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Abstract: Recently, compressive sensing (CS) schemes have been studied as a new compression
modality that exploits the sensing matrix in the measurement scheme and the reconstruction scheme
to recover the compressed signal. In addition, CS is exploited in medical imaging (MI) to support
efficient sampling, compression, transmission, and storage of a large amount of MI. Although CS of
MI has been extensively investigated, the effect of color space in CS of MI has not yet been studied
in the literature. To fulfill these requirements, this article proposes a novel CS of MI based on hue-
saturation value (HSV), using spread spectrum Fourier sampling (SSFS) and sparsity averaging with
reweighted analysis (SARA). An HSV loop that performs SSFS is proposed to obtain a compressed
signal. Next, HSV–SARA is proposed to reconstruct MI from the compressed signal. A set of color
MIs is investigated, such as colonoscopy, magnetic resonance imaging of the brain and eye, and
wireless capsule endoscopy images. Experiments were performed to show the superiority of HSV–
SARA over benchmark methods in terms of signal-to-noise ratio (SNR), structural similarity (SSIM)
index, and measurement rate (MR). The experiments showed that a color MI, with a resolution of
256× 256 pixels, could be compressed by the proposed CS at MR of 0.1, and could be improved in
terms of SNR being 15.17% and SSIM being 2.53%. The proposed HSV–SARA can be a solution for
color medical image compression and sampling to improve the image acquisition of medical devices.

Keywords: compressive sensing; HSV; color medical imaging; sparsity averaging; reweighted analysis

1. Introduction

Medical images have been exploited by researchers for medical applications over the
past decades, i.e., brain tumor detection techniques using magnetic resonance imaging
(MRI) [1–4], early diagnosis of colorectal cancer using colonoscopy image [5–7], early gas-
trointestinal tract cancer diagnosis using wireless capsule endoscopy (WCE) images [8–11],
cholesterol level detection using eye images [12–14]. These applications require massive
medical images for data training. For storage and transmission, medical images require
effective compression algorithms [15]. Certain medical images have complicated character-
istics with the color format. As a result, efficient compression of medical images, that take
color information into account, is needed [16,17].

Recently, compressive sensing (CS) was presented as a novel sampling scheme for a
sparse signal with sparse signal and reconstruction schemes [18–21]. CS has been approved
as a method for breaking the conventional Nyquist rate and reducing the length of a medi-
cal inquiry [22]. Furthermore, CS was used for medical image compression and compressed
medical imaging (CMI) was proposed as an approach for image compression or sparse
sampling which exploits the concept of CS in medical imaging [23]. The majority of CMIs
only handle grayscale images, and their utilization of color images remains a challenge.
In general, medical images consider red–green–blue (RGB) color space for sensor and
storage purposes. However, many approaches for medical images validated the superior
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hue-saturation value (HSV) over RGB color space, i.e., new HSV aggregation approaches
for color edge detection [24], a polyps segmentation in HSV color space [25], an enhance-
ment in HSV effectively reducing inconsistent illumination during image acquisition [26],
and detection of small colon bleeding in WCE videos [11]. A comparison of the visual
representation between RGB and HSV in MRI, WCE, colonoscopy, and eye images is shown
in Figure 1. However, a CS scheme with HSV color space has not yet been studied.
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Figure 1. A comparison of the visual representation between RGB and HSV in medical imaging.

The CS framework consists of measurement and reconstruction steps. Generally, the
measurements must be taken randomly, and different techniques have been proposed in
the literature, such as variable density Fourier sampling procedures used in MRI [27,28],
Gaussian model [29–31], and Bernouilli random matrices [21]. In addition, a universal
and efficient CS by spread spectrum (SS) Fourier sensing basis was proposed [32]. In
the reconstruction step, basis pursuit (BP) and BP denoising (BPDN) were proposed by
Chen et al. [33]. Furthermore, sparsity averaging (SA) and reweighted analysis (RA) were
proposed to improve the BPDN [34].

Motivated by an efficient HSV-based sampling in color medical images, a novel HSV-
based CS of medical images is proposed in this article. To the best of the authors’ knowledge,
no HSV color space has been studied for the CS of medical images in the literature. The
contributions of this article are listed as follows:

• Proposing a new CS framework by considering HSV color space.
• Proposing a CS approach by exploiting SS Fourier sampling in the measurement ap-

proach.
• Proposing a CS reconstruction with HSV loops by exploiting SA, BPDN, and the RA

enhancement for MRI, WCE, colonoscopy, and eye images.

