomized clinical trial with follow-
up after 24 weeks in sedentary older adults. Participants will be evenly randomized
into a treatment or control group. All participants will engage in a supervised exercise
program (2 times/week) over the 16-week study period that has been proven to help
prevent aging-related disability and disease [27,28]. Only the treatment group (N = 23)
will receive Companion from weeks 1 to 16. The study will be carried out by researchers
at Northeastern University’s Human Performance and Exercise Science Lab in Boston,
MA, and participants will be recruited from the Greater Boston metro area. The study is
registered on ClinicalTrials.gov (Identifier: NCT04827212). Ethics approval was granted by
Northeastern University’s Institutional Review Board.

The primary aim will assess the a priori hypothesis that the treatment group will show
greater improvements in daily habitual activity and sedentary behavior outcomes than
controls after 16 and 24 weeks. The exploratory aims are to (i) assess the exploratory
hypothesis that the treatment group will show greater improvements in continuously
measured (16 weeks) daily physical behavior outcomes, (ii) conduct an exploratory analysis
of Companion’s user engagement and its relationship to continuously measured daily
physical behaviors, and (iii) assess the exploratory hypothesis that the treatment group will
show greater improvements in health outcomes after 16 and 24 weeks.

2.2. Rationale and Feasibility Testing

The approach to this study is guided by evidence from prior relevant
work [1,5,6,8–17,27–29] and preliminary feasibility testing of the Companion concept in
our lab.

2.2.1. Supervised Exercise Programs Fail to Increase Daily Habitual Behavior

Supervised exercise programs are the most effective means of maximizing adherence
and training effects [5,6,9,10] of sedentary older adults because human contact in such
programs supports known facilitators of exercise engagement [1,29] in older adults (e.g.,
social interaction, increased awareness of the psychosocial and physical benefits of be-
coming more active, professional one-to-one instruction, a collaboratively agreed program
design, and increased confidence to partake in physical activity). However, a low frequency
of trainer contact (60 min, ~1 to 3 times/week) due to a high resource intensiveness of
such programs coupled with evidence that older adults may compensate for increased
exercise by increasing sedentary behavior outside training sessions [8,11–17] means that
such programs may do little to reduce the burden of sedentariness in older adults. For
example, (i) exercise referrals have a small absolute population-level risk reduction effect
on sedentary behavior with approximately 1 in 17 referrals resulting in a moderately active
lifestyle [8], and (ii) participation in exercise training results in no statistically or clinically
significant increases on average in the non-exercise physical activity (i.e., activities of daily
living) of older adults [17,30]. Older adults may fail to engage in physical activity outside
of periods of supervision due to the same barriers [8] that result in an exercise program
referral in the first place, e.g., lack of self-efficacy, lack of social support, feelings of intim-
idation with exercise and/or physical activity, poor time management, etc. Leveraging
personal human contact and extending the frequency of trainer–trainee interactions from
such programs is thus vital to motivate an increase in daily habitual physical activity.

2.2.2. Feasibility Testing

We used two health coaches and six older adults (mean age ± SD: 67.7 ± 6.2 years)
in a single-case experimental design study over three months to obtain an understanding
of the ability of two-way communication in engaging participants and the contexts of
communication [31]. Companion was successful in eliciting an 85% two-way interaction
rate and the following communication contexts: 26% physical activity related, 38% health
related, 19% social, 11% diet related, 5% behavior related, and 1% sleep related [31].
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2.3. Participants
2.3.1. Inclusion and Exclusion Criteria

Inclusion criteria are (i) age > 60 years, (ii) BMI > 25 kg/m2, (iii) no health conditions
preventing participation in physical activity lasting 10 to 30 min, and (iv) having a smart
phone. Screened individuals will be excluded from participation if any of the following
conditions are met: (i) engagement in structured physical activity on more than two
days/week lasting ≥ 30 min/session, (ii) regular use of an assistive device for walking,
and (iii) if participation in an exercise program is likely to alter medications pertaining to
cardiovascular or metabolic health.

2.3.2. Recruitment, Screening Procedures and Randomization

Potential participants will be sought from the Greater Boston metro area using flyers,
emails, and in-person plus telephone outreach to various surrounding organizations and
communities, including eligible older adults who participated in prior studies at Northeast-
ern University. Participants will begin baseline assessments upon provision of signed and
dated written consent. Figure 1 contains the flow diagram for the study that outlines the
phases of our RCT. Detailed recruitment and retention, screening, and consent procedures
are in our study protocol that is provided in the Supplementary Materials.

