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Abstract: Hand detection and classification is a very important pre-processing step in building
applications based on three-dimensional (3D) hand pose estimation and hand activity recognition.
To automatically limit the hand data area on egocentric vision (EV) datasets, especially to see the
development and performance of the “You Only Live Once” (YOLO) network over the past seven
years, we propose a study comparing the efficiency of hand detection and classification based on
the YOLO-family networks. This study is based on the following problems: (1) systematizing all
architectures, advantages, and disadvantages of YOLO-family networks from version (v)1 to v7;
(2) preparing ground-truth data for pre-trained models and evaluation models of hand detection
and classification on EV datasets (FPHAB, HOI4D, RehabHand); (3) fine-tuning the hand detection
and classification model based on the YOLO-family networks, hand detection, and classification
evaluation on the EV datasets. Hand detection and classification results on the YOLOv7 network and
its variations were the best across all three datasets. The results of the YOLOv7-w6 network are as
follows: FPHAB is P = 97% with TheshIOU = 0.5; HOI4D is P = 95% with TheshIOU = 0.5; Rehab-
Hand is larger than 95% with TheshIOU = 0.5; the processing speed of YOLOv7-w6 is 60 fps with a
resolution of 1280× 1280 pixels and that of YOLOv7 is 133 fps with a resolution of 640× 640 pixels.

Keywords: hand detection; hand classification; YOLO-family networks; convolutional neural
networks (CNNs); egocentric vision

1. Introduction

Building an application to support the rehabilitation of the hand after surgery is an
issue of interest in artificial intelligence, machine learning, deep learning, and computer
vision. The quantification of the patient’s hand function after surgery was previously
only based on the subjectivity of the doctors. To have objective and accurate assessments
and exercise orientation for patients, it is necessary to support an assessment system.
Through the research process, we propose a model to build a help system, as illustrated in
Figure 1. Figure 1 includes three steps: Input—image sequence from EV; hand tracking
detection; estimate 2D, 3D hand pose; hand activities recognition; Output—quantification
sums up the results to show the action ability of the hand. An EV dataset refers to a
dataset that is collected from the perspective of a single individual, usually with the use of
wearable cameras or other devices that record the individual’s view of their surroundings.
These datasets typically include video and audio, and they may be used in a variety of
applications, such as computer vision, human–computer interaction, and virtual reality.
Figure 1 presents hand detection as an important pre-processing step in the application
construction process; the detected hand data area is very decisive to the estimation space
of the 2D hand pose and 3D hand pose. The problem of hand detection is not a new
study; however, the problem persists when it comes to detection in the EV datasets. Since
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the fingers are obscured by the direction of view or other objects, the visible data area is
only the back of the hand. Often, studies using deep learning models for 3D hand pose
estimation and hand activity recognition apply third-person viewpoint datasets such as the
NYU [1], ICVL [2], and MSRA [3] datasets. These datasets usually have segmented hand
data with the environment and hand data not obfuscated and lost data of the fingers, as
illustrated in Figure 2.

Figure 1. Framework for building an image-based rehabilitation evaluation system of the EV. Hand
detection and classification is an important pre-processing step to limit the hand data area for hand
pose estimation and activity recognition to assess hand activity levels.

Figure 2. Illustration of obscured fingers in the FPHAB dataset [4].

During the research, we performed a study using Google Mediapipe (GM) [5,6] for
hand detection and classification [7] on the HOI4D [8] dataset. The results show that the
pre-trained models of models have low results in hand detection and classification (Tables 1
and 2 [7]). Figure 3 shows some cases where the hand is not detected when using the GM
on the FPHAB and HOI4D datasets.

Recently, the YOLOv7 model was proposed by Wang et al. [9]. YOLOv7-E6 [9] is more
accurate and faster than SWINL Cascade-Mask R-CNN [10] by 2% and 509%, respectively.
YOLO v7 is more accurate and faster than other versions of YOLO such as YOLOR [11],
YOLOX [12], Scaled-YOLOv4 [13], YOLOv5 [14], DETR [15], and Deformable DETR [16].
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Figure 3. Illustrating some cases where the hand cannot be detected in the image when using the GM
on the FPHAB and HOI4D datasets.

In this paper, we are interested in the “hand detection and classification” pre-processing
step. We propose using YOLO-family networks with their advantages of accuracy and
processing speed for fine-tuning the pre-trained model to detect and classify hand action
on many different EV datasets (FPHAB [4], HOI4D [8], RehabHand) with many contexts
and different hand movements. FPHAB [4] and HOI4D [8] datasets are two datasets col-
lected from EV and published to evaluate 2D and 3D hand pose estimation models. The
RehabHand dataset is also collected from EV mounted on patients who practice grasping
rehabilitation at Hanoi Medical University Hospital, Vietnam.

The main contributions of the paper are as follows:

• A framework for building an image-based rehabilitation evaluation system of EV
is proposed.

• We systematize the architectures of the YOLO-family networks for object detection.
• We fine-tune hand action detection and classification of the model based on the YOLO-

family networks on the first-person viewpoint/EV datasets (FPHAB [4], HOI4D [8],
RehabHand [17]).

• We manually mark the hand data area in the datasets for the evaluation of the hand
detection results on the FPHAB [4], HOI4D [8], and RehabHand [17] datasets.

• Experiments on hand action detection and classification are presented in detail, and
the results of hand action detection and classification are evaluated and compared with
YOLO-family networks on the FPHAB [4], HOI4D [8], and RehabHand [17] datasets.

The content of this paper is organized as follows: Section 1 introduces the applications
and difficulties of hand action detection and classification on the EV datasets. Section 2
discusses related research in this field. Section 3 presents the process of applying YOLO-
family networks to fine-tune the hand action detection and classification models. Section 4
compares the models quantitatively and shows qualitative experiments. Section 5 concludes
the contributions and presents the future works.

