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Abstract: Human context recognition (HCR) using sensor data is a crucial task in Context-Aware
(CA) applications in domains such as healthcare and security. Supervised machine learning HCR
models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted
datasets are most accurate because of their consistent visit patterns. Supervised machine learning
HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are
more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect
labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a
robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing
performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based
Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that
combines three unique loss functions to enhance intra-class compactness and inter-class separation
within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn
domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and
(3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5%
higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed
non-adaptive HCR models by 44.6% and 10.7%, respectively.

Keywords: ubiquitous computing; domain adaptation; context aware systems; machine learning

1. Introduction

There is a great potential for context-aware (CA) systems to impact many fields, such
as healthcare, smart homes, and security [1]. An important part of CA systems is Human
Context Recognition (HCR), the process of determining the user’s current state. Several
definitions exist, but ours is as follows: Human Context is a tuple <Activity, Prioception>
comprising of the user’s current activity (e.g., walking, standing) and the phone’s placement
in the user’s body (the “prioception”) (e.g., in a bag, pocket, or hand). We focus on CA
and HCR on smartphones, which are now almost ubiquitously owned and possess a wide
variety of sensors such as accelerometers, gyroscopes, and position detectors. There are
two popular study designs for collecting HCR datasets for supervised machine learning
involving human participants: (1) scripted [2] or (2) in-the-wild [3]. Scripted studies involve
participants carrying out a series of tasks in a prescribed sequence while being monitored
by a human proctor and having their smartphone sensor data continuously recorded by an
app. After the users’ sensor data has been collected, human proctors label the data with the
locations they were in. On the other hand, in-the-wild studies entail data collection in the
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subjects’ natural environments over the course of several days. Smartphone sensors collect
data in real time, and users are periodically prompted to report their current context so
that the app can annotate their collected data. Motivation. Due to the high costs associated
with gathering labeled data, it is challenging to gather adequate labels of sufficient quality
for fully supervised learning in many real-world, in-the-wild scenarios. This presents a
challenge for fully supervised learning methods. Thus, it is highly desirable to design
innovative learning methods that obviate the need for fully annotated data but instead
leverage unlabeled data.

Problems with In-the-wild datasets that hinder HCR performance: Due to the high
precision of sensor data and high quality context labeling, supervised HCR classification
models often achieve excellent precision on scripted datasets. DeepContext, a cutting-edge
deep learning HCR model, achieved 91.2% accuracy on a scripted dataset [4]. Nevertheless,
scripted datasets are not realistic as the contexts visited and visit patterns do not reflect
reality. It is important that HCR models are precise on datasets collected in the wild,
which are more reflective of actual deployment circumstances. However, HCR models
often exhibit reduced performance on more naturalistic, in-the-wild datasets. Vaizman,
for example, achieves 71.7% accuracy using a Multi-Layer Perceptron (MLP) model trained
on a HCR dataset gathered in the wild [3]. Essentially, the accuracy of state-of-the-art
HCR models on scripted datasets decreases by 19.5% when compared to their accuracy on
datasets gathered in the wild. This performance disparity is a result of in-the-wild dataset
problems, including:

(1) Diversity of phone placements: Or locations where smartphone devices are typically
kept (prioceptions). When the phone is carried in various prioceptions, sensor signals for
the same activity have distinct characteristics [5,6]. In fact, as seen in Figure 1, prioception
is one of the most significant causes of variation in smartphone context sensor data [3].
Smartphone users may opt to carry their devices in a backpack, in their hand, or in a coat
pocket when engaging in a certain activity (e.g., walking).

(2) Weak, noisy, and missing context labels: Supervised machine learning algorithms have
difficulty when users quit supplying labels [7] due to lack of time or because they offer
incorrect labels [8].

(3) Diversity of smartphone models: Typically, while participants in scripted HCR studies
use a specific study phone model provided by the proctor, participants in HCR field
(in-the-wild) studies utilize their own mobile devices. Different smartphone models can
record sensor values for the same context that vary by as much as 30%, which presents an
additional challenge for machine learning classifiers [6].

Lab-to-field methods: Have recently been proposed as promising approaches for
achieving acceptable HCR performance on noisy, low-quality labeled datasets collected in
the wild [9]. The goal of lab-to-field techniques is to train highly accurate machine learning
models on scripted HCR datasets, which are subsequently adapted for in-the-wild datasets
with the expectation of maintaining great performance. (Going from Lab-to-field). Due to
differences between the contexts visited by participants in the scripted study visited vs. the
in-the-wild study, as well as the order in which they visited those contexts and the length
of their visits, which were quite different from in-the-wild scenarios, there are substantial
discrepancies between the distribution of features derived from scripted and unscripted
datasets, often known as the covariate shift problem [9–11].

Domain Adaptation (DA): One of the primary approaches of adapting neural net-
works to deal with the covariate shift problem is called Domain Adaptation (DA), and it is
a transductive transfer learning method. DA has been utilized in other related disciplines,
such as object detection in computer vision and the issues posed by the unpredictability
in wearable sensor location in ubiquitous computing [5,11]. Utilizing both labeled source
samples (e.g., scripted dataset) and unlabeled target samples (e.g., in-the-wild), each of
which has a unique distribution, Unsupervised Domain Adaptation (UDA) attempts to
learn a deep learning model that can accurately predict the labels of unlabeled (e.g., in-
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the-wild) data samples [5,12]. Figure 2 presents an overview of the topic, its obstacles,
and our strategy.
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Figure 1. The effect of different phone placements on sensor data can be seen in triaxial accelerometer
tracings for the same walking activity but with different phone prioceptions.

Figure 2. (a) The two kinds of smartphone context data used in this work. (b) Overview of Triple-
DARE’s problem and approach.

Challenges. For the application of UDA to the lab-to-field generalization of smart-
phone context recognition, two significant obstacles must be overcome. Initially, the previ-
ously noted data concerns with in-the-wild datasets (the diversity of phone placements,
noisy labels, and the variety of smartphone models) must be resolved. Second, it is diffi-
cult to build a strategy for knowledge transfer from a scripted dataset to a more realistic,
but significantly noisier, unscripted dataset with sparse labels.
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Our approach. Recent empirical accomplishments of the triplet loss function in the
facial recognition task [13,14], where changes of the same person’s face pictures are tightly
mapped in a learned embedding space, has inspired us. We believe that HCR sensor
data can benefit from a similar approach even in cases where sensor signatures associated
with the same context often vary. Our opinion is also consistent with the findings of
Khaertdinov et al., who utilized triplet loss to reduce the impacts of subject variability and
enhance model generalizability [15].