Potential participants who meet eligibility criteria and who provide informed consent
will be randomly assigned in a 1:1 ratio to either the control (N = 23) or treatment (N = 23)
condition using a random coin flip scheme on Excel.

2.4. Measurements

Here, we briefly describe all outcome measurements that are assessed at baseline and
after 16 and 24 weeks (see supplementary study protocol). Participants will be asked to
fast for 12 h prior to conducting health assessments.

2.4.1. Primary Outcomes

Sensor-based physical activity and sedentary behavior: Habitual total and bouts of physi-
cal activity (intensity and type) and sedentary behaviors will be measured using a continu-
ously worn thigh sensor for one week at baseline and follow-up assessments. A week-long
measurement is representative of habitual behavior [32,33]. For these measurements, (i) an
activPALTM 3C activity monitor (PAL Technologies Ltd., Glasgow, UK) will be adhered to
the dominant thigh with a hypoallergenic tape. Additionally, participants will be asked
to complete a daily log to self-report time-in-bed (night-time sleep and daytime naps)
and when the monitors are not worn (e.g., showering, swimming). Thigh sensor data
will be processed using proprietary software (PALanalysis version 8, PAL Technologies
Ltd., Glasgow, UK) and algorithms (i.e., CREA; PAL Processing Suite) [34–39] to obtain
free-living habitual measures of physical activity and sedentary behavior.
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2.4.2. Exploratory Outcomes

Detailed measurement procedures for all exploratory outcomes are available in the
supplemental study protocol. (i) Continuously measured (16 weeks) physical activity, sedentary
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behavior, and sleep: These outcomes will be measured by wrist-worn sensors of the Com-
panion system (described in detail below) in the treatment group and using an ActiGraph
GT9X (ActiGraph Corp, LLC, Pensacola, FL, USA) in the control group. These devices will
be worn on the non-dominant wrist. Wrist sensor data will be processed using Monitor-
Independent Movement Summary unit (MIMS) to yield overall movement volume estima-
tions [40] and machine learning algorithms to yield sensor wear, sleep, and wake behavior
characterization (i.e., sedentary, ambulation, and upright behaviors) [41–44] during the
16-week intervention period. (ii) Health outcomes: (a) anthropometrics (height, weight,
and waist/hip circumference); (b) body composition (via bioelectrical impedance) [45];
(c) seated resting heart rate and blood pressure; (d) fasting blood biomarkers (blood glucose
and lipid profile); (e) cognition (via The NIH Toolbox Cognition Battery) [46]; (f) physical
function (via The Short Physical Performance Battery) [47,48]; (g) upper and lower body
muscle endurance (via maximal push-up and squat tests, respectively) [49]; (h) aerobic
fitness (via the six-minute walk test) [50,51]; and (i) other questionnaire-based health out-
comes (see supplementary study protocol). These will be self-administered electronically
following baseline and follow-up assessments and will consist of health history (baseline
only), dietary intake [52,53], and psychosocial outcome measures (i.e., perceived compe-
tence scale for participating in regular physical activity [54,55], short health-care climate
questionnaire [54], exercise self-regulation questionnaire [56,57], and basic needs satisfac-
tion relationship scale [58]). Companion is based on self-determination theory (SDT) and
measuring psychosocial outcomes will enable the assessment of how constructs of SDT [59]
relate to participation in physical activity [60].

2.5. Control and Intervention Components

Both the control and treatment groups will receive virtual counseling prior to com-
mencing the study and subsequent access to supervised exercise training.

2.5.1. Virtual Counseling

Following baseline assessments, both groups will receive a ~30 min face-to-face virtual
(i.e., Zoom Video Communications, Inc., San Jose, CA, USA) counseling session on the
benefits of decreasing sedentary behavior and increasing physical activity and on strategies
to “move more and sit less” [61–63]. In addition to this, the treatment group will participate
in a second ~30 min interview to enable information gathering to support intervention
personalization. This information will pertain to (i) physical activity, fitness, and/or
health-related goals; (ii) barriers to engaging in regular physical activity and/or exercise;
(iii) typical schedules/behavior routines during work, leisure, home, etc.; (iv) preferences
related to physical activity and exercises; (v) hobbies and leisure time interests; (vi) work
and/or home environments and available opportunities/resources in these environments
to support regular participation in physical activity; (vii) family and household dynamics;
and (viii) commuting needs and preferences.