2. Related Works

The problem of hand detection and classification is not a new research direction.
However, the results of hand detection are very important in the process of building
applications for human–machine interaction or building support systems. However, when
detecting the hand on datasets obtained from EV, there are still some challenges caused by
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the external conditions, such as fingers being completely obscured due to the viewpoint of
the camera and obscured by objects when grasping the object, where the image obtained
only has data of the hand palm. There are also now several EV datasets to evaluate
computer vision studies. Recently, Marcos et al. [18] published a helpful survey research
on activity recognition on EV datasets.

Ren et al. [19] proposed a dataset called Intel EV with 10 video sequences. The total
amount of video data is about 120 min, with 100,000 frames; about 70,000 frames contain
objects, with about 1600 per object and 42 different hand actions. Fathi et al. [20] published
a database under the name GTEA Gaze with more than 30 different types of food and
objects. GTEA Gaze includes 94 types of actions and 33 classes of objects. There are also
some typical databases collected from EV such as H2O [21], Meccano [22], etc.

Particularly, Bandini et al. [23] analyzed problems of computer vision based on an
EV dataset. The authors focused on three main research directions: localization (hand
detection, hand segmentation, hand pose estimation), interpretation (hand gesture recogni-
tion, grasping object, hand action recognition, hand activity recognition), and application
(hand-based human–computer interaction, healthcare application). The three research di-
rections explored in Bandini et al.’s [23] paper constitute a unified process with the output
applications based on hand data obtained from EV.

Today, with the development of computer hardware and the advent of deep learning,
researchers have become equipped with novel tools, the most prominent of which are
various convolutional networks (CNN). There have been many published CNN-based re-
searches on hand detection such as YOLOv1 [24], YOLOv2 [25], YOLOv3 [26], YOLOv4 [27],
YOLOv5 [14,28], YOLOv7 [9], Mask R-CNN [29,30], SSD [31], MobileNetv3 [32], etc. Some
of the most prominent results are shown in Figure 1 of Wang et al.’s work [9], where
YOLOv7 achieved the best results in terms of accuracy and speed.

More specifically, a study by Gallo et al. [33] used YOLOv7 to evaluate the detection
of weeds near plants using images collected from UAVs. The results of the weeds are a
mAP@0.5 score of 56.6%, recall of 62.1%, and precision of 61.3%. Huang et al. [34] used
YOLOv3 to detect and determine the patient’s venous infusion based on flow waveforms.
The results were compared with RCNN and Fast-RCNN. Detection results showed a
precision of 97.68% and recall of 96.88%. Liu et al. [35] used the YOLOv3 model with
four-scale detection layers (FDL) to detect combined B-scan and C-scan GPR images. The
proposed method can detect both large particles and small cracks. Recently, Lugaresi
et al. [5] and Zhang et al. [6] proposed and evaluated a Mediapipe framework that can
perform hand detection on both a CPU and GPU with 95.7% detection accuracy with all
types of hand palms in real life.

3. Hand Action Detection and Classification Based on YOLO-Family Networks
3.1. YOLO-Family Networks for Object Detection

Object detection is an important problem in computer vision. YOLO is a convolutional
neural network rated with average accuracy; however, the computation speed is very fast
and the computation can be performed on a CPU [36]. As studied by Huang et al. [36],
when evaluated on the Pascal VOC 2012 dataset, the accuracy results of R-FCN [37], Faster
R-CNN [38], SSD [39], and YOLOv3 [26] are 80.5%, 70.4%, 78.5%, and 78.6%, respectively.
The processing time results of R-FCN [37], Faster R-CNN [38], SSD [39], and YOLOv3 [26]
are 6 fps, 17 fps, 59 fps, and 91 fps, respectively. Before YOLO was born, there were some
CNNs such as R-CNN, Fast R-CNN, and Faster R-CNN using a two-stage detector method
that obtained very impressive accuracy results but high computation time. To solve the
computation time problem, YOLO uses one-stage detectors for object detection.

YOLO version 1 (YOLOv1) [24] uses 24 convolutional layers: 1 × 1 reduction layers
(used to reduce image size) followed by 3 × 3 convolutional layers, and max pooling layers.
The architecture ends with two fully connected layers. The result is a three-dimensional
matrix of size 7 × 7 × 30, as illustrated in Figure 4.
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Figure 4. YOLOv1 architecture for object detection [24].

YOLO divides the image into S× S cells, with each cell being a matrix A. If the center
of the object is in the cell (i, j), the corresponding output will be in A[i, j]. The prediction
process is performed in two steps as follows: the convolutional network performs the
feature extraction of the images; extra layers (fully connected layers) analyze and detect the
object, then return the output as a matrix A of the following size:

size(A) = S× S× (5× B + C) (1)

where B is the number of bounding boxes; each bounding box has five components:
(x, y, w, h, CS). Confidence Score CS is the probability that the cell contains an object.
Finally, the C elements are the representation of the probability distribution of the class
object. This C element is a probability distribution pi and satisfies

c

∑
i=0

pi = 1 (2)

Loss function: YOLO uses the Sum-Squared Error (SSE) function. The values x, y, w, h,
C are the values of the ground truth box, and the values x̃, ỹ, w̃, h̃, C̃ are the predicted
bounding box.

