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Abstract: In this paper, the low-level velocity controller of an autonomous vehicle is studied. The per-
formance of the traditional controller used in this kind of system, a PID, is analyzed. This kind of
controller cannot follow ramp references without error, so when the reference implies a change in
the speed, the vehicle cannot follow the proposed reference, and there is a significant difference
between the actual and desired vehicle behaviors. A fractional controller is proposed which changes
the ordinary dynamics allowing faster responses for small times, at the cost of slower responses for
large times. The idea is to take advantage of this fact to follow fast setpoint changes with a smaller
error than that obtained with a classic non-fractional PI controller. Using this controller, the vehicle
can follow variable speed references with zero stationary error, significantly reducing the difference
between reference and actual vehicle behavior. The paper presents the fractional controller, studies
its stability in function of the fractional parameters, designs the controller, and tests its stability.
The designed controller is tested on a real prototype, and its behavior is compared to a standard PID
controller. The designed fractional PID controller overcomes the results of the standard PID controller.

Keywords: fractional control; autonomous vehicle; robotics

1. Introduction

Mobile robotics is a very active research area. This includes the design and implemen-
tation of autonomous robots. These robots are capable of making intelligent decisions based
on localization, path planning, obstacle detection and avoidance, and environment analysis
modules. One of the key parameters for the success of a mobile robot is robot control. The
robot must obey the decisions made by higher control layers in the most precise way. Any
variation between the maneuver received and the actual maneuver executed can result in
final application failure and more complicated high-level control.

Our research group has been working for some time with a low-cost electric golf
cart [1]. The objective is to turn a standard golf cart into an autonomous vehicle so that some
mechanical and electric modifications were made on it. The drive that generates traction is a
direct current motor and a drive by wire steering system that coexists with manual steering
is included. The prototype includes an on board computer, sensors and software that turn
it into an autonomous robot capable of transporting two passengers in non-structured
environments. The vehicle localize itself [2,3], makes navigation decisions [4,5], detects
obstacles [6], avoids them [7,8], and plans the best route in real time [9]. The robot applies
this plan using a steering and velocity control, and the quality of the control limits the final
performance of the vehicle. This turns this vehicle into a good framework to test different
self-driven vehicle strategies.

The sensor set includes two encoders attached to each rear wheel to obtain odometric
information, an IMU, a centimeter GPS, three Lidars, and a stereo vision system. The
software is developed on Robotic Operative System (ROS). The software is structured in
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layers, from the low level where there are sensors and actuators to the high level where
there are planning layers able to make intelligent decisions based on the environment.
Figure 1 shows the prototype, a fully electric two-seat golf cart.

Figure 1. The sensors system to measure cart speed.

The measured speed for the control is obtained from the odometric system of the
prototype. The odometric system is based on encoders coupled to rear wheels, as shown
in Figure 2. Each encoder provides 1024 pulses per revolution and each revolution of the
wheel generates a revolution of the encoder (1:1 coupling). Wheel rotation is transferred to
the encoders through a flexible mechanical transmission system that goes from the center
of each wheel to the encoder placed on the side of the vehicle (see Figure 2). Encoder
output is connected to an ad hoc electronics that samples the encoders signal every 0.5 ms.
The electronics is designed to measure and integrate the encoder signals and the output is
transmitted to the on-board computer at every integration period of 20 ms. The integration
is made in the microcontroller installed in the ad hoc electronics, based on Euler integration,
and collecting encoder increments for the integration time.

Figure 2. The odometric sensor coupled to the rear wheels.
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This paper focuses on the lower software level of the vehicle, the motor traction control
when a trajectory is being tracked. The traditional way of approaching the control of a
system is using a PID controller [10]. It is a convenient and easy way to apply a solution for
controlling any system, but usually the performance of the controller system is not the best.
To improve the control quality of the final system, some alternatives are available in the
literature. Specifically, the classic PI controller used in the first designs was replaced by a
new fractional control in order to achieve better maneuverability under certain conditions.

In particular, the control engineering benefited from the advantages of adding frac-
tional operators to controllers. Incorporating integral and derivative fractional parts into a
controller makes it possible to have two additional parameters to tune compared to the in-
teger versions. These two parameters are the corresponding fractional orders. The objective
is precisely to take advantage of the fractional controllers to obtain a better performance in
the maneuverability of the prototype.

