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Abstract: Recommender systems are becoming an integral part of routine life, as they are extensively
used in daily decision-making processes such as online shopping for products or services, job
references, matchmaking for marriage purposes, and many others. However, these recommender
systems are lacking in producing quality recommendations owing to sparsity issues. Keeping this in
mind, the present study introduces a hybrid recommendation model for recommending music artists
to users which is hierarchical Bayesian in nature, known as Relational Collaborative Topic Regression
with Social Matrix Factorization (RCTR–SMF). This model makes use of a lot of auxiliary domain
knowledge and provides seamless integration of Social Matrix Factorization and Link Probability
Functions into Collaborative Topic Regression-based recommender systems to attain better prediction
accuracy. Here, the main emphasis is on examining the effectiveness of unified information related to
social networking and an item-relational network structure in addition to item content and user-item
interactions to make predictions for user ratings. RCTR–SMF addresses the sparsity problem by
utilizing additional domain knowledge, and it can address the cold-start problem in the case that
there is hardly any rating information available. Furthermore, this article exhibits the proposed
model performance on a large real-world social media dataset. The proposed model provides a recall
of 57% and demonstrates its superiority over other state-of-the-art recommendation algorithms.

Keywords: collaborative filtering; topic modelling; recommendation system; collaborative topic
regression; social matrix factorization; social network; item network structure

1. Introduction

Recently, there has been huge information growth on the Internet due to the swift
development of web applications and internet-based services. Internet users are struggling
to access selective and relevant information due to data abundance [1]. Moreover, the
availability of information on the Internet causes hindrances in decision-making processes.
This is what is recognized as the information overload dilemma [2]. Generally, this situation
arises when systems cannot manage big data systematically. In such cases, users may miss
useful information and possibly access inappropriate and uninteresting content [3]. This
is where Recommender Systems (RS) come into the picture as a helping tool to suggest
various products and services to target users [4]. RS aim at generating recommendations
by using machine learning (ML) algorithms for products or items as per users’ interest
based on their records or preferences. RS are profoundly utilized in diverse areas such
as advertisements, e-commerce, scientific articles, etc. RS are intelligent applications that
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have made significant contributions in numerous commercialized settings such as Netflix,
Last.fm, Amazon, PrimeVideo, etc. [5].

In general, researchers classify ML-based recommenders as collaborative filtering [6,7],
content-based [8], and hybrid [9,10]. The oldest and the most popular technique, Collabo-
rative Filtering (CF) recommends items using records of similar users. CF techniques are
categorized into two groups: neighbourhood-based (memory-based) [11,12] and model-
based techniques [13,14]. Model-based techniques are also known as latent factor models.
In the literature, model-based techniques are considered to have an edge over memory-
based techniques owing to better performance and recommendation results. The major
reason behind this is that model-based techniques fit a statistical model based on the
training dataset, whereas memory-based techniques use the entire dataset and perform
the weighted average of rating data to produce a recommendation. Therefore, owing
to the superiority of latent factor models, these models are emphasized in this research.
Content-based filtering employs item descriptions and features along with user profiles for
the recommendation task [15]. Hybrid RS use ensemble approaches to integrate CF and
content-based techniques to recommend items.

People are more active on social networking sites nowadays which include Facebook,
LinkedIn, YouTube, Last.fm, Twitter, etc., where users can connect with their friends or other
individuals having common interests while also being able to share different multimedia
content such as viewpoints, small video clips, pictures, music, news, etc. Social networking
sites have brought people closer together across the globe and can strongly influence the
thinking pattern and decision-making of online users. Therefore, these social connections
can be fruitful in improving the recommendation quality of RS such as recommendations
for products, online music, news, or promotional content as claimed in [16,17]. Similarly,
connections can also be explored among items that are to be recommended to users. These
item relations can significantly contribute to recommendation tasks [18]. For instance, to
recommend artists to users in Last.fm, the relations among artists are informative and can
help recommend artists that create similar music. There are other examples also where
relations among items can be determined. These include webpage hyperlinks, scientific
articles written by the same authors, movies starring the same actors, etc. Thus, the prime
focus of the present study is to demonstrate the effectiveness of unified information related
to social networks and an item-relational network structure in addition to item content and
user-item interactions to achieve better prediction accuracy.

The proposed algorithm uses different criteria to recommend artists to the target users
as follows:

• The existing or old artists are noteworthy, as they are the ones who are well established
and have made great contributions in their areas, and there are also the people who
have a passionate love for old music. Thus, old artists are recommended based on
other users’ preferences. Hence, traditional collaborative filtering methods are the best
fit for this criterion.

• New or unheard artists are equally important as old ones. When a new album or new
tracks are released, generally music lovers show a keen interest in the latest and new
songs just to keep abreast of music in their interest. Therefore, because of new tracks
or albums, there is no or very limited information available about user choices, and
that makes it challenging for CF methods to make any recommendations. Thus, for
recommending new or unheard artists, item content or attributes and item network
structure information make major contributions in such cases.

• If a user is inactive or completely new to the system and a very small piece of informa-
tion is known about their taste or there is no availability of their preferences, then it is
possible to make effective use of relations among items as well as relations with other
users on the social networks to make recommendations.

• Exploratory variables are significant for online user communities. Based on the content
information of artists and the social relations of users, user profiles can be created
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to establish communities with similar preferences. Moreover, it is also possible to
describe which artists are liked by which types of users.