We present Triple-DARE, a Lab-to-field UDA approach that may harness the vast
volumes of unlabeled smartphone HCR data collected in the wild, therefore reducing the
requirement for human-annotated labels. Triple-DARE uses both handcrafted features and
features autonomously extracted from raw sensor data by a CNN. Triple-DARE uses domain
alignment and triplet losses to learn domain-invariant embeddings with discriminative
capabilities for context predictions learned from unlabeled samples. Triple-DARE collects
domain-invariant features that increase the effectiveness of predicting contexts under
unobserved prioceptions.

In addition, to support our DA strategy, we used HCR datasets with coincident
scripted and in-the-wild data with equivalent context labels collected in both studies [1].
These coincident datasets and identical context labels guarantee that there is a feature rep-
resentation of contexts that is shared throughout scripted and unscripted datasets, which
is a crucial need for the DA strategy. By only using context labels that were collected in a
scripted study during model development, we are able to demonstrate that our method
is applicable to HCR models that are implemented in realistic environments by employ-
ingDA in order to reduce the impact of potentially noisy labels while maintaining HCR
performance on a dataset collected in the wild. Triple-DARE outperforms state-of-the-art
baselines by 3.79% and 1.89% gains in F1-score and accuracy, respectively, and outperforms
HCR models without Triple-DARE by 39% and 14.7% in F1-score and accuracy, respectively.

State-of-the-art limitations. There is a paucity of research on laboratory-to-field
generalization approaches for HCR. Previously proposed lab-to-field methods include im-
portance re-weighting [9,16] and Positive Unlabeled (PU) classifiers [1]. DA has been used
in the past to solve the problem of variable on-body locations of wearable sensors [5,17] but
not for HCR. The majority of prior DA work for wearable sensors focuses on decreasing
the global distribution gap across domains while learning common feature representa-
tions [5,17]. However, we observe that even if the global distribution is effectively aligned,
samples from different domains with the same label may be mapped such that they are
far apart in feature space. Thus, in addition to using a domain alignment loss [18,19],
Triple-DARE improves intra-class compactness and inter-class separability by utilizing a
joint fusion triplet loss [12,13] intended for multi-labeled datasets. Moreover, unlike other
existing methods for dealing with domain shifts [1,9,17,20], we do not utilize target labels
in the target (in-the-wild) dataset, instead following the UDA problem setting outlined by
Chang et al. [5].

Contributions. The main contributions of this paper are:

1. We provide Triple-DARE, a novel UDA deep-learning architecture that employs a
scripted dataset to increase the HCR accuracy of predicting contexts in the wild. Triple-
DARE employs a domain alignment loss for domain-independent feature learning,
a classification loss to keep task-discriminative features, and a joint fusion triplet loss
to improve intra-class compactness and inter-class separation;

2. We carefully assessed Triple-DARE, comparing it to numerous state-of-the-art unsu-
pervised domain approaches, including DAN [18], CORAL [19], and HDCNN [17],
and bench-marking advances in HCR performance on target domains in multiple
application scenarios. Our ablation study demonstrates that all component of Triple-
DARE contributes non-trivially;

3. We illustrate that Triple-DARE minimizes in-the-wild dataset problems when com-
pared to state-of-the-art DA algorithms, delivering improved prediction accuracy
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on the target (in-the-wild) domain without the requirement for large amounts of
source-labeled samples.

The rest of this paper is organized as follows. Section 2 includes the background.
Section 3 reviews the related work. Section 4 describes our proposed approach. Section 5
presents our evaluation and findings. Section 6 outlines the limitations of our work and
plans for future work. Section 7 finally concludes the paper.

2. Background
2.1. Covariate Shifts

The term “Covariate Shifts” was first introduced by Shimodaira [21], and is described
as changes in the distribution of the input x. While there are other types of existing
shifts [10], the most researched type of shift is covariate shift. Covariate shift occurs when
data are generated based on a model P(y|x)P(x) whose distribution P(x) varies between
the training and test situations. While there is some ambiguity in the definitions of covariate
shift in the literature, we found the definition provided by Moreno-Torres et al. [10] to be
the most relevant, given by the following conditions:

Ptraining(y | x) = Ptesting(y | x) and Ptraining(x) 6= Ptesting(x), (1)

where Ptraining(x) and Ptesting(x) represents training and testing input distributions, respectively.
Collecting smartphone sensor data in the wild often results in naturally occurring

variations in the data. When trying to leverage models trained on scripted data to im-
prove performance on an in-the-wild dataset with similar context labels, we encounter
a data shift problem known as covariate shift, where the distribution of features differs
across training and test scenarios. Specifically, the covariate shift problem is caused by
substantial differences between the distributions of features extracted from scripted and
in-the-wild datasets [9–11]. More broadly, because real-world applications must face some
type of dataset shits, it is critical to address the covariate shift problem for the successful
deployment of machine learning models in the wild [10].

2.2. Sensor Data Collection Studies

Inaccurate labeling or unrealistic user behavior are two common problems with context
datasets. There are two types of research designs used to gather HCR datasets: scripted [2]
or in-the-wild [3]. Scripted studies are usually conducted in a laboratory setting. Participants
follow a scripted series of steps to complete a series of tasks in a predetermined order,
while an app on their smartphones continuously logs data from those devices’ sensors.
Human proctors annotate the sensor data with corresponding context labels. In unscripted
(“or in the wild”) studies, data is gathered over days while people live their lives in the
actual world. A smartphone continually gathers smartphone sensor data as individuals go
about their daily lives. Periodically, subjects annotate their data with labels for the contexts
they have visited. While the scripted technique for HCR data collection produces accurate
labels suited for supervised machine or deep learning that are exceptionally precise and
consistent, the contexts visited and sensor data acquired in each context are not reflective
of the actual world. HCR research conducted in the wild yields more accurate results.
However, certain context labels may be missing since people forget to label when their lives
get busy. Additionally, some labels may be incorrect due to human labeling errors [8].

2.3. DARPA WASH Project: Motivation Use Case

The Warfighter Analytics utilizing Smartphone for Healthcare (WASH), a DARPA-
funded project, investigates passive smartphone evaluation of traumatic brain injury and
infectious disease [22]. This will offer a current evaluation of the warfighter’s battle readi-
ness. Initially, the target groups are active-duty military personnel and veterans, but the
findings will also apply to civilians. In the intended use case, the WASH smartphone appli-
cation will passively collect sensor data throughout each day. Each day’s data is then sent
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overnight to the cloud for processing. These data will be analyzed in the cloud by disease
inference algorithms to provide a bioscore (or probability of illness) for each warfighter.