In this paper, a new fractional controller is used as the speed control for the au-
tonomous vehicle. This controller allows it to follow the applied commands in a more
precise way. Specifically, if the command sent by the high-level control is a speed increase
or reduction, a traditional PID is not able to follow the trajectory without a stationary error,
so the actual speed is different from the desired speed, as shown in Section 5. The fractional
controller proposed is able to follow these variable speed commands with zero stationary
error, and the error between reference and command is reduced as Section 7 results shows.
This advantage allows a more precise and accurate movement of the autonomous cart.

Figure 3 shows the implementation of the low-level controller that is made in the
autonomous vehicle, where a standard PI controller is substituted by a fractional PI.

Figure 3. Overall block diagram of the autonomous cart.

2. Previous Work

Fractional calculus studies the generalization of integer-order derivatives and integrals
to a fractional-order derivatives and integrals. This means that traditional calculus use
integer indices in its derivatives and integrals, however, the fractional calculus allows to
use fractional derivatives and integrals describing a more complex function. The fractional
calculus may be considered an old and yet novel topic. It is an old topic because, starting
from some speculations of G.W. Leibniz in 1695 and L. Euler in 1730 , it has been progres-
sively developed up to now. However, it may also be considered a novel topic because its
applications began in recent decades. A complete description of the fractional mathematics
can be found in [11]. In [12], a survey with the advances in fractional calculus since the
1970s is shown, which includes numerical applications to implement the actual fractional
systems that can work in real time. In [13], a survey of many applications of fractional
calculus, examples, and possible implementations are presented. It also contains a separate
chapter of fractional order control systems, which opens new perspectives in control theory.

Fractional models have been applied to different problems to characterize the dynam-
ics of processes with complex behaviors, as in [14], where fractional kinetic equations of
the diffusion are presented as a useful approach for the description of transport dynamics



Sensors 2023, 23, 3191 4 of 18

in complex systems which are governed by anomalous diffusion and non-exponential
relaxation patterns. Methods to find the solution are introduced, and for some special cases,
exact solutions are calculated. This report demonstrates that fractional equations have
come of age as a complementary tool in the description of anomalous transport processes.

In [15], fractional calculus is applied to the control of a revolute planar robotic ma-
nipulator. The fractional derivatives required by the control can be obtained by adopting
numerical real-time signal processing. Numerical experiments illustrated the feasibility
and effectiveness of the approach. Ref. [16] presents the possibilities of fractional calcu-
lus applied to system identification and control engineering, but also into sensing and
filtering domains. The fractional-order electronic component has led to the possibility of
analog filtering techniques from a practical perspective, enlarging the horizon to a wider
frequency range, with increased robustness to component variation, stability, and noise re-
duction. Fractional-order digital filters have developed to provide an alternative solution to
higher-order integer-order filters, with increased design flexibility and better performance.

The control of autonomous vehicles includes multiple steps, including route plan-
ning, behavioral decision-making, motion planning, and vehicle control [17]. The last
step, vehicle control is usually made with a standard PID controller. A survey of the
different strategies applied in the low-level control of the vehicles can be found in chapter 2
of reference [18], where the authors distinguish between model-based and model-free
controllers. Model-based controllers are more complicated to implement, and when the
system changes, as for example for battery discharge, its performance is reduced. However,
model-free controllers are more difficult to adjust, but more robust to changes in the model.
The fractional controller presented in this paper can be classified as model-free, but with
better performance than standard PID controllers. In [19], the longitudinal control task
is addressed by implementing adaptive PID control using two different approaches: ge-
netic algorithms (GA-PID) and then neural networks (NN-PID), respectively, adapting the
controller to the non-linearities and the change in system characteristics. In [? ], a control
schema to manage low-level vehicle actuators (steering throttle and brake) based on fuzzy
logic, an artificial intelligence technique that is able to mimic human procedural behavior
is presented, in this case, when performing the driving task.

In this paper, a new approach to controlling the speed of an autonomous robot is
presented, where the fractional-order controller is used to improve the performance in
reference tracking. The advantages of this kind of controller include the fact that it allows
to obtain a better performance in robot tracking the following sections will show.

3. Fractional Integral and Derivative

Given a real function dependent on time f(t), its fractional integral
(

Iα
0+ f
)
(t) of order

α is defined as Equation (1).

(
Iα
0+ f
)
(t) ,

1
Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ (1)

where α is the real positive integration order and Γ(α) is the Gamma function. The Laplace
transform of this integral equation can be defined as Equation 2.

L{Iα f (t)} =
∫ ∞

0
e−st

(
1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ

)
dt =

1
sα

F(s) (2)

with Iα
0+≡Iα and zero initial conditions.

The definition of the fractional integral is unique. However, for the definition of the
fractional derivative, there are various proposals.

