
Citation: Garmendia-Orbegozo, A.;

Nuñez-Gonzalez, J.D.; Anton, M.A.

SLRProp: A Back-Propagation

Variant of Sparse Low Rank Method

for DNNs Reduction. Sensors 2023,

23, 2718. https://doi.org/10.3390/

s23052718

Academic Editor: Juan M. Corchado

Received: 19 January 2023

Revised: 16 February 2023

Accepted: 28 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

SLRProp: A Back-Propagation Variant of Sparse Low Rank
Method for DNNs Reduction
Asier Garmendia-Orbegozo 1,† , Jose David Nuñez-Gonzalez 1,*,† and Miguel Angel Anton 2,†

1 Department of Applied Mathematics, University of the Basque Country UPV/EHU, 20600 Eibar, Spain
2 TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain
* Correspondence: josedavid.nunez@ehu.eus
† These authors contributed equally to this work.

Abstract: Application of deep neural networks (DNN) in edge computing has emerged as a con-
sequence of the need of real time and distributed response of different devices in a large number
of scenarios. To this end, shredding these original structures is urgent due to the high number
of parameters needed to represent them. As a consequence, the most representative components
of different layers are kept in order to maintain the network’s accuracy as close as possible to the
entire network’s ones. To do so, two different approaches have been developed in this work. First,
the Sparse Low Rank Method (SLR) has been applied to two different Fully Connected (FC) layers
to watch their effect on the final response, and the method has been applied to the latest of these
layers as a duplicate. On the contrary, SLRProp has been proposed as a variant case, where the
relevances of the previous FC layer’s components were weighed as the sum of the products of each
of these neurons’ absolute values and the relevances of the neurons from the last FC layer that are
connected with the neurons from the previous FC layer. Thus, the relationship of relevances across
layer was considered. Experiments have been carried out in well-known architectures to conclude
whether the relevances throughout layers have less effect on the final response of the network than
the independent relevances intra-layer.

Keywords: pruning; deep learning; edge computing

1. Introduction

The use of deep neural networks (DNN) in different scenarios related to Machine
Learning (ML) applications has developed in such a way that currently neural network
designs have billions of parameters with a great capability of prediction, as one of the
most used types of architecture in prediction tasks. Specifically, some of those applications
include image, sound, and textual data recognition. In contrast to other ML algorithms,
the DNNs have achieved a remarkable accuracy. However, the use of these networks in
memory and processing resource constrained devices is limited due to the amount of data
needed to develop these architectures and the high computation costs for training them.
Consequently, different reduction techniques are essential to fit these former networks in
resource constrained devices, such as edge devices.

Among others, the most used and effective way to shrink these networks is the use
of techniques such as pruning and quantization. The former one consists of removing
parameters (neurons or weights) that have negligible contribution while maintaining the
accuracy of the classifier. On the other hand, quantization involves replacing datatypes
to reduced width datatypes, by transforming data to fit into new datatypes’ shapes. In
this way, reduced networks are able to compete with the original ones in terms of accuracy
and even improve these in some cases in which overfitting issues were hindering their
predictability. Moreover, by reducing the width of the data, edge devices could face the
storage issue mentioned above and collect larger datasets in constrained memory sizes.

Sensors 2023, 23, 2718. https://doi.org/10.3390/s23052718 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052718
https://doi.org/10.3390/s23052718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3787-8186
https://orcid.org/0000-0002-5047-1033
https://orcid.org/0000-0002-3775-2906
https://doi.org/10.3390/s23052718
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052718?type=check_update&version=1

Sensors 2023, 23, 2718 2 of 14

Mainly convolutional neural networks (CNN) became a widely used network structure
in image recognition tasks. Such a success is built upon a large number of model parameters
and convolutional operations. As a result, the huge storage and computation costs make
these models difficult to be deployed on resource-constrained devices, such as phones and
robots, needing to adopt different reduction techniques.

In this work, we introduce a new variant to the Sparse Low Rank (SLR) method to
develop weight pruning in well-known architectures, SLRProp. We judge that the last
Fully Connected (FC) Layer, Final Response Layer (FRL), is the most relevant to the final
decision. Moreover, the relevance of weights of this final layer are propagated to the
previous layers, making each neuron non-independent of the previous layers in terms of
relevance. Consequently, the connections of each neuron has a direct relationship with
neuron’s predictability in the final decision of the network, needing to consider them. After
factorizing the weight matrices of FC Layers, we sparsified them only considering the most
relevant parts and propagate these relevances to the previous FC layers by considering
the connections between different FC layers. Similarly, we performed a parallel process in
which the sparsification of matrices has been carried out independently between layers,
only considering the relevance intra-layer. Finally, we state the validity of the supposition of
backpropagating the relevance within layers. As a result, the pruning process is optimized
by determining the less relevant components of each layer, as a consequence of the addition
of the backpropagation concept to the Sparse Low Rank Method contributed in this work.