Program phases: The WASH program is separated into two sections. Phase one is
identifying particular smartphone user scenarios for conducting targeted health evaluations.
Phase two entails the development of real TBI and infectious illness assessment systems for
smartphone users. In phase one, we conducted research and compiled a list of smartphone
biomarkers indicative of TBI and infectious disorders, as well as their accompanying
settings. Our team performed user surveys to acquire labeled data for these settings and
developed HCR models to infer these smartphone contexts derived from labeled sensor
data. In Table 1, the intended disease-specific tests or biomarkers relating to each of these
settings are detailed. The University of Massachusetts Medical School’s specialists in
traumatic brain injury (TBI) and infectious diseases were consulted while compiling our
list of illness tests and situations (UMMS). As an example, trembling hands are a symptom
of TBI. In phase one, our team will perform user research and develop deep learning
models to recognize smartphone users holding their devices. In the second step, we will
analyze if the user’s hand is shaking. This study is limited to context recognition. Actual
context-specific disease assessment research is not covered.

Table 1. Context-specific diagnostic tests for traumatic brain injury (TBI) and infectious diseases with
their relevant human contexts.

Traumatic Brain Injury
Diagnostic Test Context

Inferior Reaction Time < Interaction with Phone, in Hand, *, *>
Elevated Light Sensitivity <*, in Hand, *, *>

Pupil Dilation < Interaction w/ Phone, in Hand, Typing, *>
Hands Shaking <*, in Hand, *, *>
Slurred Speech <Speaking into Phone, *, *, *>

Infectious Diseases
Ailment Test Test Context

Elevated Frequency of Coughing <Coughing, *, *, *>
Elevated Frequency of Sneezing <Sneezing,*, *, *>

Rate of Heart at Rest <Sitting, in Pocket, *, *>
Elevated Toilet use Frequency <Using Toilet, *, *, *>

Variation in respiration <Sleeping, on Table, *, *>
<Exercising, *, *, *>

Both TBI and Infectious Disease
Ailment Test Test Context

Elevation In Activity Transition Period <Lying down, in Pocket, *, *>
<Sitting, in Pocket, *, *>

<Standing, in Pocket, *, *>
Variation in Sleep Quality <Sleeping, *, *, *>

Variation in Gait <Walking, in Pocket/Hand, *, *>
“*” denoting a wildcard.

2.4. Our Coincident Data Gathering Study Approach

Using an innovative coincident study design, we conducted scripted and in-the-
wild data collection studies to collect labeled data in the same contexts shown in Table 2.
This coincidental study enables the use of machine learning techniques that combine the
precision of scripted labels with the natural context visit patterns of studies conducted in
the wild. Our in the wild study followed a similar methodology to the Extrasensory study.
The smartphone app constantly collected sensor data from 103 participants’ smartphones
as they went about their daily lives. The users were subsequently prompted to self-
report context labels. Our scripted study was conducted in a specific laboratory, campus
building, or route. The smartphone app systematically collected data from 100 participants
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who visited the contexts listed in Table 2. The scripted data collection session lasted
approximately one hour per subject, and human proctors monitored and annotated the
data manually.

Table 2. Contexts for which data was obtained as part of our WASH Study Collected Contexts—split
down into 25 binary labels.

Phone Placement

Phone in Hand Phone in Bag
Phone in Table—Facing Up Phone in Table—Facing Down

Phone in Pocket

Long Activity

Standing Sleeping
Walking Sitting

Stairs—Going Up Stairs—Going Down
Talking On Phone Trembling ∗

Jumping ∗ Jogging
Typing In Bathroom

Lying Down Running

Short Activity

Coughing ∗ Sneezing ∗

Sitting Down (transition) ∗ Sitting Up (transition) ∗

Standing up (transition) ∗ Laying Down (transition) ∗

*: Labels associated with contexts collected in the scripted study only.

2.5. Weakly Supervised Learning (WSL)

In supervised learning tasks, predictive models are trained on annotated training
examples, common types of which are classification and regression models. A training
example consists of an input feature vector (also known as an instance) and a label that
is associated with it (or ground-truth). Due to the high costs associated with gathering
labeled data, it is difficult to gather adequate labels of sufficient quality for fully supervised
learning in many real-world scenarios, such as our study of HCR using data collected in
the wild. This presents a challenge for fully supervised learning. Various types of weak (or
inaccurate) labels can occur in such practical scenarios, including several encountered in
our mobile HCR scenarios, requiring innovative learning methods. According to a recent
survey by Zhou et al. [7], weakly supervised learning can be categorized into three types:

1. Inexact supervision in which only coarse-grained labels are provided. Due to the nature
of the annotation process of sensor data, only a few selected sub-segments of each
training sensor segment can be considered accurate representatives of their respective
labels. However, their precise length, as well as their position within the segment,
is unknown;

2. Inaccurate supervision in which data labels are not always correct. For example, in-the-
wild datasets often depend on self-reported labels. However, users may erroneously
provide wrong labels as they might not recall which contexts they previously vis-
ited accurately;

3. Incomplete supervision that utilizes unlabeled training data. When study participants
get busy with their lives, they might forget to label the data in the dataset, which
means that some of the context labels might be missing from the dataset.

For these various forms of weak labeling, innovative learning methods that are trained
under weak supervision are desired [7].



Sensors 2023, 23, 3081 8 of 24

3. Related Work

Lab-to-field generalization. Our Lab-to-field method tries to leverage a scripted
dataset that contains high-quality, relatively cheaper to obtain, ground truth labels to
improve HCR model performance on an in-the-wild dataset [9]. The ability of deep neu-
ral networks to generalize to real-world scenarios, where domain shift is expected, is a
critical challenge in smartphone HCR developed for in-the-wild data [1,23]. Importance
re-weighting [9,16] and Positive Unlabeled (PU) classifiers [1] are two methods that have
been presented in the past to deal with covariate shifts. The transferability of HCR findings
from the laboratory to the real world is an area that has received little attention. However,
a related study employed importance re-weighting to modify a linear logistic regression
model for application with data from wearable electrocardiograms (ECGs). When applied
to deep neural networks, however, these techniques have a diminished impact on perfor-
mance [24]. Unlike other existing methods for dealing with domain shifts [1,9,17,20], our
approach does not require target domain labels.