The Lagrange’s rule for differential operators is used to define the Riemann–Liouville
fractional derivative RLDβ

0+ f(t) of order β for a function f (t) . Given n ∈ N such that
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n− 1 < β ≤ n, the Riemann–Liouville derivative is obtained, computing the n-th order
derivative over the integral of order (n − β) which is defined in Equation (3).

RLDβ
0+ f (t) , Dn

(
In−β
0+ f

)
(t) (3)

where D≡ d
dt and RLDβ

0+≡Dβ is used.
In a very similar way to the previous definition, changing the order of the derivative

and the integral, it is possible to define the Caputo fractional derivative cDβ
0+ f (t) of order

β in Equation (4).

cDβ
0+ f (t) ,

(
In−β
0+ (Dn f )

)
(t) (4)

The advantage of the Caputo derivative over the Riemann Liouville derivative,
Equation (4), is that it is not necessary to define the fractional-order initial conditions
when solving differential equations.

Another alternative definition for the fractional derivative is that of Grünwald–Letnikov
GLDβ

0+ f (t) (Equation (5)).

GLDβ
0+ f (t) = lim

h→0

1
hβ

∞

∑
j=0

(−1)j
(

β

j

)
f (t + (β− j)h) (5)

where (β
j) is defined in Equation (6).(

β

j

)
=

Γ(β + 1)
Γ(j + 1)Γ(β− j + 1)

(6)

It can be shown that the above definitions of the fractional derivative are equivalent
for a wide class of functions [13].

The Laplace transform of the fractional derivative Dβ is given in Equation (7).

L
{

Dβ f (t)
}
= sβF(s) (7)

when n− 1 < β ≤ n and f (0)= f
′
(0)= · · · = f (n−1)(0)= 0.

It is important to note that the classical derivative of a function at an instant t is a local
operator. However, the fractional derivative of a function at time t depends on past values,
and it is therefore an operator with memory.

3.1. Fractional Systems

A non-integer linear time-invariant system with input u(t) and output y(t) can be
represented in Equation (8).

n

∑
k=0

akDαk y(t) =
m

∑
k=0

bkDβk u(t) (8)

where αk, βk∈R and n ≥ m.
If the orders of derivation αk and βk can be represented as a term kα, with k = 0, 1,

2,. . . the system is said to be of commensurate order Equation (9)

n

∑
k=0

akDkαy(t) =
m

∑
k=0

bkDkαu(t) (9)

and its transfer function is defined in Equation (10)

G(s) =
Y(s)
U(s)

=
m

∑
k=0

bk(sα)k/
n

∑
k=0

ak(sα)k (10)
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It should be noted that a complex variable function such as Equation (11) is multi–
valued. Its domain is a Riemann surface, with a finite number of sheets when ∀k, αk∈Q+.
The q sheets of the Riemann surface, with α = 1/q, are determined by

F(s) =
n

∑
k=0

aksαk

s = |s|ejφ, (2k + 1)π < φ < (2k + 3)π

(11)

where k = −1, 0, . . ., q− 2. Note that only the roots of the principal sheet are meaningful [21].
The stability study of this type of control system is the key of its applicability. The

stability analysis is performed, finding an integer index m such as mαk which is an integer
for k = 0, 1, . . . , n. Then, it is possible to define a transformation between the complex
plane s and a new complex plane v, where s = vm.

Figure 4 shows that the first Riemann sheet is a slice of the complex plane v, which is
limited for a θ range of

(
− π

m , π
m
)
. The line with θ = π

2m splits the first Riemann sheet into
two zones. This line is the stability boundary and the zone above the stability boundary is
the stability region [21–23].

Figure 4. Transformation of the stability region from plane s to plane v.

3.2. PIαDβ Fractional Controller

In the control theory, the classical PID has been modified by replacing the ordinary
integral term for a fractional integral of order α, and by replacing the ordinary derivative
term for a fractional derivative of order β. Indeed, Podlubny [24] proposed a generalization
of the classical PID controller known as PIαDβ, with 0 < α, β < 1. The fractional PID has
two new tuning parameters (the fractional order of the integral and derivative actions) and
it has shown a better performance in both time and frequency domains than its classical
counterpart on some applications [25,26].

The PIαDβ controller expression in the time domain is shown in Equation (12) where
e(t) is the error and u(t) the control input.

u(t)=kpe(t)+kiD−αe(t)+kDDβe(t) (12)

The transfer function of the PIαDβ controller is described in Equation (13).

C(s) = Kp +
Ki
sα

+ Kdsβ , α,β > 0 (13)
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4. Prototype Description

In order to carry out the controller design, a model of the traction response of the
vehicle must be obtained first. For this, a constant voltage has been used as an open-loop
input and the readings from the optical encoder coupled to the rear wheels are measured.
This relates motor inputs with velocity output in open loop.