State of the Art

There have been several attempts to reduce DNNs dimensionality by applying the
techniques mentioned above. Pruning techniques consist of removing part of connections
(weights) or neurons from the original network so as to reduce the dimension of the original
structure by maintaining its ability to predict. The core of these techniques reside on the
redundancy that some elements add to the entire architecture. Memory size and bandwidth
reduction are addressed with these techniques. Redundancy is lowered and overfitting is
faced in some scenarios. Different classifications of works based on this ability are made
depending on element pruned, structured/unstructured (symmetry), and static/dynamic.

Static pruning is the process of removing elements of a network structure offline
before training and inference processes. During these last processes no changes are made
to the network previously modified. However, removal of different components of the
architecture requires a fine-tuning or retraining of the pruned network. This is a direct
consequence of the changes that suffer the network by removing big part of its elements.
Thus, some computation effort is needed in order to reach comparable accuracy to the
original network.

The pruning has been carried out by following different criteria. In [1,2], they used
the second derivative of the Hessian matrix to reduce the dimension of the original ar-
chitecture. Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS) work under
three assumptions. Quadratic: the cost function is near quadratic. Extremal: the pruning
is conducted after the network converged. Diagonal: sums up the error of individual
weights by pruning the result of the error caused by their co-consequence. Additionally,
OBS avoids the diagonal assumption and improves neuron removal precision by up to 90%
reduction in weights for XOR networks. Using Taylor expansions of first order [3,4] was
also an alternative to the previous ones to tackle networks’ dimension issues, as a criterion
to approximate the change of loss in the objective function as an effect of pruning.

Some works were based on the magnitude of the elements themselves. It is undoubt-
edly true that near-zero values of weights make far less contributions to the results than
others that surpass a certain threshold value. In this way, removing connections that may
appear unnecessary, the original network is shrunk. The best way to accomplish this is the
removal of weights layer by layer to not abruptly decrease the performance of the resulting
network. LASSO [5] was introduced as a penalty term. It shrinks the least absolute valued
feature’s corresponding weights by increasing weight sparsity. This operation has been

Sensors 2023, 23, 2718 3 of 14

shown to offer a better performance than traditional procedures such as OBS by selecting
the most significantly contributed variables instead of using all the variables, achieving
approximately 60% more sparsity than OBS. The problem with LASSO is that is an elemen-
twise pruning technique leading to an unstructured network and sparse weight matrices.
By performing this technique dividing the process by groups—as Group LASSO [6] does,
removing entire groups of neurons and maintaining the original network’s structure—this
last issue was solved. Groups are made based on geometry, computational complexity, or
group sparsity, among others.

Singular Value Decomposition (SVD) is an effective and promising technique to shred
convolutional or FC layers by reducing the number of parameters needed to represent them.
Not only it has been useful for image classification tasks, but also in object detection [7]
scenarios and others related with DNN-based acoustic modeling [8,9]. Low-rank decom-
position for convolution layers as well as fully connected layers were applied in several
works. Kholiavchenko et al. [10] proposed an iterative approach to low-rank decomposition
by applying dynamic rank selection to image classification and object detection models.
One of its negative aspects was that iteratively applying low-rank decomposition needs
longer time and higher computational resources for rank selection in deeper models. The
alternative proposed by [11] assumes the properties of both low-rank and sparseness of
weight matrices while aiming to reconstruct the original matrix. In [12], through mixing the
concepts of sparsity and existence of unequal contributions of neurons towards achieving
the target, the Sparse Low Rank (SLR) method is proposed—a method that scatters SVD
matrices to compress them by conserving lower rank for unimportant neurons. As a result,
it is feasible to reduce the 3.6× storage space of SVD without much variance on the model
accuracy. Speedup in the computation was another advantage that has the structured
sparsity obtained by the presented approach.

The majority of the previous works had paid attention to the individual pruning of
layers while not considering the connection between different layers. In [13], they claimed
that the last FC layer is the most relevant of the entire network regarding the effect on
the final response of the entire network. Considering this last, they proposed to prune
the previous layer of the network when considering the connections of neurons with
the neurons of this last FC layer called the Final Response Layer (FRL). In this way, the
relevances of the neurons considered independently for the FRL were backpropagated to
the previous layer’s neurons. The pruning of the rest of the layers was carried out similarly,
scoring the relevance of the neurons when considering the connections with the posterior
layers’ neurons.

Other alternatives have been proposed to carry out static pruning. In [14], they pro-
posed an innovative method for CNNs pruning called layerwise relevance propagation.
Each unit’s relevance to the final decision is measured, and the units that are below a prede-
fined threshold are removed from the original structure. As a last step, each component’s
relevance is recalculated by calculating the total relevance per layer to keep it constant
through the iterations. Thus, each unit’s relevance is recalculated to maintain this value.
In [15], a method of pruning redundant features along with their related feature maps,
according to their relative cosine distances in the feature space, is proposed, and the authors
achieve smaller networks with a significant download in post-training inference compu-
tational costs and achieving a decent performance. Redundancy can be minimized while
inference cost (FLOPS) is reduced by 40% for VGG-16, 28%/39% for ResNet-56/110 models
trained on CIFAR-10, and 28% for ResNet-34 trained on ImageNet database with almost
negligible loss of accuracy. To fix the decrease in accuracy after pruning, models were
retrained for some iterations maintaining all hyper-parameters.