Domain Adaptation (DA). Prior research has demonstrated substantial progress in
adapting deep neural networks to various related domains [11]. Recent deep DA methods
are either discrepancy-based approaches that minimize a discrepancy metric over feature
distributions [18,19], or adversarial-based approaches [25] that aim to maximize domain
confusion. The Deep Adaptation Network (DAN) [18] minimized the mean distance be-
tween two feature distributions in a Reproducing Kernel Hilbert Space (RKHS), effectively
matching higher-order statistics of the two distributions. On the other hand, the deep Cor-
relation Alignment (CORAL) [19] technique proposed matching the mean and covariance
of two distributions. Other strategies have used an adversarial loss to maximize domain
confusion [25]. The domain alignment loss, one component we utilized in Triple-DARE, is
based on DAN.

DA for wearable sensor data. In ubiquitous computing, several DA techniques have
been developed to transfer a trained model to a new dataset with similar characteris-
tics [5,17,26,27]. Previous work has shown that DA can be used to unsupervisedly learn
domain-invariant accelerometer [5,17] and gyroscope [5] features from sensor data by mini-
mizing a discrepancy distance in the Convolutional Neural Network (CNN) embedding,
thereby mitigating the effects of variability in wearable sensor placement. HDCNN [17]
looked at whether or not a model pre-trained on smartphone data could be used with
unlabeled smartwatch data. The researchers used Kullback–Leibler (KL) divergence and
a discrepancy-based technique to transfer the trained model from smartphones to the
unlabeled wristwatch data. Stratified Transfer Learning (STL) [26] is a DA method for
adapting on-body sensor-based activity recognition tasks to various sensor placements
(wrist, chest, leg, etc.). It also maps source and target domain data into the same subspace
where distances can be computed, exploiting intra-affinity of classes to transform intra-
class knowledge. UDA methods based on Variational Auto Encoders have been used for
adapting models to work on another dataset, and have been applied on binary sensors for
smart-homes applications [27]. DA was also used to adapt models to subject variability [20],
using multi-domain adaptation to address target label shift by incorporating the target
domain label distribution in the training process.

The majority of existing work solely focuses on domain-general feature representation
learning with the goal of decreasing the global distribution disparity [5,17]. While STL
proposed a way to perform intra-class transfer by minimizing the discrepancy between
feature distributions of instances of the same class, this approach does not scale well to
large-scale datasets, especially datasets with a large number of class labels. By employing
a joint fusion triplet loss, our study expands upon previous efforts to enhance intra-class
compactness and inter-class separability [12,13]. A summary of the related work is included
in Table 3.
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Table 3. Related work summary.

Research Work Method Type of Data Task Lab-to-Field
Distribution
Discrepancy

Minimization

Natarajan et al. [9] Importance-
reweighting

Wearable
electrocardiogram

sensor data

Cocaine use
detection × No

Alajaji et al. [1] Positive Unlabeled
Classifier

Smarthpone sensor
data Context recognition × No

Chang et al. [5]
Feature matching

and confusion
maximization

Wearable sensor
data

UDA for activity
recognition under

sensor position
variability

Global only

Long et al. [18] MK-MMD Images
UDA for

cross-dataset image
classification

Global only

Sun et al. [19] Correlation
Alignment Images

UDA for
cross-dataset image

classification
Global only

Khan et al. [17] KL Divergence
Smartphone and

smartwatch sensor
data

DA for cross-device
activity recognition Global only

Chen et al. [26] Stratified Transfer
Learning

Wearable sensor
data

DA for cross sensor
placement

Non-scalable intra-
class separation

Sanabria et al. [27] Variational
Autoencoder

Binary event sensor
data

DA for cross-user
activity recognition Global only

Wilson et al. [20]
Weak-supervision
using target label

distribution

Wearable sensor
data

DA for cross-user
activity recognition

Global only and
utilized target labels

4. Proposed Triple-DARE Methodology
4.1. Problem Formulation

Our study makes use of two datasets annotated with the same context labels as those
in Table 2: (1) a scripted dataset (source) with high-fidelity labels, and (2) an in-the-wild
dataset (target) with identically labeled data. These two datasets are acquired using a study
design with coincident data collection, where data was gathered for the same context labels
in separate scripted and in-the-wild settings. With respect to UDA, there are source domain
labeled samples and target domain unlabeled samples, both of which have distinct data
distributions. Our objective is to use both labeled and unlabeled target data to train a
classifier that performs effectively on the target domain. In a more formal sense, we have
labeled samples Ds = {(xs

i , ys
i )}

ns
i=1 and unlabeled samples Dt = {(xt

i)}
nt
i=1, with ns and nt

standing for the number of samples in the source and target domains, respectively. The fea-
ture space and label space are identical across the source and target domains Xs = Xt and
Ys = Yt, but the marginal distribution is not the same (Ps(xs) 6= Pt(xt)). The conditional
distributions are assumed to be equal Ps(yt|xs) = Pt(yt|xt) in the two domains.

We refer to x as the feature vector, and y as a multi-label output vector representing
the human context where each label used is a binary output (e.g., walking vs. not walking).
Presumably, the source and target tasks are identical. At first, we use the labeled source
dataset to train the HCR model. Once the HCR model has been trained, it may be used
to detect unlabeled contexts in the target dataset by integrating unlabeled data from the
target dataset into the training set.
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4.2. Overview

In the model in Figure 3, the framework of Triple-DARE is depicted. Triple-DARE
extracts two distinct kinds of feature sources from the source and target datasets: (1) Hand-
crafted features based on temporal and spectral information processed by a feed-forward
neural network and (2) three-axis sensors’ raw data is put into a convolutional neural
network (CNN) that uses a soft attention method to identify prominent characteristics
from the data. Triple-DARE consists of three main parts: (1) A domain alignment loss
Ld to generate domain-invariant embeddings; (2) a classification loss Lcls in order to
preserve task-discriminating characteristics; and (3) a joint fusion triplet loss mathcalLtri
that improves intra-class compactness and inter-class separation in the learned embedding
space by learning comparable contexts represented by differences in sensor inputs.
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Figure 3. Triple-DARE framework.

The final result is used for context predictions with multiple labels. For instance,
according to our definition of context as an <Activity, Phone placement>, a context could
be 〈“Sitting”, “In Bathroom” with “Phone In Hand”〉. Our ultimate aim is to minimize the
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cost function C(·) in order to execute context predictions by learning discriminative and
domain-invariant embeddings:

C(θ) = λ1Lθ
cls + λ2Lθ

d + λ3Lθ
tri, (2)

where θ are model parameters, λ1, λ2, and λ3 are balancing coefficients. Subsequent
sections elaborate on this procedure and each kind of loss objective. Each loss function is
applied to the three feature encodings produced by our deep network, namely the MLP,
CNN, and joint fusion encodings.