1.1. Motivation

Recommendation technology generates a good sense of motivation to carry out the
proposed research while keeping in view a specific dimension at the appropriate level
of granularity alongside RS challenges. This research has been inspired by the work of
Collaborative Topic Regression (CTR) [19], Collaborative Topic Regression with Social Ma-
trix Factorization (CTR–SMF) [16], and Relational Collaborative Topic Regression (RCTR)
models [20]. To alleviate the sparsity issue, CTR was proposed by integrating feedback
information into item content information. CTR–SMF extended CTR further by integrating
user network information. Likewise, the RCTR model extended CTR by integrating one
more type of information, i.e., relational information of items into CTR. Following the same
path, this study looks to merge the works of both CTR–SMF and RCTR. Therefore, the key
purpose of this paper is to develop a hybrid hierarchical Bayesian recommendation model
that aims to recommend artists to target users. Our methodology employs some auxiliary
information including item network structure, user relations information, feedback, and
item content information to enhance the accuracy of predictions. Therefore, this model is
a joint graphical model that combines RCTR and CTR–SMF models. Such a model may
fulfill the natural dual need of service providers and users with the automated generation
of recommendations based on data analysis.

1.2. Problem Statement

In a recommendation problem, there are primarily two entities involved, i.e., users
and items. In the present research, users are music lovers and items are the artists whose
tracks are played by users. Suppose the recommendation system is expected to recommend
artists to the users of their interest. Just like [19], assume i indicates users and j indicate
items. Here rij ∈ {0, 1} represents the case of whether user i has played artist j, where rij is
the rating variable. The track of the artist played indicates the preference of user i for artist
j which means rij = 1. However, if rij = 0, then there are two different interpretations of
this. First, user i has no preference for artist j and second, user i is unaware of artist j. That
means it is not sure whether user i dislikes or is ignorant about artist j. The proposed
model is based on the same settings (i.e., implicit ratings) as introduced in [21] and further
used in [19]. The proposed recommendation model is flexible enough to be easily adjusted
for explicit ratings given on a different scale as well. As discussed earlier, traditional
collaborative filtering approaches rely upon a user preference rating matrix only and the
rating matrix is expressed as {rij|i = 1, 2, . . . , I; j = 1, 2, . . . , J} [22]. However, in the
rating matrix, ratings provided by users against a large number of items are very few
which affects the performance of collaborative filtering techniques adversely. The lack
of sufficient rating data generates the sparsity problem which in turn causes issues in
producing quality recommendations. To address this issue, the proposed model takes into
consideration a lot of auxiliary domain information. The main emphasis of this study is
to examine the effectiveness of unified information related to social networking and item
relational network structure in addition to item content and user-item interactions to make
predictions for user ratings.

1.3. Contribution

This paper’s major contributions of this paper are as follows:

• The core contribution of this study is the further extension of RCTR and CTR–SMF
models to build a hybrid hierarchical Bayesian RCTR–SMF model that impeccably
assimilates rating data, item content, social information of users and relational infor-
mation of items to mitigate the sparsity issue in RS.

• Another major contribution of RCTR–SMF is to demonstrate the effectiveness of item
relational networks and social networks together in enhancing prediction accuracy.
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• The RCTR–SMF model can address the cold-start problem in case there is hardly
any rating information available. It makes effective use of item content or attributes,
relations among items as well as relations with other users on the social networks to
generate predictions for new users (who have rated very few items) and new items
(with one or two ratings only). This, in turn, enhances the recommendation quality.

• The experiments conducted on a public dataset reveal that the proposed recommenda-
tion model can attain higher accuracy in predictions than state-of-the-art algorithms.

This paper is structured as follows: Section 2 emphasizes the review of the most
relevant and essential related work. The proposed recommendation model is presented
in Section 3. Section 4 highlights the experimental setup, demonstrates experiments on a
public dataset and analyzes the findings. Section 5 provides a comparative analysis and
confirms the strength of the proposed model over other recommendation methods. Finally,
Section 6 wraps up the paper by presenting concluding remarks.

2. Related Works

This section presents the background of the proposed model (RCTR–SMF) and the
related works in brief. This includes matrix factorization, topic modelling, CTR and other
CTR-based approaches.

2.1. Matrix Factorization

CF predicts the interests of a target user using the preferences of other users. Matrix
Factorization (MF) [23,24] and its extension Probabilistic Matrix Factorization (PMF) [23] are
the most successful recommendation approaches of CF-based methods. MF and PMF are
the leading approaches among latent factor models which are known for their auspicious
performance. Matrix factorization identifies latent factors from the user-item interactions
(ratings) matrix and performs the mapping of users and items against those latent factors.
The prime notion of MF involves the usage of latent vectors to represent users and items in
a low-dimensional space with dimension K. Thus, user i is characterized by a latent vector
ui ∈ RK and item j by vj ∈ RK. The prediction for the item j likely to be given by user i can
be calculated as in Equation (1):

r̂ij = uT
i vj (1)

Let U = (ui)
I
i=1 and V =

(
vj
)J

j=1 be the latent matrices to represent hidden vectors for
all users and items, respectively. In matrix factorization to minimize prediction error (loss
function), we can optimize the objective function in Equation (2) to find the optimal U and
V latent matrices [20]:

minU,V = ∑I
i=1 ∑J

j=1

(
rij − uT

i vj

)2
+ λu ∑I

i=1 ‖ ui ‖2 +λv ∑J
j=1 ‖ vj ‖2 (2)

where λu and λv are the regularized tuning parameters to manage the complexity of the
model and can range from 0 to ∞. Here, 0 means no effect and ∞ means maximum effect.
Regularization is a technique to avoid overfitting problems by reducing the regularized
squared error. Therefore, the magnitude of coefficients (learned parameters) is penalized
because regularization forces them toward 0.

The maximum a posteriori (MAP) estimates the PMF model [23] corresponds to the
objective function in Equation (2). The authors in [19] generalized the PMF model as in
Equation (3):

ui ∼ N
(

0, λ−1
u IK

)
, vj ∼ N

(
0, λ−1

v IK

)
, rij ∼ N

(
uT

i vj, c−1
ij

)
(3)
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where IK is the identity matrix with K dimensions and cij is the precision or confidence
parameter for rij and is defined as in Equation (4):

cij =

{
a, i f rij = 1,
b, i f rij = 0,

(4)

where a and b are tuning parameters when a > b > 0. If cij = 1, MAP estimate matches with
a solution of Equation (2). The larger the value of cij, the more trust is in rij.