The organization of this article is as follows. Section 2 elaborates related methods.
Section 3 explains the overview of CS. The proposed HSV-based CS is described in Section 4.
The experiment setup is presented in Section 5. The experiment results are presented in
Section 6. Finally, Section 7 concludes this article.

2. Related Methods

CS was recently introduced for signal/image reconstruction, and it has shown promis-
ing results from both theoretical and engineering standpoints [15]. Natural data, medical
pictures, and hyperspectral photographs are all examples of its uses. By utilizing reduced
sets of measurements, a nonuniform sample from sensors was used in the CS frame-
work [35]. Data sent through wireless networks now has challenges concerning massive
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data generation, storage, and transport. The Fourier transform domain was proposed for
CS reconstruction of non-uniform data provided by massive sensors [35–37]. Furthermore,
a CS technique for hyperspectral images is described using sparse tensor coding of linear
and nonlinear sparse data to overcome the aforesaid problems [38].

The CSs that exploit deep learning (DL) for images were studied in an efficient man-
ner [39]. A CS reconstruction, based on a data-driven DL and conventional CS approach,
was proposed for sparse images, referred to as ADMM–CSNet [40]. A multi-scale DL-based
CS was proposed as a CS reconstruction approach at the multi-scale level [41]. Moreover,
the CS reconstruction scheme was proposed by exploiting generative adversarial neural
networks [42,43].

Carrillo et al. proposed a SA framework of multiple wavelet dictionaries and two
steps of reconstruction based on BPDN and RA for CS of magnetic resonance imaging
(MRI), namely SARA [44]. An improved SARA was proposed using a new sparsity basis
derived from multiple SARA bases, namely multiple-BP with RA (M-BRA) for MRI, WCE,
computed tomography (CT), and colonoscopy [23]. Rahim et al. proposed CS of CT
images utilizing SARA based on total variation denoising (TVDN), instead of BPDN,
to minimize reconstruction time, namely TV-SARA [45]. The CS of WCE images that
considers RGB color space was introduced and RGB–SARA was proposed [46]. Next,
to reduce the reconstruction time, RGB–BPSA was proposed using BPDN and SA for
CS of eye image [47]. In addition, RGB–TV was proposed for CS of eye images as an
initial investigation of TVDN in RGB-based color images [48]. Finally, Table 1 presents the
related methods. In this article, RGB–SARA [46], RGB–BPSA [47], and RGB–TV [48] were
considered as the benchmark methods.

Table 1. Related methods.

Ref Method Name Sparsity Reconstruction Medical Modality Color

[44] SARA SA BPDN with RA MRI Grayscale

[23] M-BRA Multi-SA BPDN with RA MRI, CT, WCE,
Colonoscopy Grayscale

[45] TV-SARA SA TVDN with RA CT Grayscale
[46] RGB-SARA SA BPDN with RA WCE RGB
[47] RGB-BPSA SA BPDN Eye RGB
[48] RGB-TV - TVDN Eye RGB

This article HSV-SARA SA BPDN with RA MRI, WCE,
Colonoscopy, Eye HSV

3. Overview of CS for Medical Images

CS is a novel sampling technique and images can be represented sparsely or compress-
ibly in a spatial or transform domain. CS samples the image at a rate significantly lower
than the Nyquist sampling rate by relying on image sparsity. Furthermore, the diverse
reconstruction methods can recover the image from less compressive samples.

In this section, an overview of CS for medical images is presented as shown in Figure 2.
First, a signal s with dimension n× 1 is generated from a medical image. Next, the signal s
is transformed to a sparse signal x using sparsity basis Ψ with dimension n× n or defined
as x = Ψs. In certain sensing matrices Φ ∈ Cm×n, the compressed signal y ∈ Cm is
represented by m× 1 linear samples and formulated as

y = Φx. (1)
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Figure 2. CS for medical image.

According to Equation (1), one solution to recover x from y is to acquire the sparse
representation x̄ with respect to the known measurement matrix Φ. As a result, this CS
reconstruction approach can be represented by a convex problem as

min
x̄
‖x̄‖0

s.t. ‖y−Φx̄‖2,
(2)

where ‖x‖a =
(
∑m

i=1|αi|a
) 1

a is the `a norm of a vector x. The most popular way to solve the
issue in Equation (2) when `0 norm is substituted by `1 norm is a convex problem [18].