4.3. Feature Generation

From the raw sensory inputs for a specific smartphone context dataset, we generate
two views. The first is a vector derived by manually applying handcrafted features to all
accessible sensors. The second view is comprised only of raw three-axial sensors. We use
distinct feature encoders for each input view type. Specifically, (1) Handcrafted feature
encoding using a Multi-Layer Perceptron (MLP), which is adopted from Ref. [28] and
(2) attention-based CNN encoder [4] for raw sensor data. The two resulting feature encod-
ings are then concatenated to yield a joint fusion encoding.

We use data from five sensors: accelerometer, gyroscope, GPS, magnetometer, and
phone status (discrete attributes such as whether the phone screen is locked or unlocked).
At the sliding window level, we compute statistical, time-based, and frequency-based
features for each of the sensor modalities (10-s in this application). Then, we implemented
Z-score normalization zi = xi−x̄

s through subtraction of the mean and division by the
standard deviation. Handcrafted features, including 188 features borrowed from Ref. [3],
are utilized to build a vector that is then put into a feed-forward network. Table 4 lists some
of the handcrafted features incorporated in our work.

Table 4. A small selection of the handcrafted features applied to accelerometer, gyroscope, and mag-
netometer data that we use, taken from Refs. [3,29].

Feature Formulation

Tri-axial sensors Features

Arithmetic mean s̄ = 1
N ∑N

i=1 si

Standard deviation σ =
√

1
N ∑N

i=1(si − s̄)2

Frequency signal Skewness E
[
(s−s̄)3

σ

]
Frequency signal Kurtosis E

[
(s− s̄)4]/E[(s− s̄)2]2

Signal magnitude area 1
3 ∑3

i=1 ∑N
j=1

∣∣∣si,j

∣∣∣
Pearson Correlation coefficient C1,2/

√
C1,1C2,2, C = cov(s1, s2)

Spectral energy of a frequency band [a, b] 1
a−b+1 ∑b

i=a s2
i

s: signal vector Q: quartile, N: signal vector length, cov: covariance

GPS Features

Significant changes from the prior location state
Estimated speed

Variations in latitude and longitude

Phone State Features

Is smartphone screen unlocked? Is smartphone charging?
Is ringer setting set to silent? Is smartphone connected to WIFI?

CNN’s auto-learning capabilities employ raw sensor data from three axial sensors
(accelerometer, gyroscope, and magnetometer). The CNN we utilized, which was adapted
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from the DeepContext [4], has a soft attention mechanism that aids in the learning of
prominent features by assigning greater priority to those parts of the raw sensor data
that are more indicative of the user’s context. The intuition behind the design of this
attention mechanism is similar to that proposed by Refs. [4,30]. The effectiveness of this
architecture comes from using attention layers on features generated by single-sensor
CNNs and features generated by CNNs that assessed the combined sensor outputs. This
enables the model to emphasize CNN characteristics that are context-specific. For more
details about the DeepContext CNN architecture, we refer the reader to Ref. [4].

4.4. Domain Alignment Loss

The objective of domain alignment loss is to transform the source and target feature
encoding into a common feature distribution space in order to discover feature repre-
sentations that are shared across domains. Gretton et al. [31] presented Multi Kernel
Maximum Discrepancy Mean (MK-MMD) as an improvement for Maximum Discrepancy
Mean (MMD), which we employ in our method. MMD is a non-parametric distance metric
that can be employed to evaluate the disparity between marginal distributions [18]. MMD
maps the feature representations of the source and target domains (Xs and Xt) to the
Reproducing kernel Hilbert space (RKHS) and then computes the mean distance between
the two distributions in RKHS. MK-MMD has been proposed as an optimal kernel selection
approach for MMD because it can find an ideal kernel created by a weighted combination
of various kernels based on the source and target datasets [18]. Let φ(·) be a feature map
defined as a combination of G positive kernels ku with their associated bandwidth βu > 0,
given as the following:

k =
G

∑
u=1

βuku, (3)

φ
(
xs, xt) = k

(
xs, xt), (4)

where xs and xt represent feature embeddings for the source and target domain, respectively.
The formulation of MK-MMD is thus defined as follows:

q(X s,X t) =
∥∥EX s [φ(xs)]− EX t

[
φ
(
xt)]∥∥

H , (5)

where ‖.‖Hk
is the RKHS norm. The domain alignment loss can be obtained by:

Lθ
d = ∑

l∈Nl

q2(X s
l ,X t

l
)
. (6)

MK-MMD is computed per network layer to measure the distance between the source and
target domain data representations. Nl indicates the number of layers, and we denote
(X l

s ,X l
t ) for the distributions of the source and target domains, retrieved from the lth layer

in the network. d
(
X l

s ,X l
t

)
is the MK-MMD calculated by Equation (5) between the source

and target domains distributions evaluated on the lth layer embeddings. Intuitively, the do-
main alignment loss is a regularizer that minimizes the distance between the distributions
generating source domain data and target domain data.

4.5. Classification Loss

The objective of classification loss is to use source domain labels to discover discrimi-
native features for context predictions. Both domains utilize the same context labels for
classification. The overall learning process is guided by the optimization of our model for
context classification on the source domain. Given the availability of Ds’s labels (labeled
source domain data), the classification loss is defined as:

Lθ
cls =

1
Ns

Ns

∑
i=1

`Ψ( fφ(xs
i ), ys

i ), (7)
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where the classifier is denoted as fφ(·), Ns represents the number of labeled training
samples, `Ψ is a binary cross-entropy function with inverse class frequency weighting that
corrects for class imbalance, and (xis), ys) represents labeled context data sampled from
source domain data.

4.6. Triplet Loss

In an embedding space, the triplet loss is primarily utilized to group samples from
the same or related classes together and push samples associated to different classes away.
An empirical success was seen in the field of face recognition. This is because different
images of the same person map very closely to the learned embedding space [13,14]. Since
numerous variations in the sensor inputs can represent the same context, we think the same
approach can be applied to sensor data.