2. Material and Methods

In this section, we describe the methodology proposed in order to attempt to improve
the results obtained in the literature for different neural networks and datasets. Additionally,
we present the datasets and models used for experimentation.

Sensors 2023, 23, 2718 4 of 14

2.1. Methodology

The approach we present in this study follows this methodology. First, traditional
low-rank decomposition SVD is applied to the weight matrix of the final FC layer, called
FRL. Next, input and output weights in the layer are selected for sparsification using
different neuron selection strategies. Then, sparsification is applied to the selected input
and output neuron components in the decomposed matrices. With the most relevant
neurons of the final FC layer obtained we back propagate their relevance to the prior FC
layer, following the idea proposed by [13], and we obtained the relevance of the neurons
composing the prior FC layer. Finally, we repeated the process of sparsification for the
decomposed matrices of the prior FC layer. In parallel, we performed the same process
of sparsification but only considering the relevance of each individual layer for the last
two FC layers. The results and comparative of both methodologies are summarized in
Section 4.

2.1.1. Single Value Decomposition (SVD)

One way for decomposing matrices representing the weights of neural networks is
the use of low-rank factorization. A convolutional neural network is composed of a large
number of convolutional layers and fully connected layers. By applying this technique
to convolutional kernels weights optimization of the inference speed, the convolution
operation could be obtained due to the reduction in the time needed for multiplication with
factorized matrices compared to that of multiplication with 3D weights of kernels.

In a FC layer having m input and n output neurons, activation a ∈ Rn of the layer
with n nodes is represented as

a = g(WTX + b) (1)

where X represents the input to the layer, and g() represents any of the possible activation
functions. FC layers connections form a weight matrix W ∈ Rmn and a bias vector b ∈ Rn

where each parameter in the weight matrix W is wij ∈ R (1 ≤ i ≤ m, 1 ≤ j ≤ n), and bias
matrix b is bj ∈ R(1 ≤ j ≤ n). The proposed approach is applied to the weight matrix
W after training the entire model. The SVD approach decomposes the weight matrix W
as W = USVT where U ∈ Rm×m, VT ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a
diagonal matrix.

2.1.2. Sparse Low Rank Decomposition

The matrix S is a diagonal matrix containing n non-negative singular values in a
decreasing order. The k singular values that are most significant are kept by Truncated
SVD where the decomposed matrices U, S, and VT become Û, Ŝ, V̂T ∈ Rm×k,Rk×k,Rk×n.
By this way, the original weights W are replaced into reconstructed approximated weight
Ŵ as Ŵ = ÛŜV̂T .

In SVD we have diagonal matrix sigma S with the most significant singular values
from the upper left to lower right in a decreasing order. In the truncation process the first k
rows of U and columns of V̂T are kept.

Simulating the approach driven by [12] we compressed truncated matrices Û, Ŝ, and
V̂ based on the importance of the m input and n output neurons, i.e., we represented a
few columns of Û and rows of V̂T with a rank lower than k, called reduced rank rk. In this
way, only rk most significant rows and columns are kept in Û and V̂T , respectively, due
to the order of importance of W that starts from left to right through columns of Û and
top to bottom through rows of V̂T . We considered only the most significant rows (rm) and
columns (rn) from each column and row from Û and V̂T , respectively, following the cost
criteria, briefly explained in the next subsection.

When the matrices Û, Ŝ and V̂T are sparsified with sr and rr, the total number of
non-zero parameters of the Û, Ŝ, V̂T become k(m− rm + n− rn + 1) + rk(rm + rn), which
is less than the number of non-zero parameters of truncated SVD k(m + n + 1).

Sensors 2023, 23, 2718 5 of 14

Pruning fully connected layers is much more effective in terms of accuracy, time, and
energy efficiency than pruning convolutional layers as shown in [16], which contributes to
bigger losses in prediction capability with the same rate of reduction in parameters. Those
are usually placed in the first positions in DNNs, and they are more sensitive than the ones
that are placed in the last positions in many cases. In this study, we followed the approach
directed by [12] sparsifying SVD matrices achieving a low compression rate without big
losses in accuracy. We used as a metric of sparsification the compression rate defined in [12],
as the ratio between the parameters needed to define the sparsified decomposed matrices
and the original weights’ matrix parameters. In our case, we analyzed their 3 variants of
applying SLR, that were based in cost, weights, and activations, and we proposed two new
variants that sum the importance of cost and weights and cost and activations due to the
fact that each of them performed as the best variant in different compression rate regimes.

Overall, the most relevant attribute was the cost, so we decided to establish this as the
criteria for selection of the rows and columns for sparsification. An explanation of the full
process of this method is given in Algorithm 1.