With the measured response, model adjustment has been made. Figure 5 shows the
measured and model output for the same input. The right part of the figure corresponds
to the part in which traction is not exerted and the vehicle stops due to the friction of the
wheels with the ground.

Figure 5. Step response for the electric vehicle.

The adjusted model cart is represented by the state variables described in Equation (14).

A =

[
0.00 1.00
−1.85 −3.05

]
; B =

[
0.00
1.85

]
; C =

[
1.00 0.00

]
; D = 0.00 (14)

The prototype can also be described by the transfer function of Equation (15).

G(s) =
K

(τ1s + 1)(τ2s + 1)
(15)

with K = 1 , τ1 = 1.20, τ2 = 0.45.

5. Fractional Control Application

It should be highlighted that the introduction of fractional terms means that the
dynamics of the closed-loop system does not depend on exponentials but on Mittag–Leffler
functions described in Equation (16).

Eα(z) =
∞

∑
r=0

zr

Γ(1 + αr)
, α > 0 and zεC (16)

where Γ is the Gamma function. When α = 1, the exponential is obtained as a particular
case E1(z) = ez.

An important fact is that, unlike what happens with the product of two exponentials
(Mittag–Leffler functions with α = 1) which is another exponential function, the product of
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two Mittag–Leffler functions with α 6= 1 is not a Mittag–Leffler function but is obtained by
Equation (17).

Eα(ax)Eα(ay) =
∞

∑
r=0

argα(r; x, y)
Γ(1 + αr)

gα(r; x, y) =
r

∑
i=0

(
r
i

)
α

xr−iyi

(
r
i

)
α

=
Γ(1 + αr)

Γ(1 + αi)Γ(1 + α(r− i))

(17)

It should be noted that, if α = 1, this expression reduces to a binomial and the classical
expression for the product of exponential is obtained. This effect has multiple consequences,
but in this paper, the change in the time scale produced by the Mittag–Leffler functions is
particularly interested. Thus, for rapid change signals, the dynamics are much faster than
for an exponential, while for slow change signals, the opposite occurs, that is, the dynamics
given by the Mittag–Leffler function is much slower than that of an exponential. To show
this behavior in a simple way, the Mittag–Leffler functions for the simplest situation,
represented in the fractional differential Equation (18), has been chosen.

dy(t)
dt

+ c1
d(β y(t)

dt(λ
+ c2 I(α y(t) = −y(t) (18)

Note that the differential Equation (18) corresponds to a system with no input, and to
observe the dynamics, an initial condition other than zero must be chosen. Thus, it was
considered y(0) = 2.

Figure 6a shows the behavior when the values c1 = 1; c2 = 0 were chosen. Only
the dynamics generated by the fractional derivative term is present. Figure 6b shows the
dynamic when c1 = 0; c2 = 1 have been chosen as parameters, so only the dynamics
generated by the fractional integral term is present. The bandwidth of the controller can
be adapted in function of the coefficients β in Figure 6a and α in Figure 6b, although the
fractional controller gives more degrees of freedom to adjust the system behavior, changing
the time response for the derivative and integral part.

(a) Comparison of classical dynamics (β = 0) with
fractional derivative dynamics for different values
of β.

(b) Comparison of classical dynamics (α = 0) with
fractional integral dynamics for different values
of α.

Figure 6. Behavior of the fractional terms with different parameters.

The standard closed-loop transfer function of error versus reference is shown in
Equation (19).

E(s)
R(s)

=
1

1 + G(s)C(s)
(19)
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A controller C(s) a PIα shown in Equation (20) is proposed.

C(s) =
(

Kpsα + Ki

sα

)
(20)

so the controller system transfer function is shown in Equation (21).

E(s)
R(s)

=
sα(τ1s + 1)(τ2s + 1)

sα
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKi

(21)

The objective is to control a golf cart, so the possible commands that the path planning
layer can send to the controller are a constant speed reference, and a speed change reference.
Step (l = 1) for constant speed and ramp (l = 2) for change in the speed are considered
as the possible inputs for the controller systems. The possible input references for the
controller are shown in Equation (22).