Given three samples, an anchor sample xa (also called a query sample), a positive
sample xp (one that belongs to the same class as the anchor), and a negative sample xn (i.e.,
a sample with a different class from the anchor), and with a distance function d, we can
define triplet loss as follows:

Lθ
tri =

N

∑
i
[d(xi

a, xi
p)− d(xi

a, xi
n) + α]+ (8)

where α represents the margin between positive and negative samples and x represents
an embedding of x for ease of notation. We reduce the triplet loss by pushing d(xa

i , xp
i )

towards zero and making d(xa
i , xn

i ) to be greater than d(xa
i , xp

i ) + α. In other words, pairs
of positive samples are jointly grouped together, while positive and negative sample pairs
are separated by some margin α. To put this in perspective, we want the network to learn a
feature space in which the squared distance between all feature embeddings of the same
context is minimal, while the squared distance across sensor contexts associated with
different labels is large.

4.7. Joint-Fusion Triplet Mining

The process of constructing triplets (anchor, positive, and negative) for triplet loss
calculations is known as triplet mining. The two main strategies for selecting triplets are
offline and online. Finding triplets offline is not recommended as it requires a complete
pass over the training set [14]. In accordance with the method described in Ref. [13], we
employ an online triplet mining strategy that does not require a prior pass on the training
set. Because discovering triplets across two domains necessitates the presence of target
domain labels, one of the most prevalent solutions for UDA problems is to use the classifier
trained on the source domain to generate pseudo labels for samples of the target domain
during training [12]. During this procedure, it is vital to remember that the pseudo labels
generated may not be accurate. Nonetheless, we reassign pseudo labels every few iterations
since the accuracy of the classifier on the target dataset improves continuously throughout
training. In addition, domain alignment loss can help improve the accuracy of the classifier
on the target dataset by reducing distribution disparity. Consequently, the quality of the
pseudo label can improve automatically.

Our joint-fusion triplet mining technique operates as follows: After concatenating
two mini-batches of samples from the source and target domains into one mini-batch,
triplets are generated. We need a concept of similarity between multi-labeled vectors in
order to construct triplets that are compatible with our multi-labeling settings. First, we
define a compatibility score between two binary labeled contexts y1, y2 as the dot product
between them:

c(y1, y2) = y1 · y2 (9)

Due to the imbalanced nature of our dataset, we consider all the positive examples
when constructing triplets. We use a strategy similar to Ref. [13] that focuses on triplets that
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contribute the most to the learning process, but we modify it by using our compatibility
score to select triplets that meet the following condition:

d(xa, xp) + α > d(xa, xn) & c(ya, yp) > c(ya, yn) (10)

Our triplet mining strategy is detailed in Algorithm 1.

Algorithm 1: JOINT-FUSION ONLINE TRIPLET MINING finds triplets with multi-
labeled vectors

Input: Number of samples in a batch m, classifier f (·), Ds, Dt, distance d,
compatibility score (Equation (9)) c, α, and sample size k

Output: List of triplets [(a, p, n)]
{xs

i , ys
i }m

i=1 ← Read next mini-batch (Ds) ;
{xt

i}m
i=1 ← Random sample mini-batch (Dt) ;

{yt
i}m

i=1 ← Assign pseudo labels using f on {xt
i}m

i=1;
{xz

i , yz
i }m

i=1 ← concatenate( {xs
i , ys

i }m
i=1, {xt

i , yt
i}m

i=1);
triplets← {}
for each a, p in {xz

i , yz
i }m

i=1 do
if a has positive labels And a 6= p then

Q←k Random samples from {xz
i , yz

i }m
i=1;

N← {};
for q in N do

//Negative example candidate selection:
if c(a, q) == 0 & d(a, q) < d(a, p) then

N.add(q);
end

end
for n in N do

Equation (10):
if d(a, p) + α > d(a, n) & c(a, p) > c(a, n) then

triplets.add ((a, p, n)) ;
end

end
end

end
return triplets

5. Experiments

We compared Triple-DARE and baseline models on both scripted and in-the-wild
smartphone HCR datasets, where we performed multiple UDA use cases. Overall, Triple-
DARE was used to obtain a robust representation from the scripted dataset (source), which
was then applied to enhance HCR on the in-the-wild dataset (target).

5.1. Datasets

In-the-wild dataset: A total of 103 participants downloaded a smartphone app that
passively collected data for 2 weeks as they went about their daily lives. Periodically,
participants were asked to self-report the context labels that they visited. In addition to
being more realistic, our in-the-wild dataset reflected a variety of manufacturer hardware
because it was collected using individuals’ smartphones.

Scripted dataset: The smartphone application collected information from 100 partici-
pants who visited predetermined locations. During the data collection session, which lasted
about an hour per subject, human proctors oversaw and manually annotated the data.
Both scripted and unstructured datasets were similarly preprocessed and characterized.
The contexts were treated as vectors with multiple labels, with 10-s window size used to
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create segments. The number of samples for scripted and unscripted datasets is 21,846
and 631,026, respectively. In Table 5, we list the context labels used throughout this study.
To increase the applicability of our model to unseen subjects, subject-wise cross-validation
was used, wherein a given subject’s data was included in either the training set or the test
set, but never both. Each UDA experiment utilized 90% of source domain data for training,
10% of source domain data for validation, and 100% of target domain data for testing.
Figure 4 displays data extracted from the two datasets, displaying only the accelerometer
sensor readings for three context examples.

Table 5. The proportions of contexts that have been given a positive label.

Contexts Scripted % P In-the-Wild % P

Bathroom 3.15% 2.17%
Jogging 2.04% 0.27%

Lying Down 1.10% 16.24%
Running 1.95% 0.37%
Sitting 11.99% 38.71%

Sleeping 2.19% 37.69%
Stairs—Going Down 2.52% 2.00%

Stairs—Going Up 0.89% 1.92%
Standing 1.71% 8.46%

Talking On Phone 1.41% 1.27%
Typing 3.65% 6.45%

Walking 64.00% 13.51%

Phone Prioceptions
Phone In Hand Phone In Pocket Phone In Bag

Datasets Notations

SPrioception Scripted context dataset
WPrioception In-the-wild context dataset

e.g., SPocket refers to scripted contexts, annotated with “Phone In Pocket”

5.2. Baselines

We compared Triple-DARE with cutting-edge deep-learning-based DA models:
(1) CORAL [19]: A cutting-edge UDA model that uses deep-coral discrepancy loss.
(2) DAN [18]: A model with just our MK-MMD alignment loss. (3) HDCNN [17]: An
advanced baseline DA technique was previously applied to smartphone sensor data. HD-
CNN cross-domain transfer learning model that uses KL divergence loss on the acquired
feature vectors. (4) SOURCE: A model that has only been trained in the source domain,
with no adjustments made for the target domain. Our proposed model, Triple-DARE, which
employs our joint-fusion triplet loss.
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Figure 4. Raw accelerometer tracings sampled from Walking, Jogging, and Stairs Going up contexts
within each dataset.
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5.3. Implementation and Experimental Settings

(1) Hyper-parameters: Grid search was used to optimize the hyper-parameters of MLP
and CNN. The learning rate is initialized at 1 × 10−1, balancing coefficients are initialized
as λ1 = 1, λ2 = 0, and λ3 = 0. Following the schedule outlined in Ref. [25], the balance
coefficients and the learning rate are raised or lowered, making our model more confident
in source labels and less sensitive to low-quality pseudo labels during the early phases
of training.