Matrix factorization techniques are known for their strong performance, however,
are not free from sparsity problems and find it difficult to address out-of-matrix predic-
tion. Besides this, in matrix factorization, the interpretation of learnt latent space is also
difficult [19,20].

2.2. Topic Modeling

Topic modelling in machine learning [25] can be described as an unsupervised sta-
tistical modelling technique that can be utilized to detect a set of latent “topics” from
an enormous document collection. The “topic” here is distributed across terms inclined
towards a particular theme or a subject. Such a discovery of topics is purely performed
considering a hierarchical Bayesian analysis of a given text. Its main use is in text-mining
where it is used to find out the hidden semantic patterns in text. The hidden topic model
LDA, i.e., Latent Dirichlet Allocation [26], the simplest topic model, helps to discover topics
automatically. LDA assumes that topics are produced before documents [27]. Probabilistic
topic modelling, an extended form of topic modelling, is characterized by a collection of
algorithms whose objective is to discover and annotate enormous sets of documents based on
diverse themes. These themes may include education, games, culture, international affairs,
domestic industries, politics, etc. The application areas where these modelling tools have
major contributions are information retrieval, document classification and corpus exploration.

The basic objective of using topic modelling in RS are to provide content-based modelling
of items. When the corpus of documents is ready, the variational Expectation–Maximization
(EM) method can be applied to learn topics and then, documents can be decomposed
accordingly [26]. For any new document, a variational EM algorithm can be used to infer
topics from the contents of a given item.

2.3. CTR and Its Variants

CTR is the first hybrid recommendation approach of its kind that uses a user rating ma-
trix along with item content for recommending research articles to other researchers/authors.
CTR’s basic purpose is to fit a model by integrating the MF-based CF technique with proba-
bilistic topic modelling and to employ the latent topic space to describe noted words and
noted ratings [19]. CTR extracts the users’/items’ latent features from user rating data and
uses item content information to record the distribution of topics of items [28]. Thus, the
topic proportions θj can be replaced with a latent item vector vj in Equation (3) to obtain
Equation (5):

rij ∼ N
(

uT
i θj, c−1

ij

)
(5)

CTR also addresses the problems of MF-based collaborative filtering techniques. With
this, CTR can outperform MF-based CF approaches with improved interpretability of
results essential for recommendations. Figure 1 presents the graphical model of CTR [19].
This model uses one extra latent variable (i.e., item latent offset) εj between item latent
vectors vj in collaborative filtering and topic proportions θj in latent Dirichlet allocation.
This offset represents the gap between what a research paper is actually about and what
researchers understand about it. The offset can be understood better when there are
adequate user ratings available.
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The item latent offset εj plays a key role in CTR. It attempts to make an item a latent
vector vj closer to topic proportions θj and then possibly deviate from it if required. λv is
the regularization parameter to monitor how close vj is to θj.

CTR Variants: CTR is a hybrid recommendation approach that uses the user rating
matrix along with item content for recommending research articles to other researchers/
authors [19]. However, it suffers from a cold-start problem in the absence of user ratings
(high sparsity of ratings). To tackle sparsity and cold-start issues, several researchers have
extended the work of CTR and have come up with enhanced models. There are two models
in particular, CTR–SMF and CTR–SMF2, proposed in [16,17], respectively, that integrate
social information into CTR to highlight the contribution of social relations in boosting
recommendation quality. LA–CTR, another extended variant, works on the principle that
users’ limited attention gets divided non-uniformly among people [29]. CSTR uses social
network information extensively for recommending celebrities to general users [30].

The authors in [20] proposed RCTR that extends CTR by fusing item network structure
information into CTR to improve recommendation accuracy. The authors in [31] presented
a CTR-based time-aware recommendation model T-CTR to recommend scientific articles.
SICTR uses users’ latent features based on their social relationships and topics which show
their active participation [32]. The TagCDCTR model employs tag sharing to connect
related domains with a collaborative-topic-modelling approach [33]. The authors in [28]
proposed a novel CTR-based three-way recommender model and designed a PMF-LDA-
CTR-based granulation strategy to mine granular features and recognize interpretable
multi-level recommendations. Although the above-mentioned CTR-based methods have
demonstrated improvements in different aspects, there is still an open issue of an effective
fusion of social network information with item network structure into CTR that is being
emphasized here in the current study. A system for detecting and classifying a 3000 image
dataset of LCC disease based on four different disease levels has been developed using
deep learning (DL) based convolutional long-term network (CLTN) amalgamated model of
convolutional neural networks (CNN) and long short-term memory (LSTM). Lemon citrus
canker (LCC) is one of those diseases that has a draconian effect on lemon production [34].
Through the southbound application programming interface, all information is provided
to data paths or data elements like network switches and routers, and through the north-
bound application programming interface, information is provided to applications like
firewalls, load balancers, and business logic. The SDN controller provides flexibility to
create numerous new applications since it is positioned in the middle of the architecture
between the network components and SDN applications [35].
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3. Proposed Model

This section presents the proposed recommendation model, called Relational Collab-
orative Topic Regression with Social Matrix Factorization (RCTR–SMF). The RCTR–SMF
model is hybrid hierarchical Bayesian in nature and creates a fusion of RCTR and CTR–SMF
models. The primary goal of this model is to use different types of auxiliary information, as
utilized by RCTR and CTR–SMF, to boost the accuracy of predictions and in turn enhance
the quality of recommendations. This section provides the essential details needed to
build the proposed model followed by parameter learning using a Maximum A Posteriori
estimate. Then, the computational procedure used is described for making predictions. At
last, the model provides an overview of a family of Link Probability functions.