SSE = E1 + E2 + E3 + E4 + E5 (3)

where

E1 = λcoord

S2

∑
i=0

B

∑
j=0

LFobject
ij [ (xi − x̃i)

2 + (yi − ỹi)
2] (4)

E2 = λcoord

S2

∑
i=0

B

∑
j=0

LFobject
ij [ (

√
wi −

√
x̃i)

2 + (
√

hi −
√

h̃i)
2
] (5)

E3 = λcoord

S2

∑
i=0

B

∑
j=0

LFobject
ij (Ci − C̃i)

2 (6)

E4 = λno_object

S2

∑
i=0

B

∑
j=0

LFno_object
ij (Ci − C̃i)

2 (7)

E5 =
B

∑
j=0

LFobject
i ∑

c∈classes
(pi(c)− p̃i(c))2 (8)

where E1 is xy_loss when the object exists at boxj in celli;
E2 is wh_loss when the object exists at boxj in celli;
E3 is con f idence_loss when the object exists at boxj in celli;
E4 is con f idence_loss when objects do not exist in the boxes;
E5 is class_probability_loss in the cell where the object exists.
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Further, LFobject
ij = 1 if in the ith cell, there is a jth box containing an object;

LFno_object
ij is the opposite of LFobject

ij ;

LFobject
ij = 1 if the ith cell contains an object (otherwise, it is 0);

λcoord, λno_object is the component weight.
However, even a good model still has a case: predicting multiple bounding boxes

for the same object. To solve this problem, YOLO filters out redundant bounding boxes
(duplicate and same class) by non-maximum suppression with two steps as follows:

- Boxes with con f idence_score are ranked from high to low [box_0, box_1, · · · , box_n].
- Traverse from the top of the list, for each box_i, removing box_j that have

IOU(box_i, box_j) ≥ threshold, where j > i. The threshold is a pre-selected thresh-
old value. IOU is the formula for calculating the overlap–interference between two
bounding boxes, as computed in Equation (10).

YOLOv2 [25] was born to improve on the weaknesses of YOLOv1 [24]. YOLOv2
makes the following improvements:

• Batch Normalization (BN): adding BN to all convolutional layers. This allows weights
that would never have been learned without BN to be learned again, and reduces the
dependence on the initialization of parameter values.

• High-Resolution Classifier: training the classifier with 224 × 224 and training with
448 × 448 at least 10 epochs for object detection.

• Anchor Box: they are pre-generated bounding boxes (not model-predicted bounding
boxes). With a grid, it creates some K anchor boxes with different sizes. These anchor
boxes will predict whether it contains an object or not, based on the results of the
calculation of the IOU between it and the ground truth (if the IOU > 50%, the anchor
box is considered to contain the object). Figure 5 shows the process of using anchor
boxes for object prediction in an image. YOLOv2 divides the image into 13 × 13
grid cells; so, the ability to find small objects is higher than that of YOLOv1, which is
7 × 7. YOLOv2 is trained on images that vary in size from 320 × 320 up to 640 × 640.
This enables the model to learn more features of the object and have higher accuracy.
YOLOv2 uses the Darknet19 with 19 convolution layers along with 5 max-pooling
layers (it does not use fully connected layers for prediction but anchor boxes instead).
Without using fully connected classes and using anchor boxes instead, the final result
of the model will be 13 × 13 × 125. For each tensor of size 1 × 1 × 125, it is calculated
as follows: k× (5 + 20), where k = 5 and 20 is the number of pre-trained object classes.
Darknet19 is very fast in object recognition; thus, it makes a lot of sense for real-time
processing. The architecture is presented in Figure 6.

Figure 5. Anchor-based object detector.
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Figure 6. Darknet19 architecture.

YOLOv3 [26] was born to improve on the weaknesses of YOLOv1 [24] and
YOLOv2 [25]. YOLOv3 uses Darknet53 as the backbone (with 53 convolutional layers),
as illustrated in Figure 7. YOLOv3 performs recognition three times on an image with
different sizes. YOLOv3 has its output changed to S× S× 255, with S being the values
13, 26, and 52, respectively. With each grid box, there are nine different anchor boxes
with sizes: grid cell 13 × 13: (116 × 90), (156 × 198), (373 × 326); grid cell 26 × 26:
(30 × 61), (62 × 45), (59 × 119); grid cell 52 × 52: (10 × 13), (16 × 30), (33 × 23). The
training process combines with the k-means clustering algorithm and uses the ground
truth to calculate the error between the ground truth and the anchor box by adjusting
values (x, y, w, h), thereby learning the features of the object.

Figure 7. Darknet53 architecture.
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YOLOv4 [27] was developed to improve the accuracy and processing time of
YOLOv3 [26]. YOLOv4 applies the idea of CSPBlock, replaces the usual Residual Block of
YOLOv3 to CSPResBlock, and also changes the activation function from LeakyReLU to
Mish, creating CSPDarkNet53. The structure of YOLOv4 is divided into four parts:

• Backbone: The backbone can be selected from one of the following three backbones:
CSPResNext50, CSPDarknet53, and EfficientNet-B3. CSPDarknet53 is built on a
combination of CSP (Cross-Stage-Partial connections) and Darknet53.
The CSP is derived from the DenseNet architecture that takes the previous input and
concatenates it with the current input before moving into the Dense layer. The role
of CSP is to remove computational bottlenecks in DenseNet and improve learning
by porting an unmodified version of the feature map. DenseNet (Dense-connected
convolutional network) is one of the latest networks for visual object recognition.
Densenet has a structure of dense blocks and transition layers. With traditional CNN,
if we have L layers, there will be L connections; however, in DenseNet, there will
be L(L + 1)/2 connections (i.e., the front layer will be connected with all the layers
behind it). Yolov4 uses CSPDarknet53 as the backbone.
The main idea of CSPBlock of CSPDarknet53 is applied to Residual Block, as presented
in Figure 8 [13]. Instead of having only one path from beginning to end, CSPBlock is
divided into two paths. By dividing into two such paths, we eliminate the recalculation
of the gradient; therefore, the speed of training is increased. Moreover, splitting into
two paths, with each path being a part taken from the previous feature map, the
number of parameters is also significantly reduced, thereby speeding up the whole
inference process.