2.5.2. Supervised Exercise Training

The 16-week supervised exercise training plan that both groups will receive is based
on guidelines from the American College of Sports Medicine (ACSM) [64,65]. Participants
will participate in virtual Zoom-based structured exercise sessions (~45–60 min) led by an
ACSM certified personal trainer and a trained exercise physiologist on two days/week
that include cross-training activities to improve cardiorespiratory endurance, muscular
strength and mass and endurance, flexibility, and balance. Supervised training sessions for
the control and treatment groups will be scheduled separately to avoid contamination of
study arms. We will use a virtual format due to the COVID-19 pandemic and to minimize
the participant burden of coming to the lab.

Program variables (i.e., choice of resistance, exercise selection and sequence, number
of sets and repetitions, frequency, and rest period length) will be manipulated following
the principles of progressive overload resistance training [66]. A cautionary, monitored,
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and individualized approach to increasing training demands on the participants will be
employed based on initial training status, past experience, joint health, and response to
training [66]. Sample training routines at various stages of the progression model are
available online (i.e., “Companion Study: Exercise Prescription Database”; https://www.
youtube.com/channel/UCZsg8fPtquiVrsv8INIvC0g (accessed on 11 November 2022)) [67]).
Table 1 outlines the program’s overall rate of progression [66]. Additional descriptions on
the training program and its progression are available in the supplementary study protocol.

Table 1. General training progression model.

Weeks 1–3 Introduction, core component education, technique boot camp, and
strength foundation

Weeks 4–10 Incorporation of learned exercises into routines and establishing
practical progression benchmarks

Weeks 11–16 Increasing intensity of routines with a focus on high-interval training
and appropriate overloading techniques for power and muscle mass

Additionally, control group participants will engage in goal setting with the trainer
and receive exercise and physical activity prescriptions to be performed on their own after
each training session [49,65].

2.5.3. The Companion

Here, we describe the theoretical underpinnings of the Companion system, its technical
components, and the integration of these to deliver tailored messages and interventional
strategies.

Theory: Companion is based on an SDT framework via the application of motivational
interviewing (MI) to creatively use information on behaviors, attitudes, and environmental
contexts to create participant–Companion interactions that are tailored to the former’s
needs. SDT addresses cognitive and affective factors in human motivation and posits three
innate psychological needs that form the basis for optimal self-motivation: competence,
relatedness, and autonomy [59]. MI is a client-centered counseling method to explore
and resolve uncertainty towards changing behavior and to enhance intrinsic motivation
to effect change [68]. SDT and MI have been successfully combined to improve physical
activity [69], which has been associated with a common underlying assumption that people
have a tendency for personal growth [70,71].

Technology components, their integration, and function: In general, Companion will com-
prise a front and backend interface. At the front end, an older adult can experience the
Companion through text-based communication using a phone app. An always-on wrist
worn device and/or phone app will passively and continuously collect data that can be
frequently transmitted wirelessly to a backend for processing to support real-time data gath-
ering on wake and sleep behavior. The phone app will also allow two-way communication
and can trigger predetermined messaging (e.g., active CS-EMA [72–74]) to actively further
data gathering on behavior type, intensity, and its context. The backend interface will be
a web-interface that receives processed sensor data and messaging history. Thus, using
sensor and conversation data, an interventionist will be able to rapidly retrieve habitual
behavior patterns, classify conversations (message clusters) into distinct categories that
characterize intent of conversation and engagement rate of the older adult, and retrieve past
conversation history for any duration since starting data accrual. All data processing will be
conducted on a local server or high-performance computing cluster. Figure 2 displays the
conceptual model of Companion’s technical components. Part (A) displays the progression
of data gathering, processing, and integration at the front and backend of the Companion
system. Front-end and backend interface components are color coded in orange and purple,
respectively. Part (B) explains the functions of the system’s individual components.

https://www.youtube.com/channel/UCZsg8fPtquiVrsv8INIvC0g
https://www.youtube.com/channel/UCZsg8fPtquiVrsv8INIvC0g
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components.