Algorithm 1 SLRProp

Weights1←FRL weights
Weights2←Previous FC layer weights
U, S, V ← SVD(Weights1)
tU, tS, tV ← U[:, 0 : rank], S[0 : rank], V[0 : rank, :]
for Nrows do

tempU[row, rk :] = 0
Weightst← tempU ∗ tS ∗ tV
Score← Accuracy(Weightst)
is←Ranking of rows

end for
for Ncolumns do

tempV[rk :, column] = 0
Weightst← tU ∗ tS ∗ tempV
Score← Accuracy(Weightst)
os←Ranking of columns

end for
U(rmrows)← 0 where rm=sr*m
V(rncolumns)← 0 where rn=sr*n
U2, S2, V2← SVD(Weights2)
tU2, tS2, tV2← U2[:, 0 : rank], S2[0 : rank], V2[0 : rank, :]
for Nrows do

Score← ∑ Abs(U2[i, j] ∗ is[j])
is2←Ranking of rows

end for
for Ncolumns do

tempV2[rr :, column] = 0
Weightst2← tU2 ∗ tS2 ∗ tempV2
Score← Accuracy(Weightst2)
os2←Ranking of columns

end for
U2(rmrows)← 0
V2(rmcolumns)← 0

2.1.3. Selection of Rows and Columns Based on Cost

A neuron’s importance is defined by whether there is a change or not in the network
performance after removing it. Let c be the default cost of the neural network with original
trained weight W estimated for the p training samples, computed using any loss function.
Let ĉ be the value of cost of the network with sparsified weights Ŵ. By truncating with

Sensors 2023, 23, 2718 6 of 14

reduced rank rr a specific row of Û or column of V̂T we have the absolute change in cost is
or os. Those are calculated as follows:

isi = |c− ĉi| (2)

osj = |c− ĉj| (3)

As the sparsification process purpose is to ensure that the functionality of the network
does not change after compression, and not to reduce the overall network cost or improve
accuracy, only the absolute change in the cost value is considered.

2.1.4. Propagation of Relevance between Layers

As it is known, the majority of neural networks can be formulated as a nested function.
Thus, we can define a network with n hidden layers as a F(n) = f (n) ◦ f (n−1) ◦ ... ◦ f (1).
Each layer can be represented as follows:

f (n)(x) = σ(n)(w(n)x + b(n)) (4)

where σ(n) is the activation function of each layer, w(n) is the corresponding layers connec-
tions’ weight function, and b(n) is the bias of each layer. At this stage it is possible to say
that all of these layers are interconnected and each of them has direct relevance on the final
decision of the entire network. Consequently, weights from the FRL, that is the last Fully
Connected Layer, backpropagate their relevance to the prior layers as proposed in [13]. As
a result, the relevance of each neuron in the final decision is the composition of weights
that are interconnected until the FRL corresponding element’s relevance. The summation
of the corresponding relevances is given by Equation (5).

sk = |w(k+1)|>|w(k+2)|>...|w(n)|>sn (5)

The absolute value of the weights that are connected to each of the neurons of the FRL are
multiplied by the relevance of these in the FRL.

sk,j = ∑
i
|w(k+1)

i,j |sk+1,i (6)

Equation (6) shows the relevance of the j-th neuron in the k-th layer, which propagates the
relevances of the neurons from the posterior k + 1-th layer that are connected with it.

By introducing this idea to the SVD matrices, keeping only the most relevant rows of
U matrices, we can consider only the most relevant neurons of that layer. The procedure
in the FC layers that are not the FRL, is similar to the original SLR method except for the
sparsification of the U matrices where the relevance propagated through the posterior
layers is considered to determine the most relevant neurons. This relevance is propagated
following Equation (6).

In summary, the main contributions made by this work are the following. The pruning
of weights carried out in these FC layers is more optimal than in the original SLR method.
Consequently, the performance of the resulting network is raised, obtaining sub-optimal
results in terms of different performance metrics defined in Section 4 with far less weights
needed compared with the original structure. Thus, in scenarios in which original network
structures cannot fit end user devices due to memory restrictions are crucial for such
reduction techniques.

2.2. Materials

Regarding the materials, we used two well-known models for image recognition, VGG-
16 [17] and Lenet5 [18], where VGG architecture is much known for its memory intensive
FC layers. It is worth noting that VGG is the commonly used architecture with FC layers
where other popular image recognition models, such as ResNet, Inception, MobileNet,

Sensors 2023, 23, 2718 7 of 14

ResNet, DenseNet, and object detection models, do not have FC layers except the final
softmax layer. Tables 1 and 2 show the specifications of each network structure.

These two different approaches were tested on different well-known datasets, Cifar10
(VGG16), Cifar100 (VGG16), and MNIST (Lenet5). Each of them contain 32 × 32 images
(color images in Cifar10/Cifar100 and grayscale images in MNIST). In case of Cifar10 and
MNIST there are 10 different classes and 100 in Cifar100. All of them have been trained
using default 10,000 test images and 50,000 and 60,000 training images for the Cifar and
MNIST datasets, respectively. Different compression rates were applied for sparsifying
SVD matrices; therefore, for each dataset we obtained different performance metrics for
each method. Overall, we were able to state which method was the best in each case. The
datasets used for experiments comprise a good mix of different image types, sizes, and
number of classes. CIFAR-10 and CIFAR-100 have general purpose image classes where
MNIST dataset contains handwritten digit images.