• Neck: The neck is responsible for mixing and matching the feature maps learned
through the feature extraction (backbone) and identification process (YOLOv4, called
Dense prediction). YOLOv4 allows customization using the following Neck struc-
tures: FPN (Feature Pyramid Networks) [40], PAN (Path Aggregation Networks) [41],
NAS-FPN (Neural Architecture Search–Feature Pyramid Networks) [42], Bi-FPN (Bidi-
rectional feature pyramid network) [43], ASFF (Adaptively Spatial Feature Fusion) [44],
SFAM (Scale-wise Feature Aggregation Module) [45], SSP (spatial pyramid pooling
layer) [46]. In the latter, SSP is a CNN network but is slightly changed; it is no longer
about dividing feature maps into bins and then concatenating these bins together to
obtain a fixed-dimensional vector.
SPP, whose input is a feature map, outputs C × H ×W from the backbone before
being fed to the fully-connected layer to perform detection; YOLO applies the spatial
pyramid pooling layer to the feature map three times—that is, using the SPP block, as
illustrated in Figure 9.
Yolo-SPP applies a maximum pool with kernels of different sizes. The size of the input
feature map is preserved, and the feature maps obtained from applying the max pool
(with different kernel sizes) will be concatenated. The architecture of YOLO-SPP is
shown in Figure 10. Yolov4 also re-applies this technique.

• Dense prediction: using one-stage detectors; Sparse Prediction: using two-stage
detectors such as R-CNN.
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Figure 8. The architecture of CSPBlock in CSPDarknet53 [27]. (a) The simple CSP connection. (b) A
CSP connection in YOLOv4-CSP/P5/P6/P7 [13].

Figure 9. Architecture of SPP [13].

Figure 10. The architecture of YOLO-SPP bypasses the DC Block part [46].
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YOLOv5 (v6.0/6.1) [28] has almost the same architecture as YOLOv4 [27] and includes
the following components: CSP-Darknet53 as a backbone, SPP and PANet in the model
neck, and the head used in YOLOv4. In YOLOv5 (v6.0/6.1), SPPF has been used, which is
just another variant of the SPP block, to improve the speed of the network and apply the
CSPNet strategy on the PANet model.

• Backbone: YOLOv5 improves YOLOv4’s CSPResBlock into a new module, with one
less Convolution layer than YOLOv4, called the C3 module. Activation function:
YOLOv4 uses the Mish or LeakyReLU for the lightweight version, while in YOLOv5,
the activation function used is the SiLU.

• Neck: YOLOv5 adopts a module similar to SPP but twice as fast and calls it SPP-Fast
(SPPF). Instead of using parallel max-pooling as in SPP, YOLOv5 SPPF uses sequential
max-pooling, as illustrated in Figure 11. The kernel size in SPPF’s max-pooling is 5
instead of 5, 9, 13, as in YOLOv4’s SPP. Therefore, Neck in YOLOv5 uses SPPF + PAN.

Figure 11. Comparison of the architecture of SPP and SPPF [47].

• Other changes in YOLOv5 include the following:

– Data Augmentation techniques applied in YOLOv5 include Mosaic Augmenta-
tion, Copy–paste Augmentation, and MixUp Augmentation.

– Loss function: YOLOv5 uses three outputs from PAN Neck to detect objects at
three different scales. However, the effect of objects at each scale on Objectness
Loss is different; so, the formula for Objectness Loss is changed to Equation (9).

LFobject = 4.0 ∗LFsmall
object + 1.0 ∗LFmedium

object + 0.4 ∗LFlarge
object (9)

– Anchor Box (AB): AB in YOLOv5 received two major changes. The first is to use
auto anchor, a technique that applies Genetic Algorithms (GA) to the AB after
the k-means step so that the AB works better with custom datasets, and not only
works well on the MS COCO dataset. The second is to offset the center of the
object to select multiple ABs for an object.

YOLOv7 [9], just like other versions of YOLO, consists of three parts in its architecture,
as shown below:

• Backbone: ELAN, E-ELAN;
• Neck: CSP-SPP and (ELAN, E-ELAN)-PAN;
• Head: YOLOR [11] and Auxiliary head.



Sensors 2023, 23, 3255 11 of 24

YOLOv7 includes some major improvements. First, the Efficient Layer Aggregation
Networks (ELAN) is proposed to expand to Extended Efficient Layer Aggregation Net-
works (E-ELAN), where the strategy that learns at more depth with the shortest and longest
derivatives along the slope will have a higher probability of convergence. This means not
changing the gradient transmission path of the original architecture but increasing the
group of convolutional layers of the added features and combining the features of different
groups by mixing and merging the cordiality manner, as presented in Figure 12. This way
of working can improve the learning efficiency of learned solid maps and improve the use
of parameters and calculations. This process increases the accuracy of the learned model
without increasing complexity and computational resources.

Figure 12. The architecture of ELAN and E-ELAN for efficient learning and faster convergence [9].

Second is the proposed Model Scaling for Concatenation-based Models (MSCM). The
main idea of MSCM is based on scaled-YOLOv4 [13] to adjust the number of stages. When
increasing the depth of a translation layer, which is immediately after, a concatenation-based
computational block will increase, as illustrated in Figure 13a,b. It means the input width of
the subsequent transmission layer increases. Therefore, the model scaling on concatenation-
based models is proposed. This process only requires the depth in a computational block
to be scaled, and the remaining transmission layer is performed with corresponding width
scaling, as illustrated in Figure 13c.