4. Proposed Methodology

A novel SARA-based CS of the eye image is proposed with HSV loops, as shown in
Figure 3. Firstly, a color medical image is considered as the original image and denoted by
s ∈ ZN×N×3, where Z is an unsigned integer number. Then, HSV loops are performed on
each HSV layer.
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Figure 3. The proposed methodology.
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4.1. HSV

The conversion of RGB to HSV is presented as follows. First, the maximum intensity
of RGB is determined as Imax = max(R, G, B), the minimum intensity of RGB is determined
as Imin = min(R, G, B), and the intensity range is calculated from Imax and Imin as Idiff =
Imax − Imin. Next, H, S, and V are calculated as

H =



0 if Imax = Imin(
60◦ × G−B

Idiff
+ 0◦

)
mod 360◦ if Imax = R(

60◦ × B−R
Idiff

+ 120◦
)

if Imax = G(
60◦ × R−G

Idiff
+ 240◦

)
if Imax = B

,

S =

{
0 if Imax = 0
Idiff
Imax

else
,

V = Imax.

(3)

Furthermore, the pixel range of HSV and RGB are as summarized in Table 2.

Table 2. Color space of HSV and RGB.

H S V R G B
Min 0 0 0 0 0 0
Max 360 100 100 255 255 255

4.2. HSV Loop

Each HSV loop process begins with a preparation step, using a single-layer image as
the input and the prepared images as the output. Pixel normalization and enforce positivity
are two steps in the preparation process. Pixel normalization is a method of converting
a range of pixel intensities into a normalized range of 0 and 1. Enforce positivity, on the
other hand, is a method of removing negative values following the pixel normalization
procedure. Figure 4a depicts a graphic representation of the preparation procedure.

4.3. Measurement with Spread Spectrum Fourier Sampling

For each layer, first, preparation is performed to obtain a prepared image P ∈ RN×N

as the input of the spread spectrum Fourier sampling (SSFS). In the preparation step, pixel
normalization and enforce positivity are performed.

Next, in SSFS, the sensing matrix is the spread spectrum matrix and is defined as

Φ = MFS, (4)

where M, F, and S represent the mask matrix, the discrete Fourier coefficient matrix, and
the spread spectrum matrix, respectively. The inverse of MFS is defined as

FTMT1M, (5)

where 1M ∈ RM represents a masking matrix consisting of only values of zero and one
value. Last, if HSV loops are finished, then the compressed signal y is obtained.
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Figure 4. An example of visual representation in the proposed CS.

4.4. SA

In SA [46,47], the sparse basis Ψ is generated from p multiple wavelet bases. The
wavelet filter type is Daubechies (db) with level decomposition l. In general, the sparsity
averaging basis Ψ is calculated as

Ψ =
1
√

p
[
Ψ1, Ψ2, . . . , Ψp

]
, (6)

where Ψ1 denotes db with 1 tap wavelet filter and Ψp symbolizes db with p taps. In this
article, a simple averaging basis is proposed using a db1–bd8 basis and defined as

Ψ =
1√
2
[Ψ1, Ψ8], (7)

4.5. CS Reconstruction

The CS reconstruction problem with BPDN is modeled as

min
s̄
‖Ψs̄‖1

s.t. ‖y−Φ†Ψs̄‖2 ≤ ε,
(8)

where Φ† is ad-joint operator of Φ. SARA is CS reconstruction that lies on SA, BPDN,
and RA enhancement. Algorithm 1 presents the step of reconstruction using HSV–SARA.
The RA enhancement to BPDN solution is a `1 minimization with a reweighted technique,
where a weighted `1 norm replaces the `0 norm. The RA is terminated according to a
condition, i.e., β less than ε ∈ (0, 1), or i = imax is obtained. The RA is modeled as

min
x̄

∥∥∥WΩ†
m x̄
∥∥∥

1

s.t. ‖y−Φx̄‖2 ≤ ε,
(9)

where W ∈ Rm×m is weight matrix. Figure 4c depicts a visual representation example of
HSV-SARA result.
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Algorithm 1: HSV-SARA

Input: Measured signal y ∈ Cm×1, Sensing matrix Φ ∈ Cm×n, and `2 norm upper
bound ε