Moreover, to demonstrate the usefulness of our approach in sensor related data we
tested our approach in a model consisting of 3 FC layers for the Room Occupancy Estimation
Data Set from the UCI Machine Learning Repository. It is a dataset for estimating the precise
number of occupants in a room using multiple non-intrusive environmental sensors such as
temperature, light, sound, CO2, and PIR. There are 10,129 instances using 1000 for testing
and the rest for training. Table 3 shows the specifications of the network structure.

Table 1. VGG16 model trained for 32 × 32 images.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input Image 1 32 × 32 × 3 - - -
Conv-1 2 × Conv 64 32 × 32 × 64 3 × 3 1 relu
Pool1 Maxpool 64 16 × 16 × 64 3 × 3 2 relu

Conv-2 2 × Conv 128 16 × 16 × 128 3 × 3 1 relu
Pool2 Maxpool 128 8 × 8 × 128 3 × 3 2 relu

Conv-3 2 × Conv 256 8 × 8 × 256 3 × 3 1 relu
Pool3 Maxpool 256 4 × 4 × 256 3 × 3 2 relu

Conv-4 2 × Conv 512 4 × 4 × 512 3 × 3 1 relu
Pool4 Maxpool 512 2 × 2 × 512 3 × 3 2 relu

Conv-5 2 × Conv 512 2 × 2 × 512 3 × 3 1 relu
Pool5 Maxpool 512 1 × 1 × 512 3 × 3 2 relu

Flatten Flatten - 512 - - relu
FC6 Dense - 4096 - - relu
FC7 Dense - 4096 - - relu
FC8 Dense - # of classes - - softmax

Table 2. Lenet5 model trained for 32 × 32 images.

Layer Name Layer Type Feature Map Output Size of Images Kernel Size Stride Activation

Input Image 1 32 × 32 × 3 - - -
Conv-1 1 × Conv 6 28 × 28 × 6 5 × 5 1 tanh
Pool1 Avgppool 6 14 × 14 × 6 2 × 2 2 tanh

Conv-2 1 × Conv 16 10 × 10 × 16 5 × 5 1 tanh
Pool2 Avgppool 16 5 × 5 × 16 2 × 2 2 tanh

Flatten Flatten - 400 - - tanh
FC3 Dense - 120 - - relu
FC4 Dense - 84 - - relu
FC5 Dense - # of classes - - softmax

Table 3. FC layers model.

Layer Name Layer Type Output Size Activation

Input Data # of attributes -
FC1 Dense 4000 relu
FC2 Dense 4000 relu
FC3 Dense 4000 relu
FC4 Dense # of classes sigmoid

Sensors 2023, 23, 2718 8 of 14

The environment in which all development of our work had been processed is a ×64
Ubuntu 20.04.4 LTS Operating System equipped with an Intel Core i7-11850H working at
2.5 GHz × 16 and 32 GB DDR-4 RAM and a NVIDIA T1200 Laptop GPU (driver version:
510.47.03, CUDA version:11.6).

3. Proposed Approach

As cited above, the intention of this research was to realize the connection of relevances
between different layers. To do so, we opted for applying the approach presented by [12]
in two different FC layers. First, we applied it independently. To show that there is a direct
relationship between neurons from different layers, we considered the relevance of the FRL
and backpropagate it until the second FC layer that we pruned in the parallel process. In
this way, we could see the effect of backpropagating the relevance throughout layers and
see the correlation between them.

We applied the SLR approach proposed by [12] to obtain information about the most
relevant parts forming the FRL. In this way, we were able to know the relevances for the
final decision of each of the neurons comprising this last FC layer. To calculate the relevance
propagated to the previous layers we used the insight introduced in Section 2.1.4 and
multiplied each of the absolute value of weights that was connected with each neuron of
the next layer with the relevance of these neurons from the next layer, for each neuron
comprising the layer in question. Finally, after obtaining the relevances for each neuron
from the layer, we sparsified the weight matrix of this layer the same way as for the FRL
but while sparsifying the U matrix in the following way. We considered only the rows that
obtained the highest value after the summation of multiplications of absolute weights of
connections with each of the relevances of neurons connected from the next layer, instead
of considering the original relevances of neurons as we implemented for the FRL.

At the same time, we carried out sparsification of the same number of layers only
considering the independent relevances of each layer, following the criteria proposed
by [12]. In this work, they present three different criteria to determine which elements of
each layer were more relevant to the final decision of the network. Overall, the criteria
based in the cost of weights was the most adequate to reduce the dimensionality of the
problem and maintain the performance of the architecture to be as high as possible. The
graphical representation of both approaches is given by Figure 1.

In case of VGG16, the FRL corresponds to FC7, and the backpropagation of the
relevances has been carried out until FC6. FRL and previous FC layer of Lenet5 are FC4
and FC3, respectively. In case of the aforementioned three FC layers’ architecture these
layers are FC3 and FC2, respectively.

Figure 1. Comparison of the proposed approaches.

Sensors 2023, 23, 2718 9 of 14

4. Experiment

In this section, details about the entire experimentation process are described. The
results obtained are summarized as well.