The third is to reduce the number of parameters and computation for object detection.
YOLOv7 is re-parameterized to combine with a different network. This work can reduce
about 40% of the parameters and 50% computation of the object detector, and the detection
will be faster and more accurate.
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Figure 13. Illustrating of model scaling for concatenation-based models [9].

The fourth is a new label assignment method—as illustrated in Figure 14c,d—that
guides both the auxiliary head and lead head by the lead head prediction. This method
uses lead head prediction as a guidance to generate coarse-to-fine hierarchical labels, as
illustrated in Figure 14e.

Figure 14. Illustration of coarse for auxiliary and fine for lead head label assigner [9].

3.2. Comparative Study for Hand Detection and Classification

In this paper, we perform a comparative study on YOLO-family networks for hand
detection and classification of the EV datasets. The taxonomy of the comparative study is
illustrated in Figure 15. In this study, the methods are the YOLO-family networks whose
development and improvements are presented in Section 3.1. Two models developed
from the YOLO-family networks are hand detection and classification. The hand detection
model is the main model tested on all YOLO versions; the hand classification model is only
tested from YOLOv3 and later. The datasets used to evaluate the two models are FPHAB,
HOI4D, and RehabHand, as presented in Section 4.1. The FPHAB database performs hand
detection model evaluation and classifies action hands, background, and other objects.
The HOI4D and RehabHand datasets perform the hand detection model assessment and
classify left hand, right hand, background, and other objects. In Figure 15, we also present
a comparative study of measures and outputs, described in Sections 4.2 and 4.3.
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Figure 15. The taxonomy of the comparative study for hand detection and classification is based on
the YOLO-family networks.

4. Experimental Results
4.1. Datasets

The FPHAB dataset [4] is the First Person Hand Action Benchmark (FPHAB). This
dataset is captured from an Intel RealSense SR300 RGB-D camera attached to the shoulder
of a person. The resolutions of the color and depth images are 1920× 1080 pixels and
640× 480 pixels, respectively. The hand pose is captured using six magnetic sensors; it
provides 3D hand pose annotation and intrinsic parameters for converting 2D hand pose
annotation. There are several subjects (6 in total) performing multiple activities from
3 to 9 times with 45 hand actions. The number of joints in each 3D hand pose is 21.
From attaching the device to mark 3D hand annotation data, the hand data have different
characteristics compared to normal hands when obtained from EV. In this paper, we used
configurations for training and testing, presented as follows: The configuration (Con f .#123)
used the first sequence in each subject from Subj.#1 to Subj.#6 for testing (27,097 samples),
the second sequence in each subject for validation (25,475 samples), and the remaining
sequence for training (52,887 samples) (the ratio is approximately 1:2.5 for testing and
training the model).

The HOI4D dataset [8] is collected and synchronized based on the Kinect v2 RGBD
sensor and the Intel RealSense D455 RGB-D sensor. This is a large-scale 4D EV dataset with
rich annotation for category-level human–object interaction. HOI4D includes 2.4M RGB-D
frames of EV with over 4000 sequences. It is collected from 9 participants interacting
with 800 different object instances from 16 categories over 610 different indoor rooms.
This dataset provides ground-truth data of the following types: Frame-wise annotations
for panoptic segmentation, motion segmentation, 3D hand pose, category-level object
pose, and hand action, together with reconstructed object meshes and scene point clouds.
The annotation data components are illustrated in Figure 16. To obtain the ground-truth
data, which is the bounding boxes of the hand on the image for evaluation, we rely
on the hand keypoints named “kps2D” in the 3D hand pose annotation. We take the
bounding box of 21 hand keypoint annotations. This process is demonstrated in the
source code of the “get_2D_boundingbox_hand_anntation.py” file found at the following
link (https://drive.google.com/drive/folders/1yzhg5NsalPkOHI6CMkAE07yv5rY63tI7
?usp=sharing, accessed on 30 January 2023).

https://drive.google.com/drive/folders/1yzhg5NsalPkOHI6CMkAE07yv5rY63tI7?usp=sharing
https://drive.google.com/drive/folders/1yzhg5NsalPkOHI6CMkAE07yv5rY63tI7?usp=sharing
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Figure 16. Describing the types of annotation data of the HOI4D dataset [8].

The RehabHand dataset [17] was collected from rehabilitation exercises of patients
at Hanoi Medical University Hospital, Vietnam. This dataset consists of frames from
the first-person video captured by cameras worn by the patient on the forehead and the
chest. The videos are recorded with a 1080p resolution at 30 frames per second. The
data were collected using the GoPro Hero4 camera in San Mateo, California, USA. The
camera recorded the exercise of 15 patients performing four upper extremity rehabilitation
exercises. Each patient performed each exercise five times. The content of exercises related
to grasping objects in different positions is presented as follows: exercise 1—practice with
the ball, exercise 2—practice with a water bottle, exercise 3—practice with a wooden cube,
exercise 4—practice with round cylinders. The collected data include 10 video files in
MPEG-4 format with a total duration of 4 h and a total capacity of 53 GB recorded. The data
are divided into three subsets for the training set (2220 images), validation set (740 images),
and testing set (740 images) with a ratio of 6:2:2, respectively. Figure 17 illustrates the image
data of the RehabHand dataset [17].

Figure 17. Illustrating the RGB image data obtained from the EV of the RehabHand dataset [17].

In this paper, we used a server with a NVIDIA GeForce RTX 2080 Ti 12 GB GPU for
fine-tuning, training, and testing. The programs were written in the Python language
(≥3.7 version) with the support of CUDA 11.2/cuDNN 8.1.0 libraries. In addition, there
are a number of other libraries such as OpenCV, Numpy, Scipy, Pillow, Cython, Matplotlib,
Scikit-image, Tensorflow ≥ 1.3.0, etc.

