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Abstract: This paper presents a novel load modulation network to realize a broadband Doherty power
amplifier (DPA). The proposed load modulation network consists of two generalized transmission
lines and a modified coupler. A comprehensive theoretical analysis is carried out to explain the
operation principles of the proposed DPA. The analysis of the normalized frequency bandwidth
characteristic shows that a theoretical relative bandwidth of approximately 86% can be obtained across
a normalized frequency range of 0.4–1.0. The complete design process that allows the design of the
large-relative-bandwidth DPA based on derived parameter solutions is presented. A broadband DPA
operating between 1.0 GHz and 2.5 GHz was fabricated for validation. Measurements demonstrate
that the DPA can deliver an output power of 43.9–44.5 dBm with a drain efficiency of 63.7–71.6% in
the 1.0–2.5 GHz frequency band at the saturation level. Moreover, a drain efficiency of 45.2–53.7%
can be obtained at the 6 dB power back-off level.

Keywords: broadband; Doherty power amplifier; load modulation network; relative bandwidth

1. Introduction

The rapid emergence of wireless communication applications that need to transmit
large amounts of data such as wireless sensing networks has encouraged the development
of RF front-end technology that can support high peak-to-average ratio (PAPR) signals with
large bandwidth [1]. Power amplifiers (PAs) are required in modern wireless communica-
tion application systems to handle broad bandwidth (BW) and high PAPR simultaneously
for the purpose of increasing data transmission rates. Traditional single-device PAs, such as
class-F [2], class-E [3], and class-J [4], cannot meet the requirements of efficiently amplifying
signals with high PAPR. Load modulation PAs, such as Doherty [5], out-phasing [6], and
load modulation balance amplifiers (LMBAs) [7], can maintain high efficiency at the power
back-off (OBO) level and are promising candidates for meeting the stringent linearity
requirements. Currently, DPAs are widely used in wireless communications due to their
easy-to-implement architecture [8,9]. However, the bandwidth of traditional Doherty PAs is
restricted by impedance conversion networks, offset lines, matching networks, and package
parameters of transistors [10–13]. Therefore, DPAs can only maintain the ideal performance
at the OBO level in a narrow band. This bandwidth limitation greatly hinders the use of
DPAs in RF transceivers that require high data BW and high PAPR.

Recently, some methods have been proposed to improve the bandwidth of Doherty
PAs [14–24]. The finite impedance of the auxiliary PA branch at the OBO level is employed
to enhance the OBO performance in a large bandwidth [14,15]. In addition, the introduction
of complex load impedances to achieve better impedance conditions in a large bandwidth
has been validated [16,17]. Post-matching techniques can reduce the impedance transfor-
mation ratio of output matching networks of main PA and auxiliary PA branches so as
to provide larger bandwidth [18–21]. In addition, some continuous-mode PAs have been
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developed to have the ability to increase the impedance design space, thus widening the
bandwidth of DPAs [22–24]. These technologies can ameliorate the impedance-matching
condition of DPAs to expand the bandwidth of DPAs to a certain extent. However, due to
the inherent limitations of a DPA’s load modulation network (LMN) structure, impedance
mismatch at the OBO level is still inevitable. This will reduce the efficiency of the DPAs at
the OBO level. Therefore, it is necessary to study a new LMN structure in order to realize
more accurate impedance conversion at the OBO level in a large bandwidth while keeping
Doherty load modulation behaviors.

A lot of effort has been made to realize larger bandwidth by altering the LMN structure
of DPAs [25–28]. Recently, especially in [29,30], novel LMN structures have been proposed
to extend the bandwidth, where the precise impedance can be realized using specific
analysis at the OBO level. However, the relative bandwidth is still limited since both
these analyses are based on traditional transmission lines, resulting in higher normalized
frequency bands, such as 0.8–1.2 in [29] and 0.7–1.3 in [30].