Performance Metrics

Evaluation metrics used for determining which of the methods used is best for keeping
the performance of the former network as high as possible are the accuracy vs. compression
rate, AUC vs. compression, recall vs. compression, precision vs. compression, and
specificity vs. compression, where the compression rate was defined in [12]. This last metric
determines the relationship of the number of parameters between sparsified decomposed
matrices and the original network’s weight matrices. AUC is the area below the ROC
curve—i.e., a graph showing the performance of a classification model at all classification
thresholds. What is plotted in the curve is the FPR and TPR in the x and y axes, respectively,
whose definitions are given in Equation (10) and (11). The definitions of the rest of the
metrics mentioned above are given in Equations (7)–(9), where TP, TN, FP, and FP stand for
True Positives, True Negatives, False Positives, and False Negatives, respectively. We used
FRL’s previous FC layer’s compression rate to check the accuracy of the resultant network
on different compression rate regimes.

Each of the variants proposed in this work, considering or not the relevance between
layers, have been tested on well-known open source datasets for image recognition Cifar10,
Cifar100, and MNIST. All of them have been trained using default 10,000 test images
and 50,000 and 60,000 training images for the Cifar and MNIST datasets, respectively.
To show their effectiveness in sensor related datasets, they were applied to the Room
Occupancy Detection Dataset too. In this case, 1,000 samples were used for testing and
the rest (9,129 samples) for training the network. In each case, we opted for establishing
the same reduction rate (0.5) and sparsity rate (0.5) defined in [12], and we tested each
variant with different rank k, which determines the number of columns and rows kept in
the sparsified Û and V̂T matrices. We incremented the rank k until the performance metrics
were equal to the ones obtained by the original network structure. In the testing phase 10
different seeds were established for testing each methodology in each dataset.

Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
(7)

Recall(Re) =
TP

TP + FN
(8)

Precision(Pr) =
TP

TP + FP
(9)

TruePositiveRate(TPR) =
TP

TP + FN
(10)

FalsePositiveRate(FPR) =
FP

FP + TN
(11)

Speci f icity(Spec) =
FP

FP + TN
(12)

5. Results

Figure 2 shows the accuracies obtained after testing both pruning techniques for the
VGG16 architecture on the Cifar10 dataset. As is clear, there was no significant difference
between the methods when applying an extremely low compression rate, which means that
very few parameters of the original matrices were kept. Similarly, we could observe the
same pattern when a higher number of parameters were kept in the original decomposed
matrices, but there were significant differences between both compression rate regimes. In
this case, applying the SLR method independently to different FC layers offers a higher

Sensors 2023, 23, 2718 10 of 14

accuracy with the same compression rate, i.e., keeping the same number of connections
between neurons.

Figure 2. Accuracies for pruning VGG16 network on Cifar10 dataset for different compression rates.

Similarly, there could be the same pattern in case of Cifar100 dataset for the same net-
work architecture. The SLR method was applied independently without any consideration
of propagation of relevances across layers. In this case for lower compression rate regimes
the difference is high as well. Figure 3 shows the results summarized for the Cifar100
dataset.

Simultaneously, Lenet5 architecture was pruned following both methodologies on
MNIST dataset. Figure 4 shows the accuracies obtained for different compression rates.
As could be observed, for the majority of the pruning rates applied when applying the
SLR independently in different layers offers better performance than considering the
backpropagation rule of the relevances from the FRL. However, in certain compression
rate regimes, the last one outperforms the former one, but the difference is insignificant
compared to the overall performance result.

Finally, both methodologies for pruning FC layers were adopted for pruning FRL
and the previous FC layer of the Room Occupancy Detection dataset. Figure 5 shows the
accuracies obtained for different compression rates. There is a clear tendency towards
SLRProp in terms of accuracy, which determines that for the majority of the regions of
compression SLRProp outperforms the SLR method.

Figure 3. Accuracies for pruning VGG16 network on Cifar100 dataset for different compression rates.

Sensors 2023, 23, 2718 11 of 14

Figure 4. Accuracies for pruning Lenet5 network on MNIST dataset for different compression rates.

Figure 5. Accuracies for pruning FC layers architecture on Room Occupancy Detection dataset for
different compression rates.

Overall, if we observe in detail each of the metrics defined in the previous section
and given in Appendix A, we can obtain a general verdict about the performance of SLR
and SLRProp applied to the four datasets described in Section 2. In 30 cases SLR obtained
a higher metric value, and in 33 cases SLRProp obtained a better performance result. In
14 cases the results are identical for both methods. In Table 4 a brief review of these metrics
is given. Once having this comparison, we can deduce that SLRProp’s performance is
slightly better than the original SLR that was presented by [12].

Table 4. SLR vs. SLRProp accuracies for different datasets.