4.2. Evaluation Metrics

Similar to the evaluation of object detection and classification on images, we perform
the calculation of the IOU (Intersection over Union) value according to Equation (10).

IOU =
Bg ∩ Bp

Bg ∪ Bp
(10)
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where Bg is the ground truth bounding box of hand action and Bp is the predicted bounding
box of hand.

To determine whether the bounding box is a true finding, we use a threshold TheshIOU
for the evaluation. If IOU is greater than or equal to TheshIOU , it is a true detection;
otherwise, it is false.

In this paper, we also distinguish between the hand action, left hand, right hand, and
the background; so, we also use the formulas for precision (P), Recall (R), and F1-Score (F1)
(Equation (11)) to evaluate the analysis results of hand action classification on the image.

P =
TP

TP + FP
; R =

TP
TP + FN

; F1 =
2 ∗ (R ∗ P)
(R + P)

(11)

where TP are True Positives, TN are True Negatives, FP are False Positives, and FN are
False Negatives. In addition, we also evaluate mAP.5 (mean Average Precision), computed
as Equation (12).

mAP =
∑c

i=1 APi

c
(12)

where averaging the average precision (AP) for all classes involved in the trained model
yields mAP.

We train YOLO-family networks with 50 epochs and batch size = 4 frames; the size
of the image can be img_size = 640× 640 or img_size = 1280× 1280, con f _thres = 0.001.
The hyper-parameter in the feature-extraction phase that the YOLO-family networks uses
is the adaptive moment estimation (ADAM) optimizer [48], the learning rate is 0.001, and
momentum is 0.937, as illustrated in Figure 18. There are also some other parameters
shown in Table 1.

Figure 18. Illustrating the hyper-parameters of YOLO-family networks.
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Table 1. The list of parameters of YOLOv7 and its variants [9], resulting in the processing time of the
networks when evaluated on the testing set of the FPHAB dataset.

Methods Image Size (pixel) Number of Layers Number
of GFLOPS Parameters Number

of Epochs

Processing
Time for

Testing (fps)

YOLOv4-CSP [13] 640 × 640 401 118.9 52,469,023 50 76.9

YOLOv4-CSP-X [13] 640 × 640 493 224.8 96,370,166 50 44

YOLOv3 [26] 640 × 640 261 154.5 61,497,430 50 153

YOLOv3-SPP [49] 640 × 640 269 155.4 62,546,518 50 142

YOLOv4 [13] 640 × 640 401 118.9 52,463,638 50 151

YOLOv5-r50-CSP [28] 640 × 640 314 103.2 36,481,772 50 133

YOLOv5-X50-CSP [28] 640 × 640 560 64.4 33,878,846 50 45

YOLOv7 [9] 640 × 640 314 103.2 36,481,772 50 133

YOLOv7-X [9] 640 × 640 362 188.0 70,782,444 50 98

YOLOv7-w6 [9] 1280 × 1280 370 101.8 80,909,336 50 60

In this paper, we re-trained the YOLO-family networks (YOLOv4-CSP [13], YOLOv4-
CSP-X [13], YOLOv3 [26], YOLOv3-SPP [49], YOLOv4 [13], YOLOv5-r50-CSP [28], YOLOv5-
X50-CSP [28], YOLOv7 [9], YOLOv7-X [9], YOLOv7-w6 [9]) on the training set of Con f .#123
of the FPHAB dataset, the training set of the HOI4D dataset, and the training set of the
RehabHand dataset. After that, we evaluated it on the validation set and testing set of
configuration Con f .#123 of the FPHAB dataset, testing set of the HOI4D dataset, and testing
set of the RehabHand dataset. We use the TheshIOU to evaluate as follows: 0.5, 0.75, 0.95.

4.3. Hand Detection and Classification Results

The result of hand action detection and classification on the Con f .#123 of the FPHAB
dataset is shown in Table 2. In the FPHAB dataset is the process of detecting the hand
action in the image. The action hand detection and classification results on the FPHAB
dataset in Table 2 of YOLOv7 and its variants are all greater than 95%. This is a very good
result for the following steps on hand activity estimation and recognition.

Table 2. The results of hand detection and classification on the FPHAB dataset when performed on
YOLOv7 and YOLO-family networks.

IOU Threshold(TheshIOU )/
Precision(P)/ Recall(R)/ Models

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13] 99.8 96.7 98.5 99.7 96.7 98.6 91.4 92.3 94.9

YOLOv4-CSP-X [13] 99.3 96.5 97.2 99.5 96.1 97.2 87.4 90.2 91.8

YOLOv3 [26] 99.9 96.6 98.5 99.9 96.6 98.8 96.4 95.1 97.5

YOLOv3-SPP [49] 99.5 97.6 98.8 99.6 97.3 98.9 95.3 92.2 97

YOLOv4 [13] 99.6 96.4 97.2 99.6 96.2 97.5 84.7 92 92.3

YOLOv5-r50-CSP [28] 99.3 95.2 98.1 99.5 96.5 98.1 92.5 91.4 93.5

YOLOv5-X50-CSP [28] 99.2 94.8 97.6 99.4 96.4 98.3 96.4 92.6 94.1

YOLOv7 [9] 99.7 96.9 98.7 99.4 96.9 99.4 97 93.9 98.2

YOLOv7-X [9] 99.2 98.7 99.1 99.2 98.2 99.5 97.5 94.5 97

YOLOv7-w6 [9] 99.7 96.9 99.8 99.7 96.9 99.7 93.9 98 98.3
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In Table 2, it can be seen that the hand action detection and classification results
on the FPHAB dataset are very accurate; the results are greater than 95%, even if the
TheshIOU = 0.95, which is close to absolute accuracy. Table 2 also shows that P is usually
greater than R in most cases. This is because in the image of the FPHAB dataset, there
can be two hands and, as a result, there are many background areas that are mistakenly
detected as the hand action, so FN increase. Therefore, R is smaller than P in many cases.
The processing time of the hand action detection and classification process is shown in
Table 1; it is also very fast to ensure the pre-processing step without much impact on the
processing time of the construction applications.