R(s) =
r
sl (22)

As is well known, to calculate the stationary error, the final value theorem is applied
in Equation (23).

estat = lim
s→0

sE(s) = lim
s→0

rsα+1(τ1s + 1)(τ2s + 1)
sα+l

(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKisl (23)

If the reference is for the step type (l = 1), the limit of Equation (23) is shown in
Equation (24).

estat = lim
s→0

rsα(τ1s + 1)(τ2s + 1)
sα
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKi

(24)

so, the final stationary error depends on α as shown in Equation (25){
α = 0; estat =

r
K(Kp+Ki)

α > 0; estat = 0
(25)

For this kind of reference, the classic PI can be used where α = 1 and with zero
error in the stationary. However, if the reference is ramp type (l = 2), where the speed
change from an initial value to a final one, the tracking stationary error can be calculated as
Equation (26).

estat = lim
s→0

r(τ1s + 1)(τ2s + 1)
s
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKis1−α

(26)

the final stationary error depends on α as shown in Equation (27).
c0 ≤ α < 1; estat = ∞

α = 1; estat =
r

KKi
α > 1; estat = 0

(27)

In this case, the classical integer solution with α = 2 obtains a zero stationary error,
but it can make the closed-loop system unstable. For this reason, a fractional controller is
used to achieve a zero stationary error, and it is necessary to carry out a stability analysis to
assure stability. For this, it is considered as a final control transfer function Equation (28).

G(s)C(s) =
K

(τ1s + 1)(τ2s + 1)

(
Kpsα + Ki

sα

)
(28)
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and the frequency response must be calculated according to Equation (29).

mag = 20log10


√

K2
pω2α + K2

i + 2KpKiω
αcos

(
π
2 α
)

ωα


+ 20log10

 K√
(τ1ω)2 + 1

√
(τ2ω)2 + 1


f ase = arctag

(
Kpωαsin

(
π
2 α
)

Kpωαcos
(

π
2 α
)
+ Ki

)
− π

2
α− arctag(τ1ω)− arctag(τ2ω)

(29)

To also guarantee stability and robustness, the hypotheses described in [21,27] will be
used. Phase margin ϕm has typically been used as a measure of stability and robustness.
Thus, the phase margin ϕm will be considered to define the desired nominal damping of
the system. On the other hand, the crossover frequency ωcg that fixes the desired nominal
speed of the response of the system will also be used.

In order to calculate the gain crossover frequency ωcg , the equality defined in Equation (30)
must be verified.

|C(jω)G(jω)|
(
Kp, Ki, α

)∣∣
ω=ωcg

= 1 (30)

This value will depend on the parameters that characterize the controller, that is Kp, Ki, α.
At the frequency ωcg, the phase margin ϕm is calculated according to Equation (31).

arg[C(jω)G(jω)]
(
Kp, Ki, α

)∣∣
ω=ωcg

= −π + ϕm (31)

The two previous conditions by imposing values for ωcg and ϕm are established. Thus,
the three parameters of the controller Kp, Ki, α are set as unknowns, a third condition
that sets the phase of the open-loop system to be flat at ωcg and consequently to be
approximately constant in an interval around ωcg according to Equation (32) is defined.
The value obtained for α is fixed greater than 1, a condition which has been previously seen
as necessary to achieve zero steady-state error when faced with ramp-type references.

d(arg[C(jω)G(jω)])

dω

(
Kp, Ki, α

)∣∣
ω=ωcg

= 0 (32)

The third condition establishes robustness against gain variations which guarantees
robustness locally. The gain range depends on the frequency range at approximately ωcg
for which the phase keeps flat. This frequency range will be longer or shorter depending
on the controller and the process.

6. Methods Discussion

The path-planning algorithm for the autonomous vehicle is based on a search in a space
of the possible movements for the robot [28,29]. The path is divided in primitives; small
actions can combine to make complex robot movements. The primitives of the cart include,
different steering wheel angles and different displacement speeds. The combination of
these primitives can compose any desired movement, and the path-planning algorithm
joins the primitives looking for the best path.

The position of the steering wheel can be set accurately using a standard PID con-
troller; however, a standard controller cannot accurately track the desired translation speed
generated by the primitive. Focusing on cart movement primitives, 3 different primitives
can be can highlighted.
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• The cart keeps the actual speed, which is equivalent to a step reference (l = 1);
• The cart increases its speed, which is equivalent to a ramp reference (l = 2);
• The cart reduces its speed, which is equivalent to a ramp with negative slope (l = 2).

Constant speed can be kept by a standard controller with zero stationary error, so it can
be assumed that this primitive is correctly followed. However, the primitives of increasing
or decreasing speeds are different; this kind of command involves a ramp command, so
the speed increases or decreases from one starting speed to a final one. These primitives
are very difficult to follow by a standard controller, and the tracking error for this kind of
command can be high. If the primitive is not followed correctly, the final cart control will
be poor, and the cart performance can be limited.