Specific to this pilot, Companion will consist of the following components and work-
flow: (i) continuously worn wireless wrist sensors (i.e., ActiGraph Insight Watch: triaxial
accelerometer; ±8 g; 64 Hz) to capture raw motion data twenty-four hours/day. (ii) These
data are transmitted via ActiGraph’s wireless data hubs located at participant homes ev-
ery hour to ActiGraph’s Centrepoint Platform. (iii) Motion data will be extracted from
Centrepoint and processed on our backend located on Northeastern University’s high-
performance computing cluster. This backend includes signal visualization software (i.e.,
Signaligner Pro v2.3.10-beta; Signaligner.org) [42], a signal quality control (QC) algorithm
to identify anomalous sensor signals [75] that are unrepresentative of human movement,
motion summarization algorithms for total activity volume (i.e., MIMS) [40], and activity
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classification using machine learning algorithms: (a) SWaN (sleep, wear, and non-wear) [44]
and (b) MUSS (i.e., multi-site sensing for activity recognition: lying, sitting movement,
non-wear, ambulation, and upright movement) [41,43]. The three algorithmic outputs
are up sampled to an event resolution of one second and paired with a composite SWaN
plus MUSS prediction (Figure 3). Similar and consecutive one second events with the
same neighboring predictions and timestamps are combined into single events, resulting
in continuously labeled activity classification events of variable duration. Combining the
outputs of SWaN and MUSS into a composite prediction will allow us to retain MUSS’
granularity (ambulation vs. sitting movement vs. upright movement) during wear hours,
and SWaN’s more accurate and sophisticated classification of sleep vs. non-wear [41,43,44].
(iv) Processed motion summary and raw sensor data will be visualized by a health coach
using the backend interface to temporally display the data with overlaid automatically
processed behavior labels. This will enable detection of major behavior types (i.e., move-
ment vs. sedentary) (Figure 4). (v) Health coaches will enquire about major automatically
detected behaviors (e.g., movement > 10 min; sedentary > 30 min) to determine context (e.g.,
walk during lunch; in a regular weekly meeting) using interactive two-way communication.
(vi) They can also choose to determine behavior context of any other specific automatically
detected behavior. (vii) These automated and manual records will incrementally yield a
reliable visual model of major habitual and recurring daily behaviors at the backend. Such
information will be richer than what was previously available to an interventionist. (viii)
Based on the model, and incremental information being received in near-real-time, coaches
will engage the participant via personalized text message conversations to intervene and
promote prescription component delivery at opportune times (i.e., near-real-time) to help
develop routine habits. Back-and-forth exchanges may or may not be instantaneous, as in
asynchronous text messaging conversations (i.e., within a few seconds or minutes). Thus,
the Companion will typically respond to certain activities or participant inquiries within
minutes, which will maintain the contextual saliency of any information exchange and
allow for a just-in-time adaptive intervention. Figure 4 depicts Companion’s personalized
and interactive two-way communication, behavior mapping of typical behaviors with
motion data and context, and algorithmic activity type classification; data depicted were
generated during the pre-study testing phase.
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Figure 4. Companion’s personalized and interactive two-way communication, behavior mapping
with motion data and context, and activity type classification. (A) Health coaches first detect major
behaviors (i.e., movement [M] vs. sedentary [S]) by visualizing periods of whole-body locomotion
(i.e., steps) on the ActiGraph Centrepoint platform (A.1.). This knowledge is used in conjunction with
overall wrist motion summary data (MIMS) to further identify periods of non-locomotion movement
(A.2.), e.g., MIMS helps health coaches identify if periods inferred as sedentary during whole-body
locomotion visualization (A.1.) are truly sedentary or may involve other types of non-locomotion
physical activity. Raw actigraphy data are then processed and visualized on the backend using
validated machine learning activity recognition algorithms to classify the signal into selected activity
types and non-wear. Such a three-pass data processing and signal visualization strategy yields a
reasonable understanding of when an older adult is active and sedentary (A.3.). (B) Health coaches
use interactive two-way text-based communication to enquire about the context of major detected
behaviors gathered from activity visualizations (A.1., A.2., and A.3.), to further contextualize behavior,
and to intervene and promote prescription at opportune times. Three sample conversations at
different times of the day (morning, midday, and evening) are depicted here (blue and black boxes
indicate Companion’s and the user’s text messages, respectively). Context gathered via text-based
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communication is overlaid on the backend with periods of sedentariness, locomotion, and other non-
locomotion movement to yield a reliable visual model of the context of major behaviors (A.2.). Labels
(A.2.) for major behaviors and context are displayed on the lower and upper planes, respectively.

Messaging strategy: Communication during weeks 1 to 4 will focus on gathering infor-
mation on the participant’s motivations, preferences, habits, contexts, and usual behavior
patterns to build a typical individual behavior model (Figure 4). Based on our feasibility
testing, we expect a decreasing level of change in behavior models that are built using
information accrued incrementally over these first 4 weeks.