The batch size is set to 256. Adam optimizer was used. All trials use the same
backbone layers utilized by our DA technique: Two-layer handcrafted-features MLP with
16 hidden dimensions, single-layer MLP domain classifier with 32 hidden dimensions,
and a convolutional neural network with attention blocks for individual and combined
sensor layers, then an average pooling layer, adopted from Ref. [4]. All sensor data was
fed into a three-layer CNN. The outputs are then concatenated and sent to another 3-layer
CNN. Attention blocks are utilized to concentrate on prominent regions of inputs [4,30].
In triplet mining, pairwise distances are computed using Euclidean distance and α is set
to 0.1. Following the LeakyReLU activation in the final context prediction layer is the
Sigmoid activation.

(2) Evaluation Protocol: In addition to reporting classification accuracy, we used the
F1 metric to evaluate HCR performance in the UDA setting due to the class imbalance in
our context datasets. As the sizes of the source and target domain datasets may not be
identical, random sampling is used to iterate through the target domain dataset. However,
we evaluate our model on every sample in the dataset for the target domain.

5.4. Results and Findings

(1) Notations: First, we define the notations used in our experimental results. SPrioception
is denoted for the scripted context dataset and WPrioception for in-the-wild dataset, e.g., SBag
refers to scripted contexts, annotated with “Phone In Bag”.

(2) Overall Results: In Table 6, we compare the overall performance scores of our
Triple-DARE algorithm to those of the baseline models. In the overall UDA tasks and Lab-
to-field UDA tasks, Triple-DARE outperforms the baseline methods with a 4.5% increase in
F1-score and 6.3% increase in classification accuracy. Figure 5 displays the performance
per context label across all UDA tasks, demonstrating that our approach outperforms
state-of-the-art methods across multiple context labels. In general, UDA methods have an
advantage over classifiers that are trained solely on the source domain without leveraging
unlabeled data. Particularly, UDA methods were of great assistance with the Jogging,
Running, Going Up and Down Stairs labels, for which the user is unlikely to provide labels
while performing these activities in the wild. Nevertheless, our method makes use of the
high-fidelity labels acquired during the scripted study and enhances adaptation. As shown
in Table 5, predictions for the labels Sitting and Walking are the most difficult, which may
be due to a significant difference in target label distributions.

Bathroom Jogging Lying Down Running Sitting Sleeping Stairs - 
 Going Down

Stairs - 
 Going Up

Standing Talking 
 On Phone

Typing Walking Accuracy

Context

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

SOURCE Triple-DARE CORAL DAN HDCNN

Figure 5. Target prediction scores for each label, averaged across various UDA task domains.
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Table 6. Overall context prediction scores on the target domain.

Overall UDA Tasks Accuracy F1-micro

Triple-DARE 0.879 0.366

CORAL 0.806 0.302

DAN 0.673 0.294

HDCNN 0.816 0.3215

Source (no adaptation) 0.433 0.259

Lab-to-field UDA Tasks Accuracy F1-micro

Triple-DARE 0.845 0.188

CORAL 0.839 0.127

DAN 0.698 0.122

HDCNN 0.768 0.146

Source (no adaptation) 0.552 0.133
The highest scores are highlighted in bold font. Row colors match the colors used for different baseline methods throughout
this article.

(3) Scripted contexts with cross-prioception UDA tasks: Figure 6 demonstrates that Triple-
DARE consistently outperforms the baseline methods on all cross-prioception UDA tasks.
The adaptation procedure has significantly benefited the UDA tasks with “Phone In Hand”
as their target domain. This advantage is a result of the signal noise introduced when the
phone is in motion. In the majority of instances, CORAL performs better than DAN.

SHand SBag SBag SHand SPocket SBag SHand SPocket SBag SPocket SPocket SHand
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Figure 6. Scripted context data with cross-prioception UDA tasks.

(4) Lab-to-field generalization UDA tasks:
Figure 7 displays the results of our lab-to-field UDA generalization tasks. Massive

differences in the scores obtained for “Phone in Pocket” versus “Phone in Bag” and “Hand”
provide additional information about diversity placements. We hypothesize that when
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the phone is placed in a bag or held in the hand, the model is unable to map data from
scripted and in-the-wild datasets to a common feature space. In adapting models learned
on scripted data to make context predictions on in-the-wild data with a “Phone in Pocket”
prioception, however, we observe a notable improvement over baseline methods of the
current state of the art.
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Figure 7. Scripted context to In-The Wild UDA tasks scores.

(5) Training under insufficient labels:
As shown in Table 7, we analyzed the performance of our model as a function of

the number of labels in the source domain. We investigated how the number of labels
in the source domain affected the performance of our model. In Figure 8, we plot the
prediction scores obtained across multiple scripted cross-prioception domains, averaged
across various source domains. The shaded region in this figure represents the amount
of variance obtained when utilizing various source domains. Small regions of shading
indicate that the scores are highly consistent across experiments. We observed a substantial
difference when the target is “Phone in Bag” versus “Phone in Hand” or “Phone in Pocket”.
Table 7 provides a more detailed version of this experiment. Triple-DARE attains superior
prediction scores on the target domain using a small number of source labels, outdoing
baseline methods in nearly all UDA tasks.

(6) Intra-class compactness and inter-class separation: To quantify the compactness and sep-
aration of learned feature embeddings, we employed the Silhouettescore Score = bi−ai

max(bi ,ai)
,

where bi is the shortest average distance between a point and every other point in any
cluster, whereas ai represents the average distance between i and all data points belonging
to the same cluster. This score accounts for both compactness and separation. To compute
the Silhouette scores for the learned feature embeddings, we assign each instance one of
the binary context labels as a cluster label. Then, we calculate the mean score across labels.
In most UDA tasks, our Triple-DARE method achieves higher compactness and separation
scores, as shown in Figure 9. In addition, in the majority of instances, CORAL achieves
higher scores than DAN in most cases. Additionally, the quality of the learned feature
embeddings can be viewed visually in Figure 10, which depicts the same context instances
represented by feature embeddings learned using DAN and Triple-DARE. The visualization
is obtained by projecting feature embeddings into a two-dimensional space using the
T-distributed Stochastic Neighbor Embedding (TSNE) [32].