The fractional control proposed in this paper is a practical solution for the cart speed
control. This implementation improves the performance of the whole system, so the
primitives are correctly followed, and the movement of the robot is similar to that planned
by the path-planning algorithm.

7. Results

As mentioned, the design process consists of setting the values of the crossover
frequency ωcg and the phase margin ϕm. Figure 7 shows the results for two values of
the crossover frequency ωcg, and the effect it produces on the Bode diagram. In both
cases, it can be observed how for the value of the crossover frequency that ωcg the phase
reaches a maximum, and therefore, the derivative is zero. This fact corresponds to the
robustness condition imposed. However, the overall width of the maximum in the phase
diagram decreases as the crossover frequency ωcg increases, and therefore, the overall
robustness decreases.

(a) Bode diagram for Kp = 1.2; Ki = 0.3; α = 1.2;
for which ϕm is 105º and ωcg is 0.5 rad/s.

(b) Bode diagram for Kp = 1.4; Ki = 0.25; α = 1.4;
for which ϕm is 105º and ωcg is 0.4 rad/s.

Figure 7. Bode plot of the system with different parameters.

Figure 8 presents temporal simulations that show how the error is reduced when the
values of the Kp and Ki parameters are increased. Note that the vertical scale on which
the error is represented changes. On the other hand, as the α value increases, the response
becomes faster, but also more oscillating. Furthermore, for all values of Kp and Ki, the
closed-loop system becomes unstable when α = 2, as shown in Figure 8d.
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(a) For Kp = 1.2 and Ki = 0.3 (b) For Kp = 2.4 and Ki = 0.6.

(c) For Kp = 4.8 and Ki = 1.2. (d) For all values of Kp, Ki above and α = 2.

Figure 8. Tracking errors are shown for a ramp reference in different situations.

Table 1 shows a stability analysis for some representative cases presented in Figure 8.

Table 1. Poles in the first sheet of the Riemann surface for some representative cases presented in the
temporal simulations. The case of the last row corresponds to a situation where α = 2.2, which is
included to illustrate the presence of poles in the instability region.

Parameters m Poles in Stability Region Poles in Instability Region

Kp = 1.2 Ki = 0.3; α = 1.2 5

1.0059 + 0.5396i
1.0059 − 0.5396i
0.6407 + 0.3570i
0.6407 − 0.3570i

———-
———-
———-
———-

Kp = 2.4; Ki = 0.6; α = 1.4 5

1.0768 + 0.5192i
1.0768 − 0.5192i
0.7177 + 0.3305i
0.7177 − 0.3305i

———-
———-
———-
———-

Kp = 4.8; Ki = 1.2; α = 1.8 5

1.1590 + 0.5089i
1.1590 − 0.5089i
0.7945 + 0.2773i
0.7945 − 0.2773i

———-
———-
———-
———-

Kp = 4.8; Ki = 1.2; α = 2 1 −1.5566 + 2.8745i
−1.5566 − 2.8745i

0.0302 + 0.4543i
0.0302 − 0.4543i

Kp = 1.2; Ki = 0.3; α = 2.2 5 1.0213 + 0.5399i
1.0213 − 0.5399i

0.8001 + 0.2129i
0.8001 − 0.2129i
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In order to evaluate the proposed fractional PI controller, a series of experiments
were conducted involving an electrical vehicle following different movement primitives.
The goal of the vehicle was to maintain the desired speed with the smallest error. To
facilitate this, the vehicle had to control its own power according to the path. The command
can change a lot for the same speed, depending on the slope of the road, the pavement
roughness, the battery level etc. The experiments were conducted using Simulink with the
Real-Time Workshop toolbox, and the vehicle was is obtained from the odometer sensor.
The set point for the Simulink model, which included the fractional controller, was the
movement primitive generated by the path planning module, and the control action was
transmitted to the vehicle’s control hardware via a serial protocol. The tests were carried
out under different slope, pavement, and battery conditions. The objective of this paper
was to improve the longitudinal controller for an autonomous vehicle. To measure the
performance of the reference tracking, the difference between the reference velocity and
the actual velocity of the prototype is used as a metric. If the reference tracking is good,
the vehicle will be able to better follow the high-level primitives. This means that the
maneuverability will increase, reducing the tracking error. High level layers will correct
the control error introduced by system control, but if we reduce this error, the performance
of the whole prototype will increase.