3.1. Model Building

To demonstrate the graphical model of RCTR–SMF, the same technique is followed
here as adopted in [20]. The graphical model of the proposed model, i.e., RCTR–SMF, is
presented in Figure 2. In this figure, the RCTR part is demonstrated in black and SMF is
represented in red.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21 
 

 

applications since it is positioned in the middle of the architecture between the network 
components and SDN applications [35]. 

3. Proposed Model 
This section presents the proposed recommendation model, called Relational 

Collaborative Topic Regression with Social Matrix Factorization (RCTR–SMF). The 
RCTR–SMF model is hybrid hierarchical Bayesian in nature and creates a fusion of RCTR 
and CTR–SMF models. The primary goal of this model is to use different types of auxiliary 
information, as utilized by RCTR and CTR–SMF, to boost the accuracy of predictions and 
in turn enhance the quality of recommendations. This section provides the essential 
details needed to build the proposed model followed by parameter learning using a 
Maximum A Posteriori estimate. Then, the computational procedure used is described for 
making predictions. At last, the model provides an overview of a family of Link 
Probability functions. 

3.1. Model Building 
To demonstrate the graphical model of RCTR–SMF, the same technique is followed 

here as adopted in [20]. The graphical model of the proposed model, i.e., RCTR–SMF, is 
presented in Figure 2. In this figure, the RCTR part is demonstrated in black and SMF is 
represented in red. 

 
Figure 2. RCTR–SMF Model. 

The generative procedure of the proposed model is given as follows: 
1. For each user i: draw a user latent vector 𝑢𝑢𝑖𝑖 ~ 𝒩𝒩(0, 𝜆𝜆𝑢𝑢−1𝐼𝐼𝐾𝐾), 
2. For each item j: 

(a) Draw topic proportions 𝜃𝜃𝑖𝑖 ~ Dirichlet(α). 

(b) Draw item latent offset 𝜖𝜖𝑖𝑖  ~ 𝒩𝒩(0, 𝜆𝜆𝑣𝑣−1𝐼𝐼𝐾𝐾) and set the item latent vector as 

𝑣𝑣𝑖𝑖 =  ϵ𝑖𝑖 + 𝜃𝜃𝑖𝑖. 

Figure 2. RCTR–SMF Model.

The generative procedure of the proposed model is given as follows:

1. For each user i: draw a user latent vector ui ∼ N
(
0, λ−1

u IK
)
,

2. For each item j:

(a) Draw topic proportions θj ~ Dirichlet (α).
(b) Draw item latent offset εj ∼ N

(
0, λ−1

v IK
)

and set the item latent vector as

vj = εj+θj.

(c) Draw item relational offset τi ∼ N
(
0, λ−1

r IK
)

and set the item relational
vector as

sj = τj+vj.
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(d) For each word wjn:

(i) Draw topic assignment zjn ∼Mult (θj).
(ii) Draw word wjn ∼Mult (βzjn ).

3. Draw parameter η+ ∼ N
(
0, λ−1

e IK+1
)
,

4. Draw a binary link pointer between each pair of items (j, j′),

lj, j′
∣∣ sj , sj′ ∼ ψ

(
·
∣∣ sj , sj′ , η+

)
5. Draw the rating for each user-item pair (i, j) as

rij ∼ N
(

uT
i vj, c−1

ij

)
The Link Probability Function (LPF), in the above procedure, is defined in Equation (6):

ψ
(

lj, j′ = 1
∣∣ sj , sj′ , η+) =

[
σ
(

ηT
(

sj ◦ sj′
)
+ v
)]ρ

(6)

where lj, j′ can assume a binary value to represent item relations, lj, j′ = 1 indicates that a
relation or a link exists between a pair of items (j, j′), whereas lj, j′ = 0 indicates the absence
of any relation, v (a scalar value) represents the offset, η+ = 〈η, v〉 denotes the vector-scalar
concatenation, ◦ is an operator that represents (element-wise) vector multiplication, and
σ(·) defines the sigmoid function given in Equation (7):

σ(x)=
1

1 + e−x (7)

In the above generative procedure, the item relational offset (τj), the key property of
RCTR, is like item latent offset (εj), a key property of CTR. As per requirement, τj can cause
sj for divergence from item latent vector vj. Here, vj reflects the users’ thinking of what item
j is about whereas the item relational vector sj reflects the impact of other items on item j. A
higher value of λr indicates that vj and sj are closer to each other. The model degenerates
with vj = sj when λr reaches to ∞. Experiments also confirm that the performance of the
RCTR–SMF model is better than the degenerated model and validates the efficacy of the
item relational offset τj. One important point that needs to be noted is that to keep things
simple and fair, the same Gaussian model has been adopted here as was used in [19,20].

3.2. Social Network Graph

Let G = (V, E) be a social network graph where the set of nodes V = {vi}m
i=1 and the set

of edges E of G represent users and their social relationships, respectively. To represent the
social network matrix here, let Q = qik be the m × m matrix of G. Suppose qik for any pair of
nodes (vi, vk) represents the relationship between two users (i, k). Then, qik is connected
with a confidence parameter dik to represent the relation strength of users. A large value
of dik represents a stronger relationship between two users (i, k). Thus, the key goal of
SMF is basically to examine the social network graph G to create a users’ l-dimensional
feature space.