Figure 19 shows the results on precision, recall, F1-score, and confusion matrix on the
hand action detection on the testing set of FPHAB dataset when TheshIOU = 0.5.

Figure 20 shows the confusion matrix on classifying hand action on the testing set of
the FPHAB dataset when TheshIOU = 0.5.

Figure 21 illustrates some results of hand action detection and classification on the
testing set of Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.

The results of hand detection and classification on the HOI4D dataset [8] are shown
in Table 3. Table 3 shows the results of YOLOv7-w6 with the best results (R = 89.85%;
P = 90.55%; mAP@.5 = 88.9%) when TheshIOU = 0.95. This is a large dataset with many
hand actions, for which the YOLO-family networks still obtain high results even when
TheshIOU = 0.95. In this dataset, the YOLO-family networks perform two tasks: detecting
and classifying left and right hands. At the same time, the average result (all) of the left
and right hands are also computed.

Figure 22 illustrates the results of hand classification on the HOI4D dataset based on
YOLOv7. In Figure 22, there are many cases where the subject has the same color as the
skin of the hand. However, YOLOv7 still detects and correctly classifies the hand.

Figure 19. The distribution of precision, recall, and F1-score of hand action detection on the test set of
Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.
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Table 3. The results of hand detection and classification on the HOI4D dataset [8].

IOU Threshold/
(TheshIOU )

Precision(P)/
Recall(R)/

Models

Hand

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13]

Right hand 90.7 96.2 95.2 96.4 90.6 95.1 88.9 90.1 91.7

Left hand 82.5 86 85.5 82.2 85 84.7 76.8 65.4 74.4

All 88.4 89.4 90.3 89.3 87.8 89.9 82.8 77.7 83.1

YOLOv4-CSP-X [13]

Right hand 96.2 90.7 95 96.2 90.6 94.9 84.2 90.2 90.9

Left hand 81 86 84.8 82 83.3 84.1 76 62.9 71.9

All 88.6 88.3 89.9 89.3 87 89.5 80.1 76.6 81.4

YOLOv3 [26]

Right hand 89.9 90.8 94 89.9 90.8 94.2 77.4 89.3 90.7

Left hand 81.5 81.8 82.4 80.4 81.9 81.6 75.1 61.8 71.2

All 85.7 86.3 88.2 85.1 86.3 87.9 76.2 75.6 80.9

YOLOv3-SPP [49]

Right hand 88.3 90.8 94.1 89.2 90.7 94.2 69.2 88.8 86

Left hand 81.6 81.2 82.1 81.4 79.9 81.1 70.3 58.7 65.4

All 84.9 86 88.1 85.3 85.3 87.6 69.7 73.8 75.7

YOLOv4 [13]

Right hand 89.7 93.4 95.9 90.5 94.6 95.9 71.5 88.8 89.4

Left hand 82.8 83.5 84.3 84.2 82.4 86.3 72.4 78.3 75.2

All 86.3 88.5 88.1 87.4 88.5 91.1 72 83.6 82.3

YOLOv5-r50-CSP [28]

Right hand 84.3 87.5 90.9 84.4 87.4 90.9 63 81.2 78.4

Left hand 79.4 77.6 78.7 78.8 76.9 78.4 61.5 53.6 57.5

All 81.9 82.5 84.8 81.6 82.1 84.6 62.2 7.4 68

YOLOv5-X50-CSP [28]

Right hand 94.1 90.2 92.7 90.4 89.6 90.8 78.2 88.2 84.4

Left hand 79.4 77.6 78.7 78.8 76.9 78.4 61.5 73.6 77.5

All 86.75 83.9 85.7 84.6 83.25 84.6 69.85 80.9 80.95

YOLOv7 [9]

Right hand 87 90.7 93.3 81 90.7 93.4 69.6 89.3 86.4

Left hand 81.4 78.9 80.7 81.3 78.8 80.8 61.7 56.1 60.8

All 84.2 84.8 87 84.2 84.8 87.1 65.7 72.7 73.6

YOLOv7-X [9]

Right hand 91.1 90.6 94.1 91.6 90.6 94.2 74.1 89.6 88.4

Left hand 80.7 81.1 81.2 80.2 80.2 80.6 65.4 59.1 64

All 85.9 85.9 87.7 85.9 85.4 87.4 69.8 74.3 76.2

YOLOv7-w6 [9]

Right hand 99.3 97.7 97 97.4 94.7 98.7 92.8 94.7 93

Left hand 86.7 92.3 95.1 85.5 89.3 88.8 86.9 86.4 84.8

All 93 95 96.05 91.45 92 93.75 89.85 90.55 88.9
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Figure 20. The confusion matrix of hand action classification on the testing set of Con f .#123 of the
FPHAB dataset when TheshIOU = 0.5.

Figure 21. Illustrating some results of hand action detection and classification on the testing set of
Con f .#123 of the FPHAB dataset when TheshIOU = 0.5.

Figure 22. Illustration of hand classification results on the HOI4D dataset.

The results of hand detection and classification on the RehabHand dataset [17] are
shown in Table 4. The results in Table 4 show that YOLOv7 has the best results in de-
tecting and classifying with the left hand (P = 100%; R = 92.1%; mAP@.5 = 14% with
TheshIOU = 0.95). YOLOv7-X has the best results in detecting and classifying with the right
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hand (P = 87.7%; R = 92.5%; mAP@.5 = 96.7% with TheshIOU = 0.95), and the average
result is also computed. It can be seen that the left hand detection results in some networks
are very low because the left hand is as false negative as the right hand, as shown in Table 4.