Figure 9 shows the cart speed error during two experiments following different
primitives. From 0 to 10 s, the cart receives a movement primitive of acceleration, and
should follow a speed ramp. The standard PID controller cannot follow the reference
and it maintains a constant error, however, the fractional controller reduces the error over
time. From 10 to 25 s, a constant speed primitive is set. The traditional integer controller
significantly reduces the error, but the fractional controller reduces the error almost to 0.
For the two real tests presented, the values Kp and Ki are maintained as fixed, while the
value of alpha has been changed. The results obtained correspond to what was predicted
by the simulations, where in Figure 9b, the error is reduced when α is increased and the
system remains stable.

(a) (b)
Figure 9. Tracking errors for a fixed reference of 2.5 m with Kp = 1.2; Ki = 1. (a) For a PI versus PI1.2;
and (b) For a PI versus PI1.4.

Figure 10 shows the ratio between the control command effort of a fractional strategy
versus an integer strategy. The command is bigger for the fractional controller, and when
α is increased, the ratio also grows. This is the expected behavior, so the error using a
fractional controllers is also smaller.
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Figure 10. Ratio fractional control/integer control for PI1.2 versus PI1.4.

8. Implementation of Fractional Module sα

The values that have been used for α as a fractional order coefficient in the real tests
have been α = 1.2 and α = 1.4. In the actual implementation, two fractional modules have
been used with α = 0.5 and α = 0.7. To obtain the value α = 1.2, a 0.5 module and a 0.7
module were connected in series, while two 0.7 modules were connected in series to obtain
the value α = 1.4.

The Matsuda approximation has been used to obtain the two modules. First, a fre-
quency range is chosen between a lower frequency ωl and a higher frequency ωh where
the approximation is valid. It is also necessary to give the degree n of the approximation,
which will determine N = 2n. Then, N + 1 logarithmically distributed frequencies are
calculated in the range of [ωl , ωh], Equation (33).

ωk = ωl

(
ωh
ωl

) k
N

k = 0, . . . , N (33)

and N + 1 coefficients are defined for each frequency ωk which we will call di(ωk) Equation (34).

di(ωk) =

{
(ωk)

α i = 0; k = 0, . . . , N
ωk−ωi−1

di−1(ωk)−di−1(ωi−1)
i = 1, . . . , N; k = 0, . . . , N (34)

Note that these coefficients must be calculated recursively. From the di(ωk), we will
define ck as Equation (35) shows.

ck = dk(ωk) =

{
ωα

0 k = 0
ωk−ωk−1

dk−1(ωk)−dk−1(ωk−1)
k = 1, . . . , N (35)

With the ck values, it is possible to write the following truncated continued fraction
expansion that approximates sα, as in Equation (36).

sα ∼= c0 +
s−ω0

c1 +
s−ω1

c2+
s−ω2

c3+
s−ω3
c4+···

(36)

It is usual to write Equation (36) in a compact way by using the following notation,
Equation (37).

sα ∼= c0 +
s−ω0

c1+

s−ω1

c2+
· · · s−ωN−1

cN
(37)

Note that since N is even, the degree of the numerator and denominator coincide. If
N is odd, the degree of the numerator is one greater than the degree of the denominator.
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For this reason, N = 2n was chosen. Table 2 shows the values of ck for the ninth-order
approximation used for the modules with α = 0.5 and with α = 0.7.

Performing operations on the above equation can be easily reduced to a quotient of
polynomials in s as Equation shown in (38).

sα ∼=
N(s)
D(s)

=
∑n

J=0 bjsj

∑n
J=0 ajsj (38)

In this case, a ninth-order approximation, i.e., n = 9 is chosen. Table 3 shows the
values of ak and bk for the ninth-order approximation used for the modules with α = 0.5
and with α = 0.7. In Figure 11, the frequency representations of Matsuda approximations
of different orders are shown, proving that the ninth order is a good approximation.

Table 2. Coefficients of the continued fraction expansion for the ninth-order Matsuda approximation.

A Coefficients C

0.5

C0 = 10−3 ; C1 = 2.5647−3 ; C2 = 4.0132−3

C3 = 6.2796−3 ; C4 = 9.8260−3 ; C5 = 1.5375−2

C6 = 2.4058−2 ; C7 = 3.7645−2 ; C8 = 5.8905−2

C9 = 9.2172−2 ; C10 = 1.4423−1 ; C11 = 2.2568−1

C12 = 3.5313−1 ; C13 = 5.5256−1 ; C14 = 8.6461−1

C15 = 1.3529 ; C16 = 2.1170 ; C17 = 3.3125
C18 = 5.1832

0.7

C0 = 6.3096−5 ; C1 = 2.6337−2 ; C2 = 6.7040−4

C3 = 2.9510−2 ; C4 = 2.6694−3 ; C5 = 4.6540−2

C6 = 9.7623−3 ; C7 = 7.7435−2 ; C8 = 3.4763−2

C9 = 1.3109−1 ; C10 = 1.2257−1; C11 = 2.2337−1

C12 = 4.3051−1 ; C13 = 3.8159−1 ; C14 = 1.5097
C15 = 6.5256−1 ; C16 = 5.2909 ; C17 = 1.1164
C18 = 18.537

Table 3. Coefficients of numerator and denominator of the ninth-order Matsuda approximation.