Let U ∈ Rl × m be the user latent matrix and S ∈ Rl × m be the social factor feature
matrix. Additionally, let Ui be the user-specific latent vector and Sk be the social factor-
specific latent feature vector. Equation (8) provides the conditional probability distribution
over the observed social relations:

P
(

Q | U, S, σ2
Q

)
=

m

∏
i=1

m

∏
k=1
N
(

qij | σ
(

UT
i Sk

)
, σ2

Q

)IQ
ij (8)
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where N (x| µ, σ2) indicates a normal distribution, µ is the mean and σ2
Q is variance. IQ

ik is

a function of social relations with binary values. If IQ
ik is 1, this indicates an edge (or a link)

between the pair of nodes (i, k), i.e., user i is connected with user k in the social graph, and
if IQ

ik is 0, then no edge (or a connection/link) exists between the pair of nodes (i, k). σ(·) is
the sigmoid function as given above that limits the range of UT

i Sk within [0,1]. 0-mean
spherical Gaussian priors are then placed on user and social factor feature vectors, as shown
in Equations (9) and (10):

P(U | σ2
U) =

m

∏
i=1
N (Ui |0, σ2

U I) (9)

P(S | σ2
S) =

m

∏
k=1
N (Sk |0, σ2

S I) (10)

Thus, with Bayesian inference in Equation (11):

p(U, S
∣∣∣Q, σ2

Q, σ2
U , σ2

S ) ∝ p
(

Q
∣∣∣U, S, σ2

Q ) p(U|σ2
U

)
p
(

S
∣∣∣σ2

S

)
(11)

When LDA is combined with SMF, as shown in Equation (12):

p
(

U , V , S
∣∣∣Q , R, σ2

Q, σ2
R, σ2

U , σ2
V , σ2

S

)
∝ p

(
R
∣∣∣U, V, σ2

R

)
p
(

Q
∣∣∣U, S, σ2

Q

)
× p

(
U
∣∣∣σ2

U

)
p
(

V
∣∣∣σ2

V

)
p
(

S
∣∣∣σ2

S

)
(12)

To find the log of the posterior distribution of Equation (12), the substitution of the
corresponding pdfs is required. To generate the item latent vector vj, a key property as
adopted in CTR is also used here in Equation (13):

P
(

V
∣∣∣σ2

V ) ∼ N
(

θj, λ−1
V IK

)
(13)

where λV = σ2
R/σ2

V .

3.3. Learning the Parameters

In the proposed model, there is the possibility that all parameters may be considered
as random variables, and hence a fully Bayesian technique can be adopted for learning and
inference [36]. However, it is not done here due to the very high computational cost. Since
the fundamental objective of this research is to demonstrate the fusion of various kinds of
auxiliary information to boost recommendation accuracy, it is obvious to follow the same
learning strategy for learning and inference as used in CTR, RCTR and CTR–SMF models.
In addition to this, a Maximum A Posteriori (MAP) estimate is adopted in base models and
is also followed here for parameter learning. MAP attempts to maximize the log-posteriori
of U, V, η+, s1:J, θ1:J, and β, when the hyper-parameters ρ, λu, λv, λr, and λe are given as
specified in Equation (14):

L =ρ ∑
lj,j′

log σ
(

ηT
(

sj ◦ sj′
)
+ v
)
− λu

2 ∑
i

uT
i ui

−λv

2 ∑
j

(
vj − θj

)T(vj − θj
)

−λr

2 ∑
j

(
sj − vj

)T(sj − vj
)
− λe

2
η+Tη+

+∑
j

∑
n

log

(
∑
k

θjkβk,wjn

)

−∑
i,j

cij

2

(
rij − uT

i vj

)2

(14)
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Like CTR and RCTR, a constant is omitted and the Dirichlet prior (α, i.e., the hyperpa-
rameter) of the topic model is set to 1. Then, the coordinate ascent is used to optimize this
objective function. Here, an alternate algorithm is developed to learn parameters because
L does not take the convex shape when all the variables are put together. That is why only
one parameter gets optimized at a time, keeping all other parameters fixed.

Now, set the gradient to 0 to obtain the updated rules for ui and vj, as given in
Equations (15) and (16):

ui =
(

VCiVT + λQSDiST + λu Ik

)−1
+
(
VCiRi + λQSDiQi

)
(15)

vj ←
(

UCiUT + λv IK + λr IK

)−1(
UCjRj + λvθj + λrsj

)
(16)

where Ci and Di are the diagonal matrices with {cij| j = 1, 2, . . . , J} (cij signifies the
confidence managed by tuning parameters a and b, as given in [21] and {dij| j = 1, 2, . . . , J},
respectively, and Ri = {rij| j = 1, 2, . . . , J} being a column-vector having the ratings by
user i.

In the context of sj and η+, first, the variables are updated using gradient ascent, then the
gradients of L w.r.t. sj or η+ are taken. Taking the gradient of Lw.r.t. sj as in Equation (17):

∇ sj L = p∑lj, j′=1(1− σ
(

ηT
(

sj ◦ sj′
)
+ v
)(

η o sj′
)
− λr(sj − vj

)
. (17)

Now, taking the gradient of L w. r. t. η+ as in Equation (18):

∇η+ L = p∑lj, j′=1

(
1− σ

(
η+Tπ+

j, j′

))
π+

j, j′ − λeη+, (18)

where π+
j, j′ = 〈sj ◦ sj′ , 1〉.