During weeks 5–16, Companion will monitor ongoing and recent behavior on an
hourly basis to process and interpret incoming passive sensor data, as necessary (i.e.,
there may be delays in sensor data availability when the participant is not home), and
periodically communicate with the participant, as necessary. We anticipate engaging
with the participant four to seven times/day at intervals of one to four hours to deliver
contextually salient intervention strategies. Such frequent contact will enable a highly
adaptive and tailored intervention that targets the whole day. The trainers leading the
supervised exercise sessions will serve as the health coaches facilitating Companion’s
communications, which will (i) allow Companion to be perceived as an extension of the
trainer and thus as a valued relationship to foster a sense of accountability in the older adult;
(ii) allow continued conversational engagement with a consistent tone/context; and (iii)
greatly enhance Companion’s ability to leverage participant motivation during supervised
exercise to extend outside periods of supervision. There will be no communications
via Companion during the twice/week supervised exercise sessions as trainers will be
accessible then.

Initiating communication can work in two ways: Companion will proactively check
in with the user by sending a text message, and alternatively, the user may initiate a
conversation by sending text messages at any time of day. Text messaging will not involve
rigid queries but will rather be open-ended. Additionally, there will be a daily Companion-
initiated communication in the early evening (~4 to 6 pm) to discuss the achievement
of that day’s goal and prescribe strategies to achieve pending goals. The nature of the
first communication the next morning will be based on participant performance during
all waking hours of the preceding day, e.g., encouraging, problem solving, etc. Regular
interaction will enable a corresponding incremental personalization of communication
based on knowledge of each participant’s communication style and personality. Similarly,
such frequent interaction will also enable an incremental knowledge of the participant’s
changing physical ability and activity preferences, which will facilitate a corresponding
increase in personalizing activity prescription.

2.5.4. Exercise Prescription Database

To further facilitate the older adult’s perception of Companion as an extension of the
trainer outside periods of supervision, we have compiled a video library of brief (~2–10 min)
exercise tutorials available online (i.e., “Companion Study: Exercise Prescription Database”;
https://www.youtube.com/channel/UCZsg8fPtquiVrsv8INIvC0g (accessed on 11 Novem-
ber 2022)) [67]. These are categorized by (i) static and dynamic stretches; (ii) aerobic
exercises; (iii) flexibility exercises; (iv) upper, lower, and full body resistance exercises; (v)
balance exercises; (vi) core and back rehabilitative/resistance exercises; and (vii) shoul-
der/upper body rehabilitative exercises. Videos from this database will be embedded
within the message thread and will enable health coaches to deliver timely but demonstra-
ble “micro-doses” of physical activity and exercise prescriptions that (i) are an extension
of age-appropriate exercises prescribed during supervision; (ii) are tailored to the partici-
pant’s needs; and (iii) promote “moving more and sitting less” outside supervised sessions.
Since this library is not intended to be a comprehensive compilation of exercise and/or
fitness tutorials, health coaches may periodically reference external resources, as necessary,
based on the participant’s needs, for alternate exercise modes (e.g., yoga, Tai Chi, Pilates,
aerobic Tabata, high intensity interval training, etc.), and/or exercise prescriptions for other

https://www.youtube.com/channel/UCZsg8fPtquiVrsv8INIvC0g
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musculoskeletal rehabilitative needs (e.g., sciatica, hip and/or back pain, plantar fasciitis,
etc.). Externally sourced materials (e.g., videos, written exercise tutorials, etc.) will also be
embedded within the message thread.

2.6. Sample Size and Power Analysis

Sample size calculation was based on conservative power estimates derived using
change in daily sedentary behavior among participants (N = 12) in our prior interven-
tion [76], which recruited similarly sedentary individuals (i.e., middle-aged overweight
and/or obese seated office workers) and delivered intervention components that encour-
aged “moving more and sitting less.” This study was a behavior change study using
treadmill desks, which although not similar to Companion in terms of intervention delivery,
had similar characteristics of being “always available” and a “move more, sit less” behavior
change goals. Study arms with at least 17/group were determined to provide 85% power
(5% two-tailed significance) to detect an effect size of 1.06 between groups. A standard
deviation of 2.8 hours/day for change in total sedentary behavior observed in our prior
intervention corresponds to a mean detectable difference of −2.96 sedentary hours/day
between groups. Our sample size of 23/group accounts for an attrition rate of 26%.

2.7. Planned Data Analyses

All analyses will be conducted using SAS 9.4. (SAS Institute Inc., Cary, NC, USA).