In this paper, we propose a novel LMN structure including a modified coupler and
two generalized transmission lines. The modified coupler is used in an LMN for the first
time to achieve the required impedance such that the combination of the coupler and
generalized transmission lines leads to an almost constant impedance at the OBO level
in the lower normalized frequency band of 0.4–1, which means an ideal efficiency can
be obtained in a larger relative bandwidth compared with previous works, e.g., [29,30].
A theoretical 86% relative bandwidth can be obtained when the proposed LMN is utilized.
Furthermore, a more direct and straightforward analysis based on the normalized frequency
and impedance condition immediately follows, from which the corresponding design
parameters follow. This analysis allows the proposed LMN to be designed for practical
situations, including different working frequencies and OBO levels. Compared with the
previous broadband DPAs, the proposed DPA significantly expands the relative bandwidth.
The structure of this paper is as follows: The theory of the proposed LMN is shown and
the corresponding design equations are given in Section 2. Section 3 presents the complete
design process, and simulations are given in detail. In Section 4, experiments are shown to
validate the proposed DPA. The conclusions of this work are given in Section 5.

2. Analysis of DPA Theories

The conventional DPA topology is shown in Figure 1; here, the transistor is equivalent
to an ideal current source. The conventional DPA has a main PA branch and an auxiliary PA
branch, with a load of RL/2 at the combiner. In addition, a quarter-wavelength transmission
line is used in the main PA branch in order to achieve impedance conversion [5]. According
to the DPA theory [5], several impedance relationships are given as

ZM1,SAT = 2·Zload (1)

ZM1,OBO = Zload (2)

ZA1,SAT = 2·Zload (3)

ZA1,OBO = ∞ (4)

where ZM1 and ZA1 are the load impedances of the main and auxiliary PA branches,
respectively. ZM and ZA represent the load impedances of devices for main and auxiliary
PAs, respectively. The subscripts SAT and OBO refer to impedance conditions at the
saturation and OBO levels, respectively. In the traditional DPA topology, the λ/4 line is
responsible for converting the impedance well only at the center frequency, thus restricting
the bandwidth of the resulting DPAs.

In this work, a modified load modulation network is proposed to address this issue, as
shown in Figure 2a. In this scheme, the modified coupler is used to realize the impedance
conversion at the main PA branch. The DPA load impedance is set to a complex value RL
(1 + jX). The auxiliary PA branch also includes a generalized transmission line to represent
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the output network that is employed to obtain finite impedance ZA1,OBO (unlike that of
infinity in traditional DPAs). The modified coupler structure shown in Figure 2b consists of
a traditional branch line coupler and a reactance connected to port 2. Port 4 and port 1 are
input and output terminals, respectively, while port 3 is open-circuited. The relationship
between the four ports for this coupler arrangement is expressed as

V1
V2
V3
V4

 = Z0


0 +j −j

√
2 0

+j 0 0 −j
√

2
−j
√

2 0 0 +j
0 −j

√
2 +j 0




I1
I2
I3
I4

 (5)

where V and I refer to the voltage and current of ports of the coupler. Subscripts 1, 2, 3,
and 4 represent the port numbers. Z0 is the system impedance. Based on the condition of
terminals shown in Figure 2b, the following relationships are obtained:

Z2 = jZ0 tan βl = jZ0 tan
π

2
f (6)

I3 = 0 (7)

where β is the propagation constant. l is the physical length of the transmission line.
Z2 represents the impedance of port 2.
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As f is the normalized frequency, the relationship between the impedance of port 4 Z4
and the impedance of port 1 Z1 is derived as

Z4/Z1 =
(

2 + jtan
π

2
f
)

(8)

As expressed in (8), Z4/Z1 has a constant resistance, as required for DPA synthesis [23].
Moreover, the resistance is independent of the normalized frequency f, which provides the
possibility to realize operation in a lower normalized frequency band than the previous
works [29,30]. Next, an analysis of this LMN and corresponding parameter solutions
are given.

2.1. Power Back-Off Level

Figure 3 shows the equivalent schematic diagram of the main PA branch at the power
back-off level. As shown in Figure 3, the load impedance of the main PA branch ZM1,OBO
(Z1) is as follows:

ZM1,OBO = Z1 =
(1 + jX)(jXA)

1 + jX + jXA
=

(jXA − XXA)

1 + j(X + XA)
RL (9)

where XA refers to the normalized reactance of the auxiliary PA branch at the OBO level.
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After substituting (9) to (8), the load impedance of the main PA transistor ZM,OBO (Z4)
can be obtained as

ZM,OBO/ROPT = Z4/ROPT =
(

1 + j0.5tan
π

2
f
) (jXA − XXA)

1 + j(X + XA)
(10)

where RL = 0.5ROPT.
In order to realize an OBO of 6 dB, the real part of Z4 Re(Z4/ROPT) should be set equal

to 2. Then, we can deduce the following two expressions about XA:

XA =
−(tan π

2 f+X2tan π
2 f+4X)+

√
(tan π

2 f+X2tan π
2 f+4X)

2−4∗(Xtan π
2 f )(2+2X2)

4(Xtan π
2 f )

(11)

XA =
−(tan π

2 f+X2tan π
2 f+4X)−

√
(tan π

2 f+X2tan π
2 f+4X)

2−4∗(Xtan π
2 f )(2+2X2)

4(Xtan π
2 f )

(12)

Figure 4a,b display the relationships expressed by (11) and (12), respectively. Based on
Figure 4, we can now choose the appropriate XA and X to realize the desired OBO, in this
case, 6 dB, for different values of f. Indeed, we can let Re(Z4/ROPT) be equal to a different
value for obtaining different OBO values if desired. For example, an OBO of 9 dB can be
obtained by setting Re(Z4/ROPT) = 4.

As shown in Figure 4, there are two solutions for X and XA in the normalized frequency
band of 0.4–1.6. This provides more freedom to satisfy the impedance requirements of
DPAs at the specified saturation level. Moreover, the value of XA changes sharply around
f = 1. This variation hinders the realization of ultra-wideband DPAs in the normalized
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frequency range of 0.4–1.6. Therefore, the proposed topology can theoretically only achieve
wideband DPA in the 0.4–1.0 or 1.0–1.6 frequency range. In order to obtain the maximum
relative bandwidth, this paper chooses the frequency range of 0.4–1.0 for the following
analysis and design.
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2.2. Saturation Level

Figure 5 shows the equivalent schematic diagram of the main PA branch at the satura-
tion level. The load impedance of the main PA branch is 2RL(1 + jX). According to the DPA
theory, the load impedance of the main PA transistor ZM,SAT(Z4) can be expressed as

ZM,SAT/ROPT = Z4/ROPT =
(

2 + jtan
π

2
f
)
(1 + jX) (13)
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At the saturation level, the real part of Z4 Re(Z4/ROPT) should be equal to 1. Hence,
the parameter X can be determined as

X =

(
1

tan π
2 f

)
(14)

The values of parameter X at several representative frequencies are listed in Table 1.
Then, by substituting (14) to (11) and (12), the values of XA at these frequencies f can

be further obtained as shown in Table 1. We note here that XA has two solutions caused by
(11) and (12), while X only has one solution.

Once we obtain the values of these parameters, as listed in Table 1, we can further
derive the theoretical drain efficiency characteristic of the proposed DPA. The theoretical
drain efficiency of the proposed DPA at the desired OBO level can be derived as follows.
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Table 1. The values of X and XA at representative frequencies.

Value X XA1 XA2

f = 0.4 1.37 −0.50 −3.37
f = 0.5 1 −0.40 −2.62
f = 0.6 0.72 −0.34 −2.15
f = 0.7 0.51 −0.30 −1.93
f = 0.8 0.32 −0.25 −2.09
f = 0.9 0.16 −0.15 −3.40
f = 1.0 0 0 ∞

XA1 refers to the first solution of XA; XA2 refers to the second solution of XA.

If |ZM, OBO| ≤ 2ROPT, the main PA does not reach the saturation level; thus, the
current IM, OBO is Imax/4, and the voltage VM, OBO is equal to IM, OBOZM, OBO. The output
power of the DPA at the OBO level can be calculated as follows:

Pout,OBO = 0.5× Re
(
V∗M,OBO·IC,OBO

)
=

1
32

I2
maxRe(ZM,OBO) (15)

If |ZM, OBO| is larger than 2ROPT, the main PA is overdriven. The output power of
the DPA at the OBO level should be calculated as

Pout,OBO = 0.5× Re
(
V∗M,OBO·IM,OBO

)
=

1
2

V2
dc

|ZM,OBO|
·Re(ZM,OBO)

|ZM,OBO|
(16)

The DC power consumption of the DPA can be assumed as a constant level [17], which
is expressed as

Pdc = Vdc Idc =
Vdc Imax

2π
(17)

Then, the drain efficiency (DE) at the OBO level is derived as

DEOBO =
π

4
Re(ZM,OBO)

2ROPT
, |ZM,OBO| ≤ 2ROPT (18)