For θj, define q(zjn = k) = ψjnk, get the items separated that contain θj and then use
Jensen’s inequality method, as in Equation (19):

L
(
θj ) ≥ −

λv

2
(vj − θj)

T (vj − θj)+∑n ∑k φjnk(log θjk βk,wjn
− log φjnk) = L

(
θj, φj

)
. (19)

Consider φj =
(

φjnk

)N×K

n=1,k=1
. It is evident that L(θj, φj) gives a tight lower bound of L(θj)

and θj can be optimized using projection gradient. The optimal φjnk is given in Equation (20):

φjnk ∝θjk βk,wjn
(20)

To optimize β, apply the M-step update in Equation (21), exactly as used in LDA [26]:

βkw ∝ ∑j ∑n φjnk 1
[
wjn = w

]
. (21)

3.4. Prediction

Once all optimal parameters are successfully learnt, in-matrix and out-of-matrix predic-
tions for the proposed model (RCTR–SMF) can be made. Suppose D is the observed testing
dataset; to determine in-matrix predictions exactly as in [19], the point estimate of ui, θj
and εj has been used here to compute the predicted ratings as given in Equations (22)–(24):

E[rij|D] ≈ E [ui|D] T(E[θj
∣∣D] +E[εj

∣∣D]), (22)

r̂ij = uT
i vj (23)

r∗ij = (u∗i )
T
(

θ∗j +ε∗j ) = (u∗i )
Tv∗j (24)

where E(·) represents the expectation function.
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To determine the out-of-matrix predictions for unseen items which have no ratings,
the ratings are predicted using Equation (25):

∵ E[εj] = 0, r∗ij = (u∗i )
Tθ∗j (25)

3.5. About the Link Probability Functions

The Link Probability Functions (LPF) family influences the Relational Topic Model,
i.e., RTM [36]. The prediction accuracy may vary depending upon the use of these functions.
In the RCTR–SMF model, the selection of these LPF functions depends only on a single
parameter, i.e., ρ. ρ being a non-negative real number, this LPF family holds an infinite
number of such candidate functions. The authors in [37] proposed only two such functions,
which is why new LPF functions may enhance the modelling capacity of the proposed
model. Thus, ρ can be treated as a regularization hyperparameter from an optimization
point of view. By varying the value of ρ, different LPF functions can be compared and
flexibility in their behaviour can be observed as shown in Figure 3 [20]. Figure 3 plots

probability curves using ψ (lj, j′ = 1| sj, sj′ , η+) =
[
σ
(

ηT
(

sj ◦ sj′
)
+ v
)]ρ

, when η = 1 and
v is adjusted to ensure the same starting point for all link probability functions.
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It can be observed from Figure 3 that when ρ = 1, the LPF used in RCTR–SMF collapses
to one of the LPFs [37]. Besides this, CTR–SMF also uses Equation (26):

ψ
(

lj, j′ = 1
∣∣ sj , sj′ , η+

)
= σ

(
sj

Tsj′
)

(26)

if ρ = 1, v = 0 and η = 1 [16].
However, the LPF of RCTR–SMF becomes more flexible with v and η parameters as

compared to CTR–SMF. Here the experiments confirm that all η elements are not the same
and v 6= 0. This implies that v and η are the essential parameters for deciding whether two
items are connected or not.

4. Results Analysis and Discussion

This section of the paper highlights the experimental setup, key findings and results
obtained through an experimental analysis conducted on the proposed recommendation
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model using a real-world dataset, Last.fm. In addition to this, it also deliberates on the
complexity analysis of the proposed recommendation algorithm.

4.1. Experimental Analysis

This sub-section emphasizes the experimental setup used for conducting various
experiments on the proposed recommendation algorithm. This includes a real-world
dataset, experimental settings, and evaluation metrics used to perform analysis. First, a
detailed description as well as necessary interpretations are provided of the dataset used.
Then, experimental settings are highlighted where different values were set for different
parameters to acquire a strong performance of the proposed system. Lastly, evaluation
metrics used are examined where recall was preferred over precision due to ambiguity in
the interpretation of zero ratings.

4.1.1. Dataset Used

Experiments were performed on a large real-world social media dataset hetrec2011-
lastfm-2k (Last.fm) [38]. The Last.fm (an online music service) dataset provides music artist
listening information, social networking and tagging information from around 2K users.
The description of this dataset is given in Table 1.

Table 1. Description of the Lastfm Dataset.

Attributes Total Count Average(s) with Description

# Users 1892
# Items 17,632
# Tags 11,946

# User-user relations 25,434 Average: 13,443 Social relations/user

# User—tags—items 186,479

Average: 98,562 tags/user
Average: 14,891 tags/artist

Average: 8764 different tags used for each artist
Each user used an average of 18,930 different tags

# User-item relations 92,834
Each user listened to an average of 49,067 artists the most

Each artist was listened to by an average of 5265 users

In the hetrec2011-lastfm-2k dataset, artists are considered as items. The sparsity level
of the dataset is very high, i.e., 99.72%. In other words, the ratio of non-zero entries (i.e., the
density of the dataset = 1—sparsity) is 0.0028. Initially, in the pre-processing stage, the
dataset is cleaned to improve its quality by removing any unwanted noisy entries. In the
Last.fm dataset, if a user listens to an artist (i.e., item), then the corresponding user rating
for that artist is considered as 1. Otherwise, the user rating for that artist is considered
missing and is indicated as 0.

4.1.2. Experimental Settings

While performing experiments, a validation set was employed to obtain optimal
parameters for matrix-factorization-based CF [31], CTR [19], CTR–SMF [16], and RCTR [20],
respectively and strong performance was achieved using a grid search on the testing
dataset. It was observed that all CF, CTR, CTR–SMF, and RCTR give good performance
if λu = 0.01, λv = 100, a = 1, b = 0.01. Like CTR, CTR–SMF, and RCTR, here also K = 200
was considered. Here, a and b are taken as the tuning parameters s.t. a > b > 0 and are
used to control the confidence parameters cij and dij. For the proposed recommendation
model, i.e., RCTR–SMF, the parameters λu = 0.01, λv = 100, a = 1, b = 0.01 and K = 200 were
set and all other parameters were varied to understand their influence on the accuracy
of predictions.