2.7.1. Analyses of Primary and Exploratory Outcomes

Primary outcome variables are (i) daily volume of physical behaviors (i.e., sleep
hours/day, wake-time lying hours/day, sitting for seated transport hours/day, other sitting
hours/day, standing hours/day, and stepping hours/day and step counts/day) and (ii)
physical behavior patterns (e.g., sedentary-to-upright transitions/day, hours/day spent in
prolonged [i.e., >30 min] [77] vs. non-prolonged sedentary behavior [78,79]).

Exploratory health outcome variables are (i) blood pressure; (ii) waist and hip circum-
ference; (iii) body mass; (iv) percent body fat; (v) fasting glucose, total cholesterol, and
low- and high-density lipoproteins and triglycerides; (vi) age-adjusted percentile scores for
executive function, attention skills, episodic memory, working memory, and processing
speed; (vii) SPBB score and mean gait speed and chair stand time; (viii) six-minute walk test
distance; (ix) maximal number of push-ups and squats completed; (x) and questionnaire
outcomes (e.g., from dietary and psychosocial assessment questionnaires).

We will use random intercept mixed linear models, accounting for repeated measures,
to assess between- and within-group effects for the primary and exploratory outcomes
from baseline to follow-up (after 16 and 24 weeks). Post-hoc pairwise comparisons will
be adjusted for multiple comparisons using a Bonferroni correction, and Cohen’s d effect
sizes [80] will be calculated for each post-hoc comparison. Data checks will ensure that the
underlying assumptions of statistical modeling are not violated by the data, and we will
test for potential confounding (i.e., baseline between-group differences in outcome variable
and/or demographic compositions) to adjust models accordingly. Losses to follow-up will
be handled as intent-to-treat and missing data attributable to unsystematic factors (i.e.,
missing at random) will be imputed using joint multiple imputation [81,82]. Sensitivity
analyses (primary outcomes) will consist of complete-case analyses through 16- and 24-
week follow-ups to determine if the treatment responses are altered when examining an
ideal but less conservative scenario of complete intervention compliance and to evaluate
the sensitivity of the results to the handling of missing data (if applicable) and covariate
adjustment (if applicable) [83].

2.7.2. Exploratory Analyses of Intensive Longitudinal Physical Behavior Measurement

We will use multi-group latent growth curve modeling [84–86] to estimate the rate
and pattern of behavior change over time during the intervention and post-intervention
follow-up. These analyses will examine group differences for overall activity volume (mean
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daily MIMS) and time spent in different activity types (i.e., sleep, sedentary, ambulation,
and other upright behaviors). Between-group differences in mean and variance parameters
of these variables will be examined after every week. These analyses will characterize (i)
how typical individual physical behaviors in the treatment and control conditions change
over time, (ii) how much people differ from one another in their physical behavior change
within the treatment and control conditions, respectively, and (iii) how typical individual
change responses within groups differ between the treatment and control conditions. We
hypothesize that the treatment group will show greater individual and group-level positive
growth trajectories up to week 8 for total volumes of weekly activity and ambulatory and
upright behaviors and negative growth trajectories for total volume of sedentary behaviors.
This will be followed by a plateau between weeks 8 and 16 due to increasing stabilization
in habitual behavior patterns.

2.7.3. Exploratory Analyses of Intensive Longitudinal Two-Way Communication Data

The goals of these analyses are (i) to create a pool of analytic strategies that guide incre-
mental automation of Companion messaging to enable the scalability of real-world deploy-
ment and (ii) to empirically determine strategies that maximize engagement and behavioral
responses. To achieve this, we will perform retrospective analyses of Companion–user
interactions to determine actionable communication types that maximize Companion–user
engagement, and which yield positive behavior change.

Engagement with Companion: This will be measured using metrics of receptivity to
near-real-time mobile–health interventions: (i) just-in-time response rate (i.e., fraction
of Companion-initiated messages to which a user responds within 10 min), (ii) overall
response rate (i.e., fraction of all Companion-initiated messages to which the user responds),
(iii) median response delay (i.e., time between a Companion-initiated message and the
user’s first reply to it), (iv) conversive engagement rate (i.e., fraction of Companion-initiated
messages that results in a “conversation”, i.e., a user responds multiple times in a 10 min
window after the first Companion-initiated message), and (v) unsolicited engagement rate
(i.e., user initiates a message) [87,88]. In addition, we will stratify Companion-initiated
messages based on its objective (e.g., educational, goal setting, positive reinforcement,
etc.) and tone (e.g., inquisitive, supportive/empowering, social, etc.) (Supplemental Table
S1), which will enable the characterization of messages that maximize Companion–user
engagement [87–91]. We will use time-varying effect models [92–94] to examine changes
in gross and stratified Companion–user engagement metrics in the treatment group over
the course of the intervention. Time-varying effect models are suitable for analyses of such
intensive longitudinal data as these methods can handle missing data and unequal spacing
between observations. Engagement will be modeled semi-parametrically as a function
of time to examine possible non-linear changes in engagement [95]. We hypothesize that
engagement will increase incrementally up to week 8 and plateau/decrease between weeks
8 and 16. The latter will be attributable to increasing stabilization in habitual behavior
patterns and increased participant independence.

