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Abstract: In this work, we investigate an energy-aware multi-robot task-allocation (MRTA) problem in
a cluster of the robot network that consists of a base station and several clusters of energy-harvesting
(EH) robots. It is assumed that there are M + 1 robots in the cluster and M tasks exist in each round.
In the cluster, a robot is elected as the cluster head, which assigns one task to each robot in that round.
Its responsibility (or task) is to collect the resultant data from the remaining M robots to aggregate
and transmit directly to the BS. This paper aims to allocate the M tasks to the remaining M robots
optimally or near optimally by considering the distance to be traveled by each node, the energy
required for executing each task, the battery level at each node, and the energy-harvesting capabilities
of the nodes. Then, this work presents three algorithms: Classical MRTA Approach, Task-aware
MRTA Approach, EH and Task-aware MRTA Approach. The performances of the proposed MRTA
algorithms are evaluated under both independent and identically distributed (i.i.d.) and Markovian
energy-harvesting processes for different scenarios with five robots and 10 robots (with the same
number of tasks). EH and Task-aware MRTA Approach shows the best performance among all MRTA
approaches by keeping up to 100% more energy in the battery than the Classical MRTA Approach
and keeping up to 20% more energy in the battery than the Task-aware MRTA Approach.

Keywords: multi-robot systems; task allocation; wireless networks; energy harvesting

1. Introduction
1.1. Motivation

In 1999, Business Week considered wireless sensor networks (WSNs) as one of the
21 most important technologies for the 21st century [1]. The networking of smart and
cheap small-size sensors over wireless links has many application areas, including video
surveillance, traffic surveillance, air traffic control, physical security, military sensing,
industrial and manufacturing automation, environment monitoring, structure monitoring,
frost monitoring, health care, smart cities and distributed robotics [2,3].

WSNs are composed of many low-cost battery-powered wireless nodes which monitor
their environment. Recently, wireless sensors and robot networks have emerged, adding
mobile robots with rich resources to conventional WSNs. Robots can be used for performing
automated tasks with no human intervention, even in a sparsely populated or hazardous
environment. An application area of static sensor nodes might be volcanic areas where they
can be used for measuring gas concentration, temperature, and other interesting values. In
the case of detecting a dramatic change in parameters, an emergency situation named an
’event’ occurs. Events need to be analyzed via a robot equipped with more accurate sensing
devices, such as seismometers, thermal cameras, etc. [4].

Recently, scholars have investigated the usage of robot deployment in numerous ap-
plication areas, which include cleaning hazardous areas, harvesting fields, area exploration,
battlefield surveillance, search and rescue missions, etc. Such complex domains decrease
the possibility of single-robot usage since they are sensitive to failure, and task completion
takes a long time. As they tend to be more fault-tolerant and robust, the demand for the
solving of complex missions has driven multi-robot systems [5].

Sensors 2023, 23, 3284. https://doi.org/10.3390/s23063284 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063284
https://doi.org/10.3390/s23063284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0673-7877
https://doi.org/10.3390/s23063284
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063284?type=check_update&version=1


Sensors 2023, 23, 3284 2 of 19

For the last two decades, robotics and WSNs have been well-investigated separately,
so they are well-known fields. On the other hand, many new opportunities and research
directions exist at the junction of these research fields, which are relatively unexplored.
Until recently, robots and wireless sensors were considered separate network nodes. The
survey [6] reviewed robotic applications in WSN. Robots and wireless sensors help each
other in many aspects. Their combination, known as robotic and wireless sensor net-
works (RWSN), has several application areas such as military usage, transport monitoring,
healthcare, weather forecasting, autonomous driving, mining, and search and rescue [7,8].

The multi-robot task-allocation (MRTA) problem is an important problem that needs
to be solved efficiently for multi-robot systems to operate autonomously. The basic version
of this problem (also known as the linear assignment problem) can be summarized as
follows: Given a set of agents (or robots) and tasks, with each agent obtaining some payoff
(or incurring some cost) for each task, find a one-to-one assignment of agents to tasks so
that the overall payoff of all the agents is maximized (or cost is minimized) [9].

The MRTA problem may have many application areas including autonomous explo-
ration [10], logistics [11], unmanned search and rescue missions [12], reconnaissance [13],
etc. It is well known that the MRTA problem is NP-hard [14,15]. Therefore, it should be
considered that proposed solutions have qualities inversely proportional to time complex-
ity. A scenario given in [16] motivates our research and illustrates a correlation between
industrial applications, multi-robot systems, and task allocation. Every hour, an online
sales company sells a journal article. At the warehouse, a robot first receives an order.
Second, it finds the corresponding item. Then, it prepares and packages items. Lastly, it
sends it to the customer. What happens if the company is selling 20 articles each hour?
Each minute? Each second?