Output: Reconstructed signal x̂ ∈ Cn×1

Generate SA basis Ψ

Initialization l = 1;
while l ≤ 3 do

Perform BPDN in Equation (8);
Initialization: Ω(0) = σx(Ψ

† x̂(0)), i = 1, β = 1, W(0) = 1;
while β > ε & i < imax do

Update W(i) = f (Ω(i−1), x̂(i−1))δ with x̂(i−1) = Ψ† x̂(i−1);
Perform Equation (9) with W(i) and Ω(i);

Update Ω(i) = max
{

βΩ(i−1), σx

}
;

Update β =
‖x̂(i)−x̂(i−1)‖2
‖x̂(i−1)‖2

;

i← i + 1;
end
l ← l + 1;

end

5. Experiment Setup
5.1. MRI Images

Brain tumor image data used in this article were obtained from the MICCAI 2012
Challenge on Multimodal Brain Tumor Segmentation [49,50], organized by B. Menze, A.
Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. van Leemput. The challenge database
contains fully anonymized images from the following institutions: ETH Zurich, University
of Bern, University of Debrecen, and University of Utah. The data is distributed under a
Creative Commons 3.0 license: Attribution-NonCommercial (CC BY-NC).

5.2. WCE Images

The WCE images were obtained from the gastrointestinal tract for the analysis [8].
The detail of the WCE images are as follows: 128 images, *.JPG format file, resolution of
480× 482 pixels, and RGB color space format.

5.3. Colonoscopy Images

The colonoscopy images were obtained from the CVC-ClinicDB database and had
polyps [51]. CVC-ClinicDB is a database of frames extracted from colonoscopy videos.
CVC-ClinicDB is the official database to be used in the training stages of MICCAI 2015
Sub-Challenge on Automatic Polyp Detection Challenge in Colonoscopy Videos. The use
of this database is completely restricted for research and educational purposes. The use of
this database is forbidden for commercial purposes. The detail of the colonoscopy images
are as follows: 612 representative images, *.TIF format file, resolution of 384 × 288 pixels,
and RGB color space format.

5.4. Private Eye Images

The private eye images from references [12,14] were used. The images were sampled
from patients at TelkomMedika hospital, Bandung, Indonesia. The detail of the color retinal
images are as follows: 90 images, 660× 603 pixels, *.bmp format, and RGB color space.
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5.5. CS Quality Metrics

In this section, the CS quality metrics are presented. First, the measurement ratio (MR)
is a ratio between the sample number of measured signal y and sparse signal x. MR is
calculated as

MR =
m
n

, (10)

where n is the sample number of sparse signal x, m is sample number of measured signal y,
and 0 < MR ≤ 1. In this article, MR = 0.1, 0.2, 0.3, 0.4, 0.5 were investigated.

Second, the signal-to-noise ratio (SNR) is a logarithmic decibel scale between the
desired medical image signal s and the error of the reconstructed signal ŝ to s. SNR is
calculated as

SNR =
1
3

3

∑
l=1

20 log10

(
‖sl‖2
‖sl − ŝl‖2

)
, (11)

where l denotes the image layer and ‖ ‖2 represents the `2 norm.
Last, the structural similarity (SSIM) index is an image perceptual metric with respect

to the quality loss of compression that relies on the luminance, contrast, and structure of
the image. The luminance, contrast, and structure are determined as

lum(s, ŝ) =
2µsµŝ + C1

µ2
s + µ2

ŝ + C1
,

con(s, ŝ) =
2σsσŝ + C2

σ2
s + σ2

ŝ + C2
,

struc(s, ŝ) =
σsŝ + C3

σsσŝ + C3
,

(12)

respectively. µs is the local mean of the pixel in image s, σs is the local mean of the pixel
in image s, µŝ is the local mean of the pixel in image ŝ, σŝ is the local mean of the pixel in
image ŝ, and σsŝ is the cross-covariance of s to ŝ. As a result, the SSIM is calculated as

SSIM(s, ŝ) = [lum(s, ŝ)]a · [con(s, ŝ)]b · [struc(s, ŝ)]c. (13)

Let C3 and C3 = C2
2 and a = b = c = 1 are assumed, in simply, SSIM calculated as

SSIM(s, ŝ) =
(2µsµŝ + C1)

(
2σsÎ + C2

)(
µ2

s + µ2
ŝ + C1

)(
σ2

s + σ2
ŝ + C2

) . (14)

6. Experiment Results

The experiment results are described to validate the analysis of HSV–SARA perfor-
mances in terms of SNR and SSIM.