Relationship between Companion communication and longitudinal behavior change: We will
examine the time-varying week-to-week relationship between engagement with Compan-
ion (total and stratified metrics) and physical behavior outcomes (i.e., mean daily MIMS
and volumes of sleep, sedentary, ambulation, and other upright behaviors) using time-
varying effect models with an added statistical interaction term in the model that captures
the strength of association between engagement and physical behaviors. Since this as-
sociation can vary across time, changes in the coefficient of the interaction term would
(i) highlight periods where program engagement is particularly necessary for ensuring
successful behavioral outcomes and (ii) demonstrate the extent to which the relationship
between engagement with Companion and positive physical behaviors is sustained.
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3. Discussion

In this NIH Stage 1 RCT, we design and test the impact of supplementing a traditional
supervised exercise program with Companion, a daily near-real-time and interactive two-
way communication adaptive behavior change system, on physical behaviors of older
adults. The study will recruit 46 overweight and/or obese and sedentary older adults from
the Boston community and measure the impact of Companion-based tailored coaching
on “moving more and sitting less” outside supervised exercise training as compared to
supervised exercise alone.

Our approach has two major advantages over existing mobile health (mHealth) phys-
ical activity interventions. (i) Companion will capitalize on advancements in mHealth
technologies (e.g., passive wearable physiological sensing, smartphones, cloud-computing,
and machine learning algorithms) to extend the known benefits of trainer contact to pe-
riods beyond supervised sessions, i.e., the free-living environment of an older adult. (ii)
Companion’s human-in-the-loop approach will enable the delivery of socially desirable
human traits such as trustworthiness, empathy, attentiveness, compassion, respect, and
knowledgeability, all of which may elicit responsiveness against a hesitancy to change. We
further discuss these two strengths.

Firstly, our system will have the advantage of allowing users to experience Companion
as their “intelligent” human trainer providing extended and on-demand behavior change
support outside of face-to-face contact by delivering intervention components and behavior
change strategies using socially engaging, contextually salient, and tailored text message
conversations in near-real-time. This may motivate older adults to habitually “move more
and sit less” and sustain positive behaviors to further improve health. It has been suggested
that the most effective technologies for physical activity behavior change may be those
that closely match the “gold standard” of frequent and meaningful face-to-face counseling
with a trainer [96–98] who can communicate the “right thing at the right time in the right
way” to the individual [99]. Therefore, a context-sensitive approach that infers human
intent and provides socially and motivationally relevant cues may be needed to success-
fully prompt individuals to act when on their own. While technology-based strategies to
improve free-living physical activity are available [100–102], most strategies that provide a
cue after detecting behavior are one-way feedback systems (e.g., haptic or vibrotactile cue).
Such systems place the burden of initiative on the user. User inaction results in wasted
opportunities to influence behavior. Thus, one-way feedback systems rapidly become
ineffective and cause poor adherence to change [103]. By engaging users in interactive and
intelligent two-way communication to deliver behavior change strategies, Companion-like
systems may improve the effectiveness of current mHealth behavior interventions. Im-
portantly, two-way communication and information on individual preferences/behaviors
better aid users in problem solving, which increases the likelihood of adherence to physical
activity in older adults [104,105]. Unlike problem solving with a personal trainer that is
typically limited to live supervised sessions, Companion will allow engagement several
times daily that can be initiated by the trainer or trainee. This may produce sustainable
physical activity habits among sedentary adults outside periods of supervision.