DEOBO =
π

4
2ROPT

|ZM,OBO|
Re(ZM,OBO)

|ZM,OBO|
, |ZM,OBO| > 2ROPT (19)

Based on the above values of X and XA listed in Table 1 and (18) and (19), the drain
efficiency at the OBO level can be calculated, as shown in Figure 6a. In addition, for
comparison, the drain efficiency for a traditional DPA is added in Figure 6a. It is obvious
that the proposed DPA can maintain a higher drain efficiency over a wide bandwidth. In
order to ensure a stable power output, we define the real part of the impedance ZM,OBO
as 2ROPT without specifying the imaginary part. Therefore, the drain efficiency of the
proposed DPA reduces with frequency, caused by the undesired imaginary part of ZM,OBO.
Figure 6b displays the frequency characteristic of ZM,OBO, which indicates an imaginary
part that varies with normalized frequency. Moreover, the higher XA, the higher the
undesired imaginary part that is obtained based on (10). It is seen from Table 1 that the
first solution of XA (XA1) has a smaller value than the second solution XA2. Therefore, the
solution for XA1 in Table 1 is taken in the following analysis.

Next, we use a simple method to reduce the effect of this variable imaginary part
on efficiency.

2.3. Improved Main PA Branch

As shown in Figure 6a, the drain efficiency of the proposed DPA is better than that
of the traditional DPA. However, the drain efficiency can still drop to about 20% from the
ideal drain efficiency. We now propose an improved main PA branch to further slow down
the tendency of drain efficiency to decrease with normalized frequency. Figure 7 shows the
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topology of the improved main PA branch. Here a transmission line is inserted between
the coupler and the drain of the transistor. Therefore, the impedance relationship between
impedance ZM and ZM2 can be expressed as

ZM = 2ROPT
ZM2 + j2ROPT tan θM

2ROPT + jZM2 tan θM
(20)

where θM = artan(Im(ZM2)/2).
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Then, we can obtain the frequency characteristics of impedance ZM,OBO as shown in
Figure 8a. Comparing Figure 8a with Figure 6b, it can be seen that the imaginary part of
ZM,OBO in Figure 8a lies closer to zero. In addition, the corresponding drain efficiency at
the OBO level is calculated in Figure 8b by using (18) and (19). As shown in Figure 8b, the
drain efficiency of the improved main PA roughly maintains a constant profile across the
normalized frequency band of 0.4–1. In addition, Figure 8c shows the drain efficiency of
DPAs in [29,30], where the normalized frequency bands are 0.8–1.2, and 0.7–1.3 for [29,30],
respectively. As shown in Figure 8b,c, the presented DPA has the ability to work in a lower
normalized frequency band so as to have a larger relative bandwidth.

Based on the above analysis, the impedance transformation of the proposed DPA is
displayed in Figure 9. As shown in Figure 9, at the saturation level, the load impedances
of the main PA branch and the auxiliary PA branch are both Zload, and their values are
complex. At the same time, the load impedances of the two PAs’ transistors are both ROPT.
The impedance conversion situation is the same as that of a conventional DPA, except that
the load impedance Zload of DPA is a complex impedance. At the OBO level, regarding
the auxiliary PA branch, the impedance of this branch is finite and is defined as jXA, while
the load impedance of the device is infinite. This impedance conversion is realized by
employing the generalized transmission line. At the OBO level, regarding the main PA
branch, the impedance of this branch is Zload in parallel with jXA, which is different from
that of the traditional DPA due to the introduction of the finite impedance of the auxiliary
PA branch, while the load impedance of the transistor is 2ROPT. This impedance conversion
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as required by the main PA is achieved by employing the modified coupler and the injected
transmission line. The utilization of this modified coupler and the injected transmission
line allows DPA operation with an acceptable efficiency into a lower normalized frequency
band so as to achieve a larger relative bandwidth as compared to previous DPAs in the
literature. Furthermore, the introduction of the finite load impedance of the auxiliary PA
branch and the complex load impedance of the DPA effectively assists in meeting the
impedance requirements required for the modified coupler deployment.
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The parameters of the generalized transmission line in the auxiliary PA branch are
easily obtained by using the following relationship:

ZA = ZA2
ZA1 + jZA2 tan θA

ZA2 + jZA1 tan θA
(21)
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where ZA1 is equal to jXA and 2Zload at the OBO level and saturation level, respectively.
Then, the calculated ZA2 and θA are expressed as

ZA2 =
√

X2 + 1 + XXA (22)

θA = arctan

(
2
√

X2 + 1 + XXA

XA

)
(23)

The corresponding parameter values are summarized in Table 2. We can use these
parameters in Table 2 to design the DPA working in the normalized frequency range
of 0.4–1.