6.1. SNR Results

The SNR of HSV–SARA, RGB–SARA [46], RGB–BPSA [47], and RGB–TV [48] were
compared with regard to MRs for MRI, WCE, colonoscopy, and eye images. The parameter
setup was as follows: number of basis p = 8 in RGB–BPSA and RGB–SARA, the level
decomposition of 4 levels, and Daubechies type were fixed for this scenario.

Figure 5 shows the SNR results. HSV–SARA offered the best result and outperformed
all benchmark methods. The SNR improvements were:

• Regarding the MRI images, RGB–SARA, RGB–BPSA, and RGB–TV were improved by
HSV–SARA, with improvements of 2 dB, 6 dB, and 8 dB, respectively.

• Regarding the WCE images, HSV–HSV outperformed RGB–SARA, RGB–BPSA, and
RGB–TV, with 2 dB, 10 dB, and 11 dB, respectively.

• Regarding the colonoscopy images, HSV–HSV outperformed RGB–SARA, RGB–BPSA,
and RGB–TV, with 2 dB, 5 dB, and 7 dB, respectively.
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• Regarding the eye images, HSV–HSV outperformed RGB–SARA, RGB–BPSA, and
RGB–TV, with 2 dB, 6 dB, and 7 dB, respectively.
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Figure 5. SNR results.

In addition, Table 3 presents the detailed SNR results with the mean and standard
deviations of all medical modalities. From Table 3, HSV–SARA could improve RGB–
SARA with an average SNR improvement of 11.37% for MRI, 6.69% for WCE, 7.21% for
colonoscopy, and 8.14% for eye images. In general, RGB–SARA was improved by the
HSV-model for all medical images with an average SNR of 8.35%. HSV–SARA could
improve RGB–BPSA with an SNR improvement of 28.34%, 35.86%, 16.98%, and 5.36%
for MRI, WCE, colonoscopy, and eye images, respectively. In general, the average SNR
improvement of RGB–BPSA was 21.64% for all medical images. Last, the SNR of RGB–TV
improved by 21.84% for MRI, 21.38% for WCE, 11.63% for colonoscopy, and 13.70% for eye
images. RGB–TV was generally improved by the HSV-model for all medical images, with
an average SNR of 17.14%.
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Table 3. SNR results.

Medical Modality MR Proposed RGB-SARA [46] RGB-BPSA [47] RGB-TV [48]

0.1 26.56± 2.17 22.62± 2.88 18.32± 2.63 20.12± 2.63
0.2 30.86± 1.38 27.94± 2.54 23.57± 2.54 25.12± 2.49

MRI 0.3 33.42± 0.96 30.82± 2.17 27.18± 1.98 28.31± 1.85
0.4 35.59± 0.65 32.46± 1.88 29.45± 1.71 30.17± 1.56
0.5 37.15± 0.68 33.50± 1.61 30.77± 1.33 31.40± 1.37

0.1 39.56± 1.68 37.25± 0.76 29.16± 2.79 30.74± 4.47
0.2 42.82± 1.09 40.20± 0.75 35.10± 2.27 35.06± 1.55

WCE 0.3 43.90± 1.02 41.47± 0.82 37.16± 1.71 36.85± 1.55
0.4 45.21± 1.18 42.12± 0.83 38.67± 1.69 38.01± 1.28
0.5 45.73± 0.95 42.53± 0.83 39.15± 1.51 38.76± 1.52

0.1 32.37± 1.77 30.19± 2.85 24.90± 3.02 27.30± 6.40
0.2 35.37± 1.58 33.66± 2.48 29.66± 2.89 31.68± 2.56

Colonoscopy 0.3 36.90± 1.44 35.50± 2.13 32.22± 2.44 33.44± 2.23
0.4 37.97± 1.55 36.65± 1.80 34.05± 2.01 34.68± 1.80
0.5 38.48± 1.42 37.40± 1.56 35.11± 1.54 35.59± 1.59

0.1 34.52± 1.13 31.91± 2.99 26.66± 2.76 28.01± 5.24
0.2 36.85± 1.21 34.58± 3.31 31.73± 2.58 32.16± 2.32

Eye 0.3 37.89± 1.22 36.15± 3.32 33.87± 2.58 33.78± 2.47
0.4 38.87± 1.25 37.26± 3.19 35.17± 3.09 35.18± 2.44
0.5 39.16± 1.15 38.05± 3.02 36.14± 2.73 36.25± 2.55

6.2. SSIM Results

The SSIM of HSV–SARA, RGB–SARA [46], RGB–BPSA [47], and RGB–TV [48] were
compared with regard to MRs for MRI, WCE, colonoscopy, and eye images. The parameter
setup was as follows: number of basis p = 8 in RGB-BPSA and RGB-SARA, the level
decomposition of 4 levels, and Daubechies type were fixed for this scenario.