Rank k Cifar10-SLR Cifar10-
SLRProp

Cifar100-
SLR

Cifar100-
SLRProp MNIST-SLR MNIST-

SLRProp Room-SLR Room-
SLRProp

k = 2 17.037% 17.4074% 4% 2.8519% 21.084% 23.492% 17.5% 17.5
k = 4 52.3333% 43.5185% 9.8889% 8.8889% 38.006% 40.053% 17.7% 17.7%
k = 8 89.5926% 81.4444% 47.4444% 37.9259% 71.597% 80.469% 83% 83.9%

k = 16 92.963% 92.963% 63.4074% 62.4444% 93.258% 94.245% - -
k = 32 - - - - 98.416% 98.385% - -

Sensors 2023, 23, 2718 12 of 14

6. Discussion

As demonstrated in the previous section, the introduction of the concept of backprop-
agation of the relevances from the FRL to the rest of the layers of the original network
does not always outperform the supposition of the relevances independently within layers.
However, the general result shows that the SLRProp method is slightly better than the
original version of sparsification presented by [12]. In this way, the breakthrough presented
by [13] is preserved in this experiment; the final result the relevances propagated between
different layers through the connections between neurons is of particular importance. For
relatively high compression rate regimes, where the number of pruned connections is not
very high, the performance metrics are almost identical for all architectures applied for
the four different datasets. On the contrary, for very low compression rate regimes the
performance metrics do not follow a distinguishable pattern, which shows the random-
ness of both methods when an excessive pruning is carried out in any of the mentioned
architectures.

This shows that the components of each layer have certain influence on the rest of
the network components, even though the main contribution to the final result of each
component is more connected with other aspects than the connections’ weights’ absolute
values across layers. In this case, the cost defined as the difference of the accuracy between
the case when a certain component is eliminated from the original network and the original
structure’s accuracy showed that it could be more crucial when selecting which connections
should be removed when pruning the original network. Additionally, backpropagating
the relevances of the FRL to the previous FC layers could yield an even more adequate
performance when applied to certain datasets, e.g., for the Room Occupancy Detection
dataset. Consequently, this paper shows that the relevances propagated between layers
play an important role when determining which are the most important components of the
network structure.

To summarize, it is possible to say that the proposition presented by [13] echoed in
Equation (6) is conserved in this experimental process, thus challenging its validity for
every architecture of a convolutional neural network focused on image recognition. In
fact, the ranking of the connection’s relevance proposed by [12] offers an optimal result
in terms of accuracy and network compression—needing only a very low percentage of
parameters for representing sparsified matrices compared to the original network’s matrices.
However, the computational cost of calculating each matrices’ components costs might
be too high and ineffective in many scenarios, which creates the need for an alternative
method for solving this issue of the training phase. The SLRProp alternative offers a slight
improvement in different accuracy metrics, but is still too costly in terms of time efficiency
and computational load. Attending these networks’ weights’ absolute values as a criteria
to decide which columns and rows are maintained in the sparsified matrices offers a near
identical result in terms of accuracy that needs ∼ 100x less time for sparsifying the SVD
matrices in the training phase. In applications where time response is crucial, this last
alternative method may be more adequate.

Author Contributions: All the authors have contributed equally to this work. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data used in this work is available at https://keras.io/api/
datasets/ (accessed on 12 December 2022) and at https://archive.ics.uci.edu/ml/index.php (accessed
on 16 December 2022) were a brief explanation of each dataset is given, as well as and explanation of
how to use the data.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

https://keras.io/api/datasets/
https://keras.io/api/datasets/
https://archive.ics.uci.edu/ml/index.php

Sensors 2023, 23, 2718 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

AUC Area Under the ROC Curve
CNN Convolutional Neural Networks
DNN Deep Neural Networks
FC Fully Connected
FN False Negatives
FP False Positives
FPR False Positive Rate
FRL Final Response Layer
ML Machine Learning
OBD Optimal Brain Damage
OBS Optimal Brain Surgeon
SLR Sparse Low Rank Method
SVD Singular Value Decomposition
TN True Negatives
TP True Positives
TPR True Positive Rate

Appendix A

In this appendix the performance metrics described in this article for each of the
datasets mentioned in Section 2 are given.

Table A1. SLR vs. SLRProp Cifar10.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 17.037% 52.2763% 0% 0% -
SLRProp-k = 2 17.4074% 50.6373% 0% 0% -

SLR-k = 4 52.3333% 77.6934% 80.9155% 26.9259% -
SLRProp-k = 4 43.5185 74.7603 62.4146% 17.4074% -

SLR-k = 8 89.5926% 98.7243% 86% 92.0401% -
SLRProp-k = 8 81.4444% 97.3784% 74.037% 87.3035% -

SLR-k = 16 92.963% 99.1493% 92.9630% 93.2764% -
SLRProp-k = 16 92.963% 99.1873% 92.9630% 93.5727% -

Table A2. SLR vs. SLRProp Cifar100.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 4% 68.0924% 0% 0% 100%
SLRProp-k = 2 2.8519% 65.6321% 0% 0% 100%

SLR-k = 4 9.8889% 80.7851% 0.0741% 0.6667% 99.9996%
SLRProp-k = 4 8.8889% 81.2581% 0.1481% 4% 100%

SLR-k = 8 47.4444% 96.5314% 18.3333% 86.0334% 99.9719%
SLRProp-k = 8 37.9259% 95.0432% 12.6667% 77.8508% 99.9637%

SLR-k = 16 63.4074% 96.2422% 54.7037% 76.9269% 99.8316%
SLRProp-k = 16 62.4444% 96.2004% 53.0741% 79.3686% 99.8578%