As in our proposed model and CTR, CTR–SMF, and RCTR as well, M which represents
the number of recommended items can vary where M = {50, 100, 150, 200, 250, 300} in
recall@M and item_recall@M. Small or large M may vary from application to application.
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In some cases, a smaller M may be more justified while in other cases a bigger M may be
more meaningful. For example, a person may listen to the music of at least 50 artists in a
span of 5 to 6 years. Moreover, the recall was observed to be too small across all the models
on smaller values of M, especially when M < 50. The main reason is that in the testing data,
the average count of artists per user is very low. That is why here in the present research M
does not assume a value less than 50.

4.1.3. Evaluation Metrics

An evaluation scheme was designed to evaluate the recommendation model in both
cases, i.e., user-oriented and item-oriented scenarios. Two evaluation metrics can be used,
i.e., precision and recall. However, in the context of the present research, only recall
was identified as the appropriate performance evaluation measure because the precision
metric is hard to evaluate accurately. The major reason is that a zero rating for an item is
ambiguous and can indicate that the user has no preference for the item or is not aware of
the existence of the item. Moreover, the case ratings rij = 1 are taken up as true positives and
recall uses only the positively rated items among the top M. Hence, the recall is in focus here.
Therefore, all evaluations are performed by calculating the recall score that is mainly used for
assessing accuracy. The recall@M for each user is described as given in Equation (27):

recall@M =
Number o f items the user likes in top M

Total number o f items the user likes
(27)

As usual, the predicted ratings of those items are sorted which are not the part of
training data and the top M artists are recommended to the user. A recommender system is
considered to be better if it achieves a higher recall value with a lower M. The mean score
of recall putting all users together can be used to summarize the recall for the entire system.
The evaluation strategy discussed so far applies to user-oriented scenarios.

To test the prediction capability of the recommendation system on a specific item,
item-oriented recall is also computed. For item-oriented scenarios, a similar evaluation
strategy can be used. The item_recall@M for each item is described as given in Equation (28):

item_recall@M =
Number o f users liked the item in top M

Total number o f users liked the item
(28)

The purpose of this evaluation scheme is to measure the prediction performance of
the system on a selected set of items.

4.2. Generating Top M Recommendations

The basic objective of a recommender system is to provide suggestions to the target
user. This subsection provides a sample output of the proposed recommendation algorithm.
Table 2 presents a list of the top 10 recommendations in decreasing order of prediction
values generated by the proposed algorithm for a user with userID 45.

Table 2. List of Top 10 Recommendations.

Row User ID Artist ID Artist Name Prediction

0 45 1376 White Lies 0.884021
1 45 3739 Hole 0.860969
2 45 183 Jamiroquai 0.859264
3 45 1131 Tool 0.850992
4 45 3110 Fiona Apple 0.837827
5 45 3767 The Horrors 0.832549
6 45 428 The Libertines 0.832283
7 45 432 Klaxons 0.828805
8 45 1639 Jimi Hendrix 0.825787
9 45 324 Cobra Starship 0.813631
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4.3. Complexity Analysis

The complexity analysis focuses on the running time of the proposed recommendation
algorithm. As per the RCTR–SMF learning process (based on update rules), during each
iteration, η updates require O(KL) time complexity, where K represents the latent-factor-
space dimensionality and L represents the number of connections or relationships in the
item relational network and social network. Likewise, the same cost O(KL) is also required
to update the social matrix Q = (qi)

I
i=1 and item relational matrix S =

(
sj
)J

j=1 for each
iteration. Other variable updates require the same cost as needed in [19]. The complexity
required to update U is O(IK3 + IJK2) and to update V is O(JK3 + IJK2), where I and
J indicate the number of users and items, respectively. In RCTR–SMF, there is only the
addition of O(KL) extra time compared to CTR during each iteration.

Based on the experiments, it can be concluded that satisfactory accuracy can be
achieved by RCTR–SMF with a lesser number of learning iterations as compared to CTR
but at par with CTR–SMF and RCTR. Hence, in comparison to CTR, even though the time
complexity of each iteration of the proposed model is a little higher, overall (all iterations
put together) the running time of training RCTR–SMF is lower.

5. Comparative Analysis and Discussions

Several experiments were designed and conducted, and performance comparisons of
the proposed model RCTR–SMF were made with other recommendation algorithms. RCTR–
SMF was evaluated on a large real-world social media dataset, Last.fm, to recommend
music artists. Here the key questions to be answered based on the experiments include:

(a) How does the proposed model (i.e., RCTR–SMF) perform in comparison to other
existing recommendation approaches?

(b) How does social matrix factorization and the family of LPFs together help improve
prediction accuracy?

(c) How do the various parameters affect the prediction performance such as λv (item
content parameter), λr (item relational parameter) and λq (social relationship parameter)?

5.1. Performance Comparison

The performance of RCTR–SMF is evaluated and compared with other recommendation
algorithms under a user-oriented scenario. Here, the main emphasis is on user-oriented over
item-oriented recall due to simplicity, consistency, and convenience throughout the current
study. For the performance comparison of RCTR–SMF, it was compared with other recom-
mendation methods such as CF [7], CTR [19], CTR–SMF [16], and RCTR [20], respectively.

The overall performance for the in-matrix prediction task is presented in Table 3 and
Figure 4, respectively. Here, the number of recommendations varies, i.e., M = {50, 100, 150,
200, 250, 300} and λv is kept constant, i.e., λv = 100. When the number of recommenda-
tions increases, the performance of RCTR–SMF improves. Figure 4 demonstrates that the
proposed model outperforms all other methods with varied M. Moreover, the recall was
observed to be too small across all the models on smaller values of M, especially when
M < 50. The main reason is that in the testing data, the average number of artists per user
is very low. That is why here in the present study M is kept to be not less than 50.

5.2. Influence of the Parameters λv, λq and λr

This subsection attempts to discover the influence of various parameters, such as
λv (item content parameter), λq (social relationship parameter) and λr (item relational
parameter) on the overall prediction performance of the proposed recommender system.
The major focus is on balancing these parameters so that quality recommendations can be
made to the target user.