Relatedly, the ability to deliver on-demand behavior change strategies enabled by a
mobile technology-driven approach means that Companion-like systems may be more
far-reaching to sedentary older adults in need of such interventions (e.g., chronically ill or
at-risk populations) than face-to-face strategies. There is already a rapid growth of mobile
technology and smartphone use adoption among older adults [106], and the share of the
population using mobile technologies is only going to increase as current generations age,
e.g., smartphone adoption among those 65 and older in the US population has increased
from 13% to 61% in the last decade [106]. This gains further relevance as older adults now
represent the fastest growing sector of the population in most economically developed or
developing nations [107]. Thus, the necessity for Companion-like systems to reach seden-
tary older adults and effectively produce sustainable physical activity habits that can impart
positive aging effects will continue to grow. Subsequently, the aging Gen X and Millennial
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generations may also be more comfortable with using mHealth technologies as compared
to older adults today (i.e., Baby Boomer generation) because mobile technologies have been
more ubiquitous in their lives. Thus, Companion-like support systems may reach a larger
proportion of sedentary adults in the future. Importantly, interactive problem solving with
a human may be too complex to be executed by even the best computational reasoning
systems [108], due to the need for a level of intelligence that may be currently unattainable
even with most existing sophisticated AI systems. Our rich intensive longitudinal dataset,
comprising four months of daily two-way communications and automated sensor-based
behavior monitoring, may enhance the understanding of time-varying effects and mecha-
nisms of behavior change in response to personalized near-real-time mHealth interventions.
This may further the understanding of the elements of mHealth interventions that may be
automatable and yield an understanding of the scalability of such systems.

Secondly, the frequent contact and personalization that Companion-like systems can
offer have the advantage of exploiting the power of social connectedness in daily life. This
may (i) help better build rapport, (ii) allow the adult to perceive the virtual Companion
as an objectifiable and valued relationship with desirable human traits, and (iii) elicit
actionable behavior change leading to innate physical activity habits. Establishing social
connectedness in physical activity interventions is particularly important among older
adults because aging results in shrinking social networks, more difficulty maintaining
social ties, and thus perceptions of low companionship [109]. Importantly, perceived low
companionship is associated with increased risk for physical activity declines [110], leading
to early morbidity and mortality [111], increased risk for mental health deterioration (e.g.,
including cognitive decline) [112], poor sleep [112], and cardiovascular health [113]. There-
fore, increasing perceived companionship may lead to better and more sustainable health
behaviors. However, maintaining social ties to avoid perceptions of low companionship
is more difficult in late adulthood [109]. In addition, the last two decades have seen a
great decrease in face-to-face “social groups and structures” coupled with an “exponential
growth in the use of social media and virtual communication” as a means of social connect-
edness [114–116]. As such, Companion-like systems that leverage mHealth technologies
to foster social connectedness and create positive social and behavioral influences may
present a new way forward to adapt health interventions to the rapidly shifting landscape
of social interaction.

Given these highlighted strengths of our approach, Companion-like systems may
positively impact the disease burden associated with the elderly and aging US population.
The proportion of US older adults with two or more chronic diseases grew from 66%
in 2003 to 83% in 2013 [117]. It is projected that by 2030 there will be an additional
27 million Americans with hypertension, and 12 million with coronary heart disease
and stroke [118]. Additionally, the prevalence of neurodegenerative diseases such as
Alzheimer’s and Alzheimer’s-related disease are expected to increase by 66% [119,120]. It
is well known that an active lifestyle and reduced sedentary behavior attenuates the burden
of chronic diseases in older adults including that of neurodegenerative diseases [121]. Yet,
despite known benefits, objectively measured data suggest that only 6% of older adults
engage in the recommended levels of daily physical activity [32]. While participation in
supervised exercise programs is popular in older adults [3–8,122], there is evidence that on
days of supervised exercise, older adults reduce daily leisure-time walking, and that after
commencing an exercise program, movement on non-training days drops below levels
prior to program commencement [11,123]. The positive effect of trainer–trainee interaction
during supervised exercise needs to be leveraged and transferred beyond periods of
supervision. However, it is challenging to maintain the continued and meaningful contact
outside sessions that is needed to produce even small transfer effects [124–126]. mHealth
technology can facilitate this.

This study aims to address limitations of the supervised training model by putting
forth and establishing proof-of-concept for an innovative intelligent two-way interaction
mobile-intervention approach to motivate older adults to “move more and sit less.” Es-
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tablishing such proof-of-concept will yield insights that can be used to generate new
hypotheses to be tested via larger independently funded NIH Stage 2 RCTs (i.e., traditional
efficacy testing), with our long-term aim in mind to deploy a hybrid AI system that ele-
vates scalability and reach to positively impact the ever-growing public health epidemic
of sedentariness contributing to poor health outcomes, reduced quality of life, and early
death.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23042221/s1, Study Protocol and Supplemental Table S1. Cate-
gorization of Companion and User Messages by Objective and Tone [1–22,27,28,31,76,127–129].
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