Table A3. SLR vs. SLRProp MNIST.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 21.084% 58.7361% 20.914% 21.176% 91.3463%
SLRProp-k = 2 23.492% 59.857% 23.309% 23.5553% 91.5947%

SLR-k = 4 38.006% 74.2785% 37.41% 38.4775% 93.3527%
SLRProp-k = 4 40.053% 77.2657% 39.267% 40.6033% 93.6218%

SLR-k = 8 80.469% 94.7351% 80.219% 80.774% 97.8786%
SLRProp-k = 8 71.597% 92.8456% 70.98% 72.2031% 96.3698%

SLR-k = 16 93.258% 98.6997% 93.16% 93.3691% 99.2649%
SLRProp-k = 16 94.245% 98.856% 94.167% 94.3613% 99.3748%

SLR-k = 32 98.416% 99.7014% 98.393% 98.455% 99.8284%
SLRProp-k = 32 98.385% 99.7007% 98.366% 98.43% 99.8257%

Sensors 2023, 23, 2718 14 of 14

Table A4. SLR vs. SLRProp Room Occupancy Estimation.

Method-Rank k Accuracy AUC Recall Precision Specificity

SLR-k = 2 17.5% 49.8478% 17.5% 17.5% 72.5%
SLRProp-k = 2 17.5% 49.9085% 17.5% 17.5449% 72.5833%

SLR-k = 4 17.7% 62.6004% 17.5% 19.774% 76.3333%
SLRProp-k = 4 17.7% 63.3562% 17.5% 19.774% 76.3333%

SLR-k = 8 83% 93.9923% 49.8% 73.5598% 94.0333%
SLRProp-k = 8 83.89% 95.5216% 51.8% 77.54449% 95.08%

References
1. LeCun, Y.; Denker, J.; Solla, S. Optimal Brain Damage. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.;

Morgan-Kaufmann: Burlington, MA, USA, 1989; Volume 2.
2. Hassibi, B.; Stork, D.; Wolff, G. Optimal Brain Surgeon and general network pruning. In Proceedings of the IEEE International

Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 1, pp. 293–299. [CrossRef]
3. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference.

arXiv 2016, arXiv:1611.06440. https://doi.org/10.48550/ARXIV.1611.06440.
4. Yu, C.; Wang, J.; Chen, Y.; Wu, Z. Transfer Channel Pruning for Compressing Deep Domain Adaptation Models. Int. J. Mach.

Learn. Cibern. 2019, 10, 3129–3144. [CrossRef]
5. Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings

of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016;
pp. 18–20. [CrossRef]

6. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006,
68, 49–67. [CrossRef]

7. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
8. Sainath, T.N.; Kingsbury, B.; Sindhwani, V.; Arisoy, E.; Ramabhadran, B. Low-rank matrix factorization for Deep Neural Network

training with high-dimensional output targets. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6655–6659. [CrossRef]

9. Xue, J.; Li, J.; Gong, Y. Restructuring of deep neural network acoustic models with singular value decomposition. In Proceedings
of the Annual Conference of the International Speech Communication Association (INTERSPEECH 2016), San Francisco, CA,
USA, 8–12 September 2016; pp. 2365–2369.

10. Kholiavchenko, M. Iterative Low-Rank Approximation for CNN Compression. arXiv 2018, arXiv:1803.08995.
11. On Compressing Deep Models by Low Rank and Sparse Decomposition. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 67–76. [CrossRef]
12. Swaminathan, S.; Garg, D.; Kannan, R.; Andres, F. Sparse Low Rank Factorization for Deep Neural Network Compression.

Neurocomputing 2020, 398, 185–196. [CrossRef]
13. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. NISP: Pruning Networks using Neuron

Importance Score Propagation. arXiv 2017, arXiv:1711.05908.
14. Yeom, S.K.; Seegerer, P.; Lapuschkin, S.; Binder, A.; Wiedemann, S.; Müller, K.R.; Samek, W. Pruning by explaining: A novel

criterion for deep neural network pruning. Pattern Recognit. 2021, 115, 107899. [CrossRef]
15. Ayinde, B.O.; Inanc, T.; Zurada, J.M. Redundant feature pruning for accelerated inference in deep neural networks. Neural Netw.

2019, 118, 148–158. [CrossRef]
16. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both Weights and Connections for Efficient Neural Networks. arXiv 2015,

arXiv:1506.02626.
17. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
18. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.48550/ARXIV.1611.06440
http://dx.doi.org/10.1007/s13042-019-01004-6
http://dx.doi.org/10.1109/ICACA.2016.7887916
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1109/ICASSP.2013.6638949
http://dx.doi.org/10.1109/CVPR.2017.15.
http://dx.doi.org/10.1016/j.neucom.2020.02.035
http://dx.doi.org/10.1016/j.patcog.2021.107899
http://dx.doi.org/10.1016/j.neunet.2019.04.021
http://dx.doi.org/10.1109/5.726791

	Introduction
	Material and Methods
	Methodology
	Single Value Decomposition (SVD)
	Sparse Low Rank Decomposition
	Selection of Rows and Columns Based on Cost
	Propagation of Relevance between Layers

	Materials

	Proposed Approach
	Experiment
	Results
	Discussion
	Appendix A
	References