Figure 6 shows the SSIM results. HSV–SARA offered the best result and outperformed
all benchmark methods. The SSIM improvements were:

• Regarding the MRI images, RGB–SARA, RGB–BPSA, and RGB–TV were improved by
HSV–SARA, with improvements of 0.0044, 0.0398, and 0.0238, respectively.

• Regarding the WCE images, HSV–HSV outperformed RGB–SARA, RGB–BPSA, and
RGB–TV, with 0.0234, 0.017, and 0.0428, respectively.

• Regarding the colonoscopy images, HSV–HSV outperformed RGB–SARA, RGB–BPSA,
and RGB–TV, with 0.0114, 0.0370, and 0.0290, respectively.

• Regarding the eye images, HSV–HSV outperformed RGB–SARA, RGB–BPSA, and
RGB–TV, with 0.0068, 0.0216, and 0.0232, respectively.

In addition, Table 4 presents the detailed SSIM results with the mean and standard
deviations of all medical modalities. From Table 4, HSV–SARA could improve RGB–SARA
with an average SSIM improvement of 0.4560% for MRI, 2.4521% for WCE, 1.1803% for
colonoscopy, and 0.7016% for eye images. HSV–SARA could improve RGB–BPSA with an
SNR improvement of 4.5053%, 1.8562%, 4.0334%, and 2.3066% for MRI, WCE, colonoscopy,
and eye images, respectively. Last, the SNR of RGB–TV was improved by 2.5859% for
MRI, 4.6569% for WCE, 3.1380% for colonoscopy, and 2.4880% for eye images. In general,
RGB–SARA, RGB–BPSA, and RGB–TV were improved by the HSV-model for all medical
images, with average SSIMs of 1.1975%, 3.1754%, and 3.2172%, respectively.
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Figure 6. SSIM results.

Table 4. SSIM results.

Medical Modality MR Proposed RGB-SARA [46] RGB-BPSA [47] RGB-TV [48]

0.1 0.936± 0.024 0.931± 0.047 0.833± 0.059 0.880± 0.063
0.2 0.973± 0.009 0.966± 0.030 0.924± 0.037 0.944± 0.033

MRI 0.3 0.982± 0.005 0.978± 0.020 0.959± 0.022 0.967± 0.018
0.4 0.987± 0.003 0.983± 0.013 0.973± 0.014 0.976± 0.012
0.5 0.989± 0.002 0.987± 0.008 0.979± 0.009 0.981± 0.008

0.1 0.985± 0.007 0.984± 0.003 0.939± 0.050 0.940± 0.113
0.2 0.992± 0.002 0.990± 0.001 0.975± 0.028 0.975± 0.012

WCE 0.3 0.994± 0.001 0.992± 0.001 0.982± 0.018 0.981± 0.012
0.4 0.995± 0.001 0.993± 0.001 0.987± 0.014 0.985± 0.003
0.5 0.996± 0.000 0.994± 0.001 0.990± 0.003 0.986± 0.009

0.1 0.970± 0.012 0.947± 0.022 0.879± 0.058 0.890± 0.193
0.2 0.984± 0.006 0.972± 0.011 0.942± 0.037 0.960± 0.026

Colonoscopy 0.3 0.989± 0.003 0.980± 0.006 0.964± 0.029 0.971± 0.024
0.4 0.991± 0.002 0.984± 0.003 0.975± 0.023 0.978± 0.011
0.5 0.992± 0.001 0.986± 0.003 0.981± 0.011 0.982± 0.010

0.1 0.972± 0.007 0.958± 0.020 0.912± 0.041 0.906± 0.155
0.2 0.981± 0.006 0.972± 0.015 0.960± 0.016 0.962± 0.012

Eye 0.3 0.984± 0.004 0.979± 0.011 0.972± 0.010 0.970± 0.015
0.4 0.987± 0.003 0.983± 0.008 0.977± 0.020 0.977± 0.007
0.5 0.988± 0.002 0.986± 0.006 0.983± 0.007 0.981± 0.013