First, the impact of λv (precision parameter) was analyzed on all models in comparison,
as shown in Table 4 and Figure 5, respectively. If λv is small, then vj (item latent vector)
diverges substantially from θj (topic proportions). The same effect was observed in all
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models. Figure 5 shows that RCTR–SMF outperforms all other models due to social
network and item network information, as it can better represent the user-item latent space.
Hence, the better the modelling of user likings and item tastes in latent space, the better the
prediction performance.

Table 3. Overall Performance Comparison.

Number of
Recommendations CF CTR CTR–SMF RCTR RCTR–SMF

50 0.22 0.24 0.26 0.25 0.27
100 0.33 0.36 0.39 0.38 0.4
150 0.40 0.41 0.45 0.43 0.47
200 0.42 0.44 0.49 0.48 0.52
250 0.44 0.46 0.51 0.5 0.54
300 0.46 0.48 0.54 0.52 0.57
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If the social relationship parameter, i.e., λq = 0, then the proposed model behaves
more like RCTR, which heavily relies on item network structure (represented with link
probability functions), item content information (represented with topic modelling) and
the user-item interactions (represented with MF) to produce recommendations. If λq = ∞,
then the proposed model makes use of users’ social information only for modelling users’
preferences for prediction purposes.

Table 4. Recall comparison of CTR, CTR–SMF, RCTR and RCTR–SMF.

λv CTR CTR–SMF RCTR RCTR–SMF

0 0.4 0.42 0.41 0.43
0.01 0.41 0.44 0.43 0.45
0.1 0.43 0.45 0.44 0.46
1 0.45 0.47 0.46 0.48
10 0.46 0.49 0.47 0.5

100 0.47 0.50 0.49 0.51
1000 0.43 0.45 0.44 0.48
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Figure 5. Recall comparison of CTR, CTR–SMF, RCTR and RCTR–SMF by varying λv while keeping
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On the other hand, if λr = 0, then the proposed model collapses to CTR–SMF, which
uses social information, item content, and user-item interactions. If λr = ∞, then the
proposed model makes use of item network information only for prediction purposes. It
was observed that when λr = 1, the RCTR–SMF model gives the best performance in terms
of prediction accuracy.

Table 5 and Figure 6 exhibit the performance of the CTR–SMF and RCTR–SMF models
for in-matrix predictions when λq (social relationship parameter) is varied, but λv (content
parameter) and λr (item relational parameter) are kept constant, respectively. From Figure 6,
it can be concluded that λq has a significant effect on the performance of the CTR–SMF and
RCTR–SMF as the integration of social information with other information improves overall
prediction accuracy. Figure 6 shows that RCTR–SMF consistently outperforms CTR–SMF.
When λq increases, the prediction accuracy of both models also increases. However, if
λq becomes larger beyond a certain threshold, the models rely more on social information
than on other types of information and the overall system performance goes down. This
means the prediction performance would not be reliable for larger values of λq.

Table 6 and Figure 7 exhibit the performance of the RCTR and RCTR–SMF models
for in-matrix predictions when λr (item relational parameter) is varied, but λv (content
parameter) and λq (social relationship parameter) are kept constant, respectively. Figure 7
demonstrates that λr has a substantial influence on the performance of the RCTR and RCTR–
SMF, as the integration of item network information with other information improves
overall prediction accuracy. Figure 7 shows that RCTR–SMF consistently outperforms
RCTR. When λr increases, the prediction accuracy of both models also increases. However,
if λr becomes larger beyond a certain threshold, the models rely more on item relations
information than on other types of information and the overall system performance goes
down. This means the prediction performance would not be reliable for larger values of λr.

Table 5. Recall Comparison of CTR–SMF and RCTR–SMF.

λq CTR–SMF RCTR–SMF

0 0.38 0.40
0.01 0.40 0.41
0.1 0.41 0.43
1 0.42 0.44
10 0.44 0.46

100 0.45 0.49
1000 0.42 0.45
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Table 6. Recall Comparison of RCTR and RCTR–SMF.

λr RCTR RCTR–SMF

0 0.41 0.415
0.01 0.43 0.44
0.1 0.44 0.45
1 0.46 0.465
10 0.465 0.47

100 0.475 0.48
1000 0.44 0.46
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6. Conclusions

The work presented proposes a general hybrid hierarchical Bayesian model, known as
the RCTR–SMF model, for recommender systems. This model recommends items to target
users by exploiting a blend of different types of additional domain information such as
social networking and item network structure in addition to item content and user-item
interactions. RCTR–SMF also demonstrates the effectiveness of item relational network
and social network information together in enhancing prediction accuracy. RCTR–SMF
addresses the sparsity problem by utilizing the additional domain knowledge and allevi-
ates the cold-start problem by making out-of-matrix predictions. RCTR–SMF can produce
recommendations for new/inactive users and new/unseen items. Experimental evalua-
tions on the RCTR–SMF model using a large real-world social media dataset confirm its
effectiveness and outperformance in comparison with other existing state-of-the-art models.
Based on the experiments, it can be determined that strong accuracy can be achieved by
RCTR–SMF with a lesser number of learning iterations as compared to CTR but on par
with CTR–SMF and RCTR.

For future work, RCTR–SMF can also deliver interpretable results based on the latent
vectors of users that can prove to be useful for recommendation processes. Considering
the scalability issue owing to the presence of millions of users and items in systems, a
distributed learning algorithm can be developed for the proposed model that can seamlessly
tackle the scalability issue of large-scale datasets. Traditional networks must be innovated
to keep up with the swift change in the traffic flow of networks. Although there has
been much advancement in storage devices, applications, and other computing resources,
networks have for the most part remained unchanged. Software Defined Networking
(SDN) is an approach that facilitates network management and configuration.
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