α Numerator N(s) Denominator D(s)

0.5

b0 = 8.76
b1 = 52.260
b2 = 30.508
b3 = 2.4739

b4 = 3.1015−2

b5 = 6.2017−5

b6 = 1.9589−8

b7 = 9.1993−13

b8 = 5.3200−18

b9 = 1.7783−24

a0 = 1
a1 = 29.916
a2 = 51.732
a3 = 11.016

a4 = 3.4874−1

a5 = 1.7441−3

a6 = 1.3912−6

a7 = 1.7156−1

a8 = 2.9388−15

a9 = 4.9261−21

0.7

b0 = 25.939
b1 = 1.22282

b2 = 58.519
b3 = 3.9356

b4 = 4.1069−2

b5 = 6.8328−5

b6 = 1.7874−8

b7 = 6.8520−13

b8 = 3.0830−18

b9 = 5.6234−25

a0 = 1 ;
a1 = 54.825
a2 = 1.21852

a3 = 31.784
a4 = 1.2151

a5 = 7.3032−3

a6 = 6.9986−6

a7 = 1.0406−9

a8 = 2.1745−14

a9 = 4.6127−20
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To obtain the discrete version, we used Tustin’s discretization, as in Equation (39).

s ∼=
2
T

(
1− z−1

1 + z−1

)
(39)

where z−1 is the delay operator.

(a) (b)
Figure 11. Magnitude and phase responses of Matsuda approximation of different orders: (a) for s0.5;
and (b) for s0.7.

The approximation between the actual module in function of the N coefficient is
shown in Figure 11, where both modules with α = 0.5 and α = 0.7 and its adjustment in
function of the approximation degree N are shown. The ninth-order approximation follows
in the frequency range the behavior of the fractional order controller with a negligible error.
The computation cost of the implementation of these modules is also very small.

9. Discussion

As the results section shows, the use of fractional-order controllers represents a clear
improvement in system control. When tracking control primitives for an autonomous
vehicle, it is able to track them with less error than traditional controllers. Specifically, when
the received command is a ramp, which is equivalent to a speed change in a certain slope,
the fractional controller is capable of following it with an error in the stationary state of 0.

To achieve an equivalent performance using traditional non-fractional systems, it is
necessary to use a double PID, however, this compromises the stability of the system. The
use, as has been demonstrated in previous sections, of a PID with integral index α > 1
allows obtaining a stationary error 0, but guarantees stability.

The tests carried out in simulation demonstrate that bandwidth and gain adjustment
can be carried out with this type of controller. We also check how the index of the integral
part of the PID affects the stability of the system, ensuring a stable value with correct
tracking and a low stationary error with a coefficient of α = 1.4. This demonstrates the
better performance of this type of controller compared to the traditional ones.

The tests carried out on the real prototype confirm these results, with a much lower
primitive tracking error than the previously used PID controller. The difference in compu-
tation time and complexity are clearly compensated thanks to the better performance of the
overall system.
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Using this type of controller, a more reliable autonomous vehicle system is obtained,
capable of better following trajectories and performing more precise maneuvers, thus
facilitates the control of high-level systems.

10. Conclusions

The low-level controller of an autonomous vehicle can make the difference in the
performance of its activity. In this case, the analysis and implementation of the traction
motor control for an autonomous cart is presented. A traditional PID control generates
stationary output errors in the controller variable, but it is not valid for tracking speed
changes, so a solution looking for a better tracking performance is presented.

In this article, a fractional PIα controller, with a parameter α > 1 has been proposed
for the speed ramp tracking problem of an electric car. It must be taken into account that
the approach normally used in the literature considers fractional orders within the interval
(0, 1].

Several simulations have been carried out that allowed demonstrating the better
performance of the PIα controller, as well as an implementation in the electric vehicle that
showed a remarkable reduction in the error.

The controller was applied to an autonomous electric cart, improving the low-level
control performance and obtaining a better path tracking. The ability to follow more closely
follow the trajectory facilitates the high-level tasks. This controller facilitates navigation in
narrow areas and with multiple obstacles.
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