7. Conclusions

This article investigated the effect of HSV color space in CS of medical images. HSV–
SARA was proposed, using spread spectrum Fourier sampling in the CS measurement and
BPDN with reweighted analysis in the CS reconstruction. The medical image was measured
by using spread spectrum Fourier sampling, while the BPDN with Wavelet-based sparsity
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averaging was exploited for the reconstruction. By taking advantage of the HSV color space
of medical image properties, the reconstructed images responded well to the RGB-based CS.
Therefore, the measurement ratio could be significantly improved. The experimental results
revealed that the proposed HSV–SARA outperformed other the benchmark methods, such
as RGB–SARA [46], RGB–BPSA [47], and RGB–TV [48]. For SNR results, the improvement
of HSV–SARA was 8.35% for RGB–SARA, 21.64% for RGB–BPSA, and 17.14% for RGB–TV,
respectively. For SSIM results, RGB–SARA, RGB–BPSA, and RGB–TV were improved
by the HSV-model for all medical images, with average SSIMs of 1.1975%, 3.1754%, and
3.2172%, respectively.
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6. Ciuti, G.; Skonieczna-Żydecka, K.; Marlicz, W.; Iacovacci, V.; Liu, H.; Stoyanov, D.; Arezzo, A.; Chiurazzi, M.; Toth, E.; Thorlacius,

H.; et al. Frontiers of robotic colonoscopy: A comprehensive review of robotic colonoscopes and technologies. J. Clin. Med. 2020,
9, 1648. [CrossRef] [PubMed]

7. Sanchez-Peralta, L.F.; Bote-Curiel, L.; Picon, A.; Sanchez-Margallo, F.M.; Pagador, J.B. Deep learning to find colorectal polyps in
colonoscopy: A systematic literature review. Artif. Intell. Med. 2020, 108, 101923. [CrossRef] [PubMed]

8. Rahim, T.; Usman, M.A.; Shin, S.Y. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in
wireless capsule endoscopy imaging. Comput. Med Imaging Graph. 2020, 85, 101767. [CrossRef]

9. Guo, X.; Yuan, Y. Semi-supervised WCE image classification with adaptive aggregated attention. Med Image Anal. 2020, 64, 101733.
[CrossRef]

10. Xing, X.; Yuan, Y.; Meng, M.Q.H. Zoom in lesions for better diagnosis: Attention guided deformation network for WCE image
classification. IEEE Trans. Med Imaging 2020, 39, 4047–4059. [CrossRef]

11. Usman, M.A.; Satrya, G.B.; Usman, M.R.; Shin, S.Y. Detection of small colon bleeding in wireless capsule endoscopy videos.
Comput. Med Imaging Graph. 2016, 54, 16–26. [CrossRef]

12. Andana, S.N.; Novamizanti, L.; Ramatryana, I.N.A. Measurement of cholesterol conditions of eye image using fuzzy local binary
pattern (FLBP) and linear regression. In Proceedings of the 2019 IEEE International Conference on Signals and Systems (ICSigSys),
Bandung, Indonesia, 16–18 July 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 79–84.

http://doi.org/10.1007/s11042-020-08898-3
http://dx.doi.org/10.1016/j.engappai.2022.105816
http://dx.doi.org/10.1186/s12911-023-02114-6
http://www.ncbi.nlm.nih.gov/pubmed/36691030
http://dx.doi.org/10.3390/biomedicines11010184
http://www.ncbi.nlm.nih.gov/pubmed/36672693
http://dx.doi.org/10.1109/JBHI.2022.3160098
http://www.ncbi.nlm.nih.gov/pubmed/35316197
http://dx.doi.org/10.3390/jcm9061648
http://www.ncbi.nlm.nih.gov/pubmed/32486374
http://dx.doi.org/10.1016/j.artmed.2020.101923
http://www.ncbi.nlm.nih.gov/pubmed/32972656
http://dx.doi.org/10.1016/j.compmedimag.2020.101767
http://dx.doi.org/10.1016/j.media.2020.101733
http://dx.doi.org/10.1109/TMI.2020.3010102
http://dx.doi.org/10.1016/j.compmedimag.2016.09.005


Sensors 2023, 23, 2616 13 of 14

13. Nurbani, C.A.; Novamizanti, L.; Ramatryana, I.N.A.; Wardana, N.P.D.P. Measurement of cholesterol levels through eye based on
co-occurrence matrix on android. In Proceedings of the 2019 IEEE Asia Pacific Conference on Wireless and Mobile (Apwimob),
Bali, Indonesia, 5–7 November 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 88–93.