(7) Ablation Study: We conducted an experimental ablation (shown in Figure 11) to rank
the utility of Triple-DARE for a variety of UDA tasks. The best results were seen when using
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all its parts together. To further understand the relative impact of each component in this
ablation investigation, we employed a non-pretrained HCR model. While the triplet loss
and the domain loss are both useful, they do not provide as much insight as joint training.

Table 7. F-1 scores—Using variable amounts of source labels to compare diverse UDA methods for a
variety of tasks.

Scripted Contexts with Cross-Prioception UDA Tasks Lab-to-Field UDA Tasks

Training
%

Method
SBag
→

SHand

SBag
→

SPocket

SHand
→

SBag

SHand
→

SPocket

SPocket
→

SBag

SPocket
→

SHand

Avg
SBag
→

WBag

SHand
→

WHand

SPocket
→

WPocket

Avg

0.2 Triple-DARE 0.500 0.651 0.213 0.318 0.652 0.467 0.467 0.101 0.080 0.326 0.169
CORAL 0.357 0.328 0.357 0.428 0.352 0.378 0.367 0.089 0.087 0.150 0.109

DAN 0.341 0.436 0.285 0.265 0.418 0.403 0.358 0.079 0.077 0.165 0.107

HDCNN 0.341 0.492 0.472 0.470 0.468 0.380 0.437 0.087 0.084 0.181 0.117

0.4 Triple-DARE 0.557 0.617 0.444 0.492 0.767 0.511 0.565 0.118 0.143 0.359 0.207
CORAL 0.380 0.584 0.455 0.457 0.633 0.484 0.499 0.092 0.075 0.165 0.111

DAN 0.452 0.509 0.418 0.451 0.721 0.459 0.502 0.101 0.093 0.244 0.146

HDCNN 0.424 0.580 0.504 0.558 0.704 0.441 0.535 0.106 0.108 0.266 0.160

0.6 Triple-DARE 0.497 0.588 0.570 0.653 0.744 0.542 0.599 0.111 0.112 0.341 0.188
CORAL 0.577 0.688 0.505 0.505 0.754 0.448 0.580 0.110 0.123 0.210 0.148

DAN 0.540 0.634 0.428 0.459 0.653 0.429 0.524 0.100 0.084 0.209 0.127

HDCNN 0.345 0.561 0.575 0.540 0.645 0.445 0.518 0.094 0.102 0.285 0.160

Average Triple-DARE 0.518 0.619 0.409 0.488 0.721 0.507 0.544 0.111 0.112 0.341 0.188
CORAL 0.438 0.533 0.439 0.463 0.580 0.437 0.482 0.097 0.093 0.173 0.122

DAN 0.440 0.526 0.377 0.392 0.597 0.430 0.461 0.096 0.087 0.198 0.127

HDCNN 0.370 0.544 0.517 0.523 0.606 0.422 0.497 0.096 0.098 0.244 0.146

- No
Adaptation 0.319 0.469 0.476 0.470 0.260 0.315 0.385 0.108 0.110 0.180 0.133

The highest scores are highlighted in bold font. Row colors match the colors used for different baseline methods throughout
this article.
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Figure 8. Scores for each source domain in scripted contexts with cross-prioception UDA tasks,
averaged over each target, varying the number of labels from the source domain.
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Figure 9. Compactness measure on feature embeddings.
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Figure 10. Visualization of the learned feature embeddings for TripleDARE (top) and DAN (bottom),
using TSNE dimensional reduction.
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Figure 11. Ablation study, evaluating the contribution of Triple-DARE’s each component.

6. Limitations and Future Work

The assumption that the same number of sensors are available in scripted datasets
and in in-wild datasets is one limitation of our methodology. We plan to investigate the
possibility of using algorithms for lab-to-field recognition that utilize just a small fraction
of sensors that are comparable in both domains. Increasing the model’s resilience against
missing sensors during inference is one way that our methodology might be improved.
We hope that future studies in visual analytics will make use of our proposed strategy for
representation learning for smartphone sensor data and the use of UDA for visualization.

7. Conclusions

The performance of machine learning HCR models on real-world datasets is hindered
by diverse phone placements and smartphone models, as well as weak, noisy, or missing
labels. The goal of lab-to-field methods is to improve the performance of HCR models
by first training them on scripted HCR datasets and then modifying them so that they
can be used for predicting context labels in comparable datasets that were collected in
the wild. This is the first work we are aware of that uses lab-to-field techniques on HCR
datasets collected from smartphones. This paper presents Triple-DARE, a UDA deep-
learning model for HCR on smartphones, which is comprised of three components: (1) a
domain alignment loss that utilizes MK-MMD (2) a classification loss and (3) a joint-
fusion triplet loss particularly designed for multi-labeled datasets. Triple-DARE learns
domain-invariant features common to both datasets, decreasing the influence of noisy
in-the-wild data by concentrating on salient areas in sensor inputs, and achieving a high
F1-score for multiple UDA tasks on both scripted and in-the-wild context datasets. With its
domain alignment loss, Triple-DARE outperforms state-of-the-art baseline approaches
when it comes to mapping the source and target feature embedding into a standard feature
distribution. In addition, the triplet loss improves discrimination by increasing intra-class
compactness and inter-class separation while utilizing enormous amounts of unlabeled
data. Triple-DARE outperforms other state-of-the-art DA baselines, increasing the F1-score
and classification accuracy by 4.6% and 1.89%, respectively, and outperforming models
with no adaptations by 10.7% and 14.7%.
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MDPI Multidisciplinary Digital Publishing Institute
HCR Human Context Recognition
CA Context Aware
DA Domain Adaptation
UDA Usupervised Domain Adaptation
CNN Convolutional neural network
MLP Multilayer perceptron
WASH Warfighter Analytics using Smartphone for Healthcare
UMMS University of Massachusetts Medical School
WSL Weakly Supervised Learning
ECG Wearable electrocardiogram
RKHS Reproducing Kernel Hilbert Space
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STL Stratified Transfer Learning
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