Table 2. The values of the corresponding parameters.

Parameter f = 0.4 f = 0.5 f = 0.6 f = 0.7 f = 0.8 f = 0.9 f = 1.0

X 1.37 1 0.72 0.51 0.32 0.15 0
θM (◦) 46.7 37.4 30.1 23.7 17.0 8.9 0

XA −0.42 −0.38 −0.35 −0.33 −0.26 −0.15 0
ZA2 1.52 1.27 1.12 1.04 1.00 1.00 1.00

θA (◦) 85.9 85.7 85.4 85.5 86.2 87.6 90

3. Design of The Proposed DPA

In this section, we present the complete design process for the enhanced bandwidth
DPA based on the proposed load modulation network. In the previous section, the nor-
malized frequency is used for analysis, and the normalized frequency band obtained is
0.4–1.0. Therefore, we can choose a different reference frequency in order to obtain actual
working frequencies. In this paper, the reference frequency of 2.5 GHz is taken so that the
actual working frequency range of 1–2.5 GHz can be achieved. This work focuses on the
symmetrical DPA, so two CGH40010F transistors are employed to design the main PA and
the auxiliary PA. The parameters of the transistors used can be obtained from the datasheet
provided by the manufacturer. The designed circuits are based on Rogers R4350B substrate.
The drain bias voltages of the main PA and auxiliary PA are both 28 V. The gate bias voltage
of the main PA is −2.7 V, and that of the auxiliary PA is −5.8 V. For the selected transistor,
the optimum load impedance ROPT is 32 Ω when considering Vknee.

3.1. Output Networks

According to the description in Section 2, the output networks can be designed. Firstly,
the output network of the main PA is designed based on the topology shown in Figure 7,
where the phase θM varies from 46.7◦ to 0◦ in the frequency range of 1.0–2.5 GHz. In
practical design, the package parameters of the transistor are considered [31] as part of
the whole output network. Therefore, the injected transmission line and the modified
coupler must adjust a little to meet the impedance requirements. The synthesized output
circuit of the main PA is shown in Figure 10a. Figure 10b displays the simulated s11 of
the designed output network under the condition of ZM1,OBO and ZM1,SAT. It can be seen
that the simulated S11 is smaller than −10 dB across the frequency range of 1–2.5 GHz
at both saturation and OBO levels, which validates that the designed output network is
effective at realizing the impedance conversion well at different power levels within the
target frequency band.

Next, the output network of auxiliary PA is designed by using the generalized transmis-
sion line obtained in Section 2. As per the analysis in Section 2, the characteristic impedance
is changing from 1.52ROPT to ROPT over the target frequency range of 1–2.5 GHz, with the
phase θA being between 85.4◦ and 90◦. Similarly, the package parameters of the transistor
are also included in the practical design. The complete output circuit including the package
parameters is shown in Figure 11a. The simulated impedance ZA is displayed in Figure 11b.
It can be seen that the simulated ZA is close to the open circuit at the OBO level and ROPT
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at the saturation level is matched, in 1.0–2.5 GHz. These realized impedance trajectories
indicate the effectiveness of the output circuit of the auxiliary PA branch.
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3.2. Post-Matching Network

In the previous analysis, the load impedance Zload is a complex impedance that is
equal to 0.5ROPT(1 + jX). The value of X changes from 1.37 to 0 in the frequency range
of 1.0–2.5 GHz. Therefore, a post-matching network is needed to transform this load
impedance to 50 ohms. The complete matching network is synthesized as shown in
Figure 12a,b; the simulated Zload is acceptable compared with the theoretical value of Zload.

3.3. Input Networks and Complete DPA

Firstly, an equal power divider is added to equally split the signal to the main PA and
auxiliary PA. Here three stages are employed to meet bandwidth requirements. The input
matching network is synthesized. Offset lines are also injected so that the signals of the
two PA branches are combined in phase and transmitted to the load. Figure 13 shows the
complete DPA with distributed parameters.