14. Raharjo, J.; Novamizanti, L.; Ramatryana, I.N.A. Cholesterol level measurement through iris image using gray level co-occurrence
matrix and linear regression. ARPN J. Eng. Appl. Sci. 2019, 14, 3757–3763.

15. Cabral, T.W.; Khosravy, M.; Dias, F.M.; Monteiro, H.L.M.; Lima, M.A.A.; Silva, L.R.M.; Naji, R.; Duque, C.A. Compressive sensing
in medical signal processing and imaging systems. In Sensors for Health Monitoring; Elsevier: Amsterdam, The Netherlands, 2019;
pp. 69–92.

16. Majumdar, A.; Ward, R.K. Compressed sensing of color images. Signal Process. 2010, 90, 3122–3127. [CrossRef]
17. Anselmi, N.; Oliveri, G.; Hannan, M.A.; Salucci, M.; Massa, A. Color compressive sensing imaging of arbitrary-shaped scatterers.

IEEE Trans. Microw. Theory Tech. 2017, 65, 1986–1999. [CrossRef]
18. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
19. Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [CrossRef]
20. Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]
21. Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf.

Theory 2006, 52, 5406–5425. [CrossRef]
22. Jacob, M.; Ye, J.C.; Ying, L.; Doneva, M. Computational MRI: Compressive sensing and beyond [from the guest editors]. IEEE

Signal Process. Mag. 2020, 37, 21–23. [CrossRef]
23. Rahim, T.; Novamizanti, L.; Ramatryana, I.N.A.; Shin, S.Y. Compressed Medical Imaging Based on Average Sparsity Model and

Reweighted Analysis of Multiple Basis Pursuit. Comput. Med. Imaging Graph. 2021, 90, 101927. [CrossRef]
24. Flores-Vidal, P.; Gómez, D.; Castro, J.; Montero, J. New Aggregation Approaches with HSV to Color Edge Detection. Int. J.

Comput. Intell. Syst. 2022, 15, 78. [CrossRef]
25. Mandal, S.; Chaudhuri, S.S. Polyps Segmentation using Fuzzy Thresholding in HSV Color Space. In Proceedings of the 2020

IEEE-HYDCON, Hyderabad, India, 11–12 September 2020; IEEE: Piscataway Township, NJ, USA, 2020; pp. 1–5.
26. Nisha, J.; Gopi, V.P.; Palanisamy, P. Automated colorectal polyp detection based on image enhancement and dual-path CNN

architecture. Biomed. Signal Process. Control 2022, 73, 103465. [CrossRef]
27. Puy, G.; Vandergheynst, P.; Wiaux, Y. On variable density compressive sampling. IEEE Signal Process. Lett. 2011, 18, 595–598.

[CrossRef]
28. Satrya, G.B.; Ramatryana, I.N.A.; Novamizanti, L.; Shin, S.Y. Enhanced RGB-Based Basis Pursuit Sparsity Averaging Using

Variable Density Sampling for Compressive Sensing of Eye Images. IEEE Access 2022 , 10, 133439–133450. [CrossRef]
29. Yu, G.; Sapiro, G. Statistical compressed sensing of Gaussian mixture models. IEEE Trans. Signal Process. 2011, 59, 5842–5858.

[CrossRef]
30. Nouasria, H.; Et-tolba, M. New constructions of Bernoulli and Gaussian sensing matrices for compressive sensing. In Proceedings

of the 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat, Morocco, 1–4
November 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 1–5.

31. Da Poian, G.; Bernardini, R.; Rinaldo, R. Gaussian dictionary for compressive sensing of the ECG signal. In Proceedings of the
2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings,
Rome, Italy, 17 October 2014; IEEE: Piscataway Township, NJ, USA, 2014; pp. 80–85.

32. Puy, G.; Vandergheynst, P.; Gribonval, R.; Wiaux, Y. Universal and efficient compressed sensing by spread spectrum and
application to realistic Fourier imaging techniques. EURASIP J. Adv. Signal Process. 2012, 2012, 1–13. [CrossRef]

33. Chen, S.S.; Donoho, D.L.; Saunders, M.A. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [CrossRef]
34. Carrillo, R.E.; McEwen, J.D.; Wiaux, Y. Sparsity averaging reweighted analysis (SARA): A novel algorithm for radio-interferometric

imaging. Mon. Not. R. Astron. Soc. 2012, 426, 1223–1234. [CrossRef]
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