Table 4. The results of hand detection and classification on the RehabHand dataset [17].

IOU Threshold/
(TheshIOU )

Precision(P)/
Recall(R)/

Models

Hand

0.5 0.75 0.95

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

R
(%)

P
(%)

mAP@.5
(%)

YOLOv4-CSP [13]

Right hand 33.8 55.8 29.6 32.9 54.3 28.4 28.2 36.9 20.8

Left hand 100 98.9 93.7 100 97.4 92.1 100 92.4 5.1

All 66.9 77.35 63.45 66.45 75.85 60.25 64.1 66.2 12.95

YOLOv4-CSP-X [13]

Right hand 34.2 56 30.5 33.7 56 30.6 26.6 37.1 21.1

Left hand 100 97.2 95.4 100 95.7 8.12 100 92.6 5.23

All 67.1 76.6 62.95 66.8 75.85 19.3 63.3 64.85 13.2

YOLOv3 [26]

Right hand 2.41 94.1 18.9 0.0861 98.8 19.3 0.045 99 11.2

Left hand 20.8 65.9 17.3 20.5 65.9 17.2 19.4 24.6 12.8

All 11.6 80 18.1 10.7 82.4 18.3 9.91 61.8 12

YOLOv3-SPP [49]

Right hand 17.5 51.6 17.4 17.6 47 17.5 15.2 45 12.6

Left hand 100 98.5 90.7 100 96.8 85.2 100 91.7 89.7

All 58.8 75.5 54.05 58.8 97.9 53.6 58.8 68.35 51.15

YOLOv4 [13]

Right hand 2.26 91.8 21.3 0.91 97.7 21.2 16.4 37 14.5

Left hand 23.9 55.7 21.9 22.2 55.7 20.8 100 25.8 10.5

All 13.1 73.8 21.6 11.6 76.7 21 58.2 31.4 12.5

YOLOv5-r50-CSP [28]

Right hand 25.9 68.9 24.1 25.7 67.4 24 0.44 99.1 14.7

Left hand 100 96.1 92.8 100 94.3 14.6 22.9 40.5 14.1

All 63 82.5 57.4 62.9 80.85 19.3 11.7 69.8 14.4

YOLOv5-X50-CSP [28]

Right hand 1.69 95.8 19.1 0.62 99.5 17.1 0.33 99.3 6.84

Left hand 24.2 53.5 23.6 24 53.6 53.6 27.7 23.3 18.9

All 13 74.7 21.4 12.3 76.6 20.3 14 61.3 12.9

YOLOv7 [9]

Right hand 81.2 96.3 95.2 78.7 91.7 98.8 75.3 96.8 96.7

Left hand 100 99.2 97.3 100 97.8 96.7 100 92.1 92.4

All 90.6 97.75 96.25 89.35 94.75 97.75 87.65 94.45 94.55

YOLOv7-X [9]

Right hand 91.3 95.3 93.6 91.1 92.7 93.6 87.7 92.5 96.7

Left hand 100 96.4 96.2 100 95.5 7.82 100 90.8 90.5

All 95.65 95.85 95.45 95.55 94.1 50.71 93.85 92.3 93.6

YOLOv7-w6 [9]

Right hand 1.77 96.8 19.9 0.498 99.7 19.5 0.0169 99.5 9.53

Left hand 25.8 55.5 15.4 24.3 55.6 14.8 15.2 32.9 5.62

All 13.8 76.1 17.6 12.4 77.6 17.2 7.66 66.2 7.57

Figure 23 illustrates the left hand being negatively classified as the right hand of the
RehabHand dataset [17].

The results in Table 4 also show that the RehabHand dataset [17] is very challenging
for hand detection and classification. This is a good dataset for evaluating hand detection
models, hand pose estimation, and hand activity recognition.
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Figure 23. Illustrating the left hand being negatively classified as the right hand of the RehabHand
dataset [17].

5. Conclusions and Future Works

Building an application to evaluate the rehabilitation process of the hand using the
technology of computer vision and deep learning is a new research area in the medical
field. The first step is hand detection, which is a very important pre-processing step. In
this paper, we systematize a series of versions of YOLO. We pre-trained hand detection
and classification with versions of YOLO on the EV datasets FPHAB, HOI4D, and Re-
habHand. The results show the performance of the YOLO versions for hand detection
and classification. All new versions of YOLO give better results than old versions. The
results of YOLOv7 of hand detection and classification on the FPHAB dataset are the best
(P = 96.9% with TheshIOU = 0.5, P = 96.9% with TheshIOU = 0.75, P = 93.9% with
TheshIOU = 0.95). We apply this model to limit the hand data area, hand pose estimation,
and hand activities recognition for evaluation hand function rehabilitation. YOLOv7 and
its variations’ (YOLOv7-X, YOLOv7-w6) results on the HOI4D and RehabHand datasets are
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lower (Tables 3 and 4) and unequal (Table 4). We perform pre-training with more epochs
and calibrate the model’s parameter set to obtain a better model. Further, we compare
YOLOv7 with CNN networks such as SSD, Faster R-CNN, and SOTA (State-Of-The-Art)
on three datasets: FPHAB, HOI4D, and RehabHand. In the future, we will perform hand
detection and tracking, hand pose estimation, and hand activity recognition for assessing
the ability of the hand from faculty rehabilitation exercises of patients at Hanoi Medi-
cal University Hospital, Huong Sen Rehabilitation Hospital in Tuyen Quang Province in
Vietnam [50], as illustrated in Figure 24.

Figure 24. Illustrating the process of the hand rehabilitation exercise [50].
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