Figure 14 displays the simulated drain efficiency versus output power at several
representative frequencies. As seen in Figure 14, the designed DPA can obtain over 43%
drain efficiency at the 6 dB OBO level in the 1.0–2.5 GHz frequency range. At the same
time, drain efficiency of over 62% can be obtained at the saturation level.
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The impedance traces of ZM and ZA varying with power levels are plotted in Figure 15a,b
at several representative frequencies. The load trajectories of ZM and ZA reveal that the
designed DPA realizes the load modulation desired requirements across 1.0–2.5 GHz by using
the proposed LMN structure.
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The measured S-parameters are plotted in Figure 17. In the frequency range of 1.0–2.5 GHz,
the measured s21 is 12.2–13.6 dB, and the measured s11 and s22 are smaller than −10 dB.
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4.1. Continuous Wave Testing

The output power, drain efficiency, gain, and power-added efficiency were measured
by using continuous wave signals and are plotted in Figures 18–20. It can be seen from
Figure 18 that an output power of 43.9–44.5 dBm with a drain efficiency of 63.7–71.6% can
be obtained at the saturation level in 1.0–2.5 GHz, while the gain is between 9.6 dB and
10.3 dB. At the 6 dB OBO level, the realized drain efficiency is 45.2–53.7%. As shown in
Figure 20, the power-added efficiency is between 42.3% and 64.1% within the dynamic load
modulation range.
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Table 3 lists several related and latest DPAs for comparison. It is obvious that the
relative bandwidth of the proposed DPA is wider than that of the others except for that
presented in [32], and the proposed DPA realizes similar performance, including in power,
drain efficiency, and gain, when compared with the others.

Table 3. Several related and latest broadband DPAs.

Ref. Freq (B.W.)
(GHz)

Pout@SAT
(dBm) DE@SAT (%) DE@ 6 dB

OBO (%) Device

[17] 1.1–2.4 (74%) 43.3–45.4 55–68 43.8–54.9 2 × 13 W GaN
[22] 1.6–2.7 (51%) 43.8–45.2 56–75.3 46.5–63.5 2 × 13 W GaN
[23] 3.3–3.75 (13%) 48–48.5 58–71 47–59 2 × 16 W GaN
[24] 1.2–2.8 (78%) 43.7–44.1 60.5–74.2 48.1–57.6 2 × 13 W GaN
[27] 1.0–2.5 (83%) 40–42 45–83 35–58 2 × 8 W GaN
[29] 2.8–3.55 (24%) 43–45 66–78 42–53 2 × 13 W GaN
[32] 1.5–3.8 (87%) 42.3–43.4 42–63 33–55 2 × 13 W GaN
[33] 1.2–2.4 (67%) 42–45 41.6–81 35–63 2 × 13 W GaN
[34] 1.4–2.55 (58%) 41.9–42.2 62–74 48–58 2 × 8 W GaN

This work 1.0–2.5 (85.6%) 43.9–44.5 63.7–71.6 45.2–53.7 2 × 13 W GaN

4.2. LTE Testing at 40 MHz and 6.5 dB

To characterize the linearity of the designed DPA, the adjacent channel ratio (ACLR) was
measured by employing an LTE signal with a bandwidth of 40 MHz and PAPR of 6.5 dB. The
measured ACLR was obtained when an average output power of 37.6 dBm was produced,
as displayed in Figure 21. As shown in Figure 21, the ACLR value is less than−30.2 dBc at
1.7 GHz, which is better than −49.5 dBc after adopting digital predistortion (DPD).
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5. Conclusions

This paper proposes a novel load modulation network consisting of two transmission
lines and a modified coupler. The utilization of this modified coupler makes the load
modulation network work well in a lower normalized frequency band, resulting in a larger
relative bandwidth compared with previously used networks. The corresponding parame-
ters at each operation frequency are solved to realize DPAs with a relative bandwidth of
85.6%. For validation, a broadband DPA operating in 1.0–2.5 GHz was implemented based
on the obtained parameter solutions. Measurements reveal that the implemented DPA can
deliver an output power of over 43.9 dBm with drain efficiency above 63% at the saturation
level in the frequency range of 1.0–2.5 GHz. The drain efficiency is above 45.3% at the 6 dB
OBO level across the same frequency band. Compared with the previous works, this work
is close to the state-of-the-art relative bandwidth performance.
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