The multi-robot systems which employ RF-domain security solutions may need com-
putational and so energy resources if they use deep learning methods, as explained
in [17–20]. Hence, multi-robot systems need more energy-efficient solutions for task
execution.

To increase the network lifetime of a multi-robot system, energy efficiency should be
considered. Therefore, this paper considers not only the traveled distance and battery level
by each node but also the prediction of harvested energy at each node.

1.2. Our Contributions

The main contributions of this paper can be summarized as follows:

• To the best of our knowledge, this is the first work that considers the task-allocation
problem with energy-harvesting nodes.

• When tackling the MRTA problem, our optimization includes all of the distance to be
traveled by each node to reach its assigned task, the energy required for executing
each task, the battery level at each node, and the energy-harvesting capabilities of the
robot nodes.

• This work presents three MRTA algorithms: Classical MRTA Approach, Task-aware
MRTA Approach, EH and Task-aware MRTA Approach.

1.3. Organization

The remainder of this paper is organized as follows. In Section 2, the related work is
presented. We present the system model and define the problem in Section 3. In Section 4,
we tackle the MRTA problem and propose three algorithms: Classical MRTA Approach,
Task-aware MRTA Approach, EH and Task-aware MRTA Approach. In Section 5, we
evaluate the performances of the proposed MRTA algorithms under different energy-
harvesting processes for different scenarios with five robots and 10 robots (with same
number of tasks). Section 6 concludes the paper and provides future research directions.
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2. Related Work

This paper tackles the multi-robot task-allocation problem in energy-harvesting (EH)
robot networks. Therefore, in this section, we first consider the related literature for the
multi-robot task-allocation problem. Then, we consider the related literature for task-
allocation problems in EH wireless sensor networks (WSN).

2.1. Multi-Robot Task Allocation

In recent years, there has been growing literature on the multi-robot task-allocation
problem. In this section, we survey the recent papers in the MRTA literature.

The authors in [21] considered the simplest version of the multi-robot task-allocation
(MRTA) problem in a multi-robot system and propose an optimal centralized solution, the
Hungarian method. Despite its optimality, this kind of solution has the typical drawbacks
of the centralized approach. For example, they show very slow responses to dynamic
changes. Therefore, more distributed algorithms are proposed for this problem.

The authors in [22] considered an MRTA problem. An auction-based method is
proposed for the task allocation to a group of robots. Tasks are considered to be some
locations that the robots need to visit. A robot may be prevented from completing its
allocated tasks using unexpected obstacles and delays. Therefore, the uncompleted tasks
are rebid every time a robot completes its (previously) assigned task. This provides an
opportunity to improve the allocation of the remaining tasks and to reduce the overall
task-completion time.

The authors in [23] handled a MRTA problem in a multi-agent system. In this problem,
there are tasks and identical agents where the number of tasks is less than the number of
agents. Using distributed control laws, the agents are split into groups, each of which is
assigned to a task. The paper suggests a distributed market-based solution. In the system,
each agent has the information on all tasks and the maximum number of agents that can be
assigned to each task. By considering the availability of the requested tasks, these agents
communicate with each other to compare the bids and thus this knowledge propagates
over the network.

The authors in [24] studied an initial formation problem in robotic swarm. Its goal is
to minimize a certain objective function by determining which robot should go to each of
the formation positions. The authors proposed an algorithm named Robot and Task Mean
Allocation algorithm. In this algorithm, the cost is considered to be the difference between
the distance from the robot to the task and the mean of distances from all the robots to that
task. As a result, the robot will win the task that is best for the team, not only for itself.

In [25], a multi-robot task-allocation problem was studied in a distributed manner.
It is assumed that each robot agent has the knowledge of its distance from the targets in
the environment and the robots communicate with each other. A solution is found in a
distributed manner without a shared memory of the system.

The authors in [26] studied an MRTA problem in robotic swarm. In this system, the
number of robots is equal to the number of tasks and it is assumed that each robot can be
assigned only one task. This paper proposed a distributed market-based MRTA algorithm
whereby the robots are capable of bidding for tasks since the market-based approach
provides a good trade-off between centralized and distributed algorithms.

In [27], the authors considered a dispatch problem in a multi-robot system. In each
round, each robot is allowed to visit just one event, or several events in a sequence. The
authors also considered the problem in a distributed manner with a wireless sensor network
scenario where each event is sensed by a sensor and the sensor reports it to a robot.
A pairwise distance-based matching algorithm is proposed to eliminate long matching
edges by pairwise exchanges among two robot-event pairs to reduce overall path length.
In [4], the authors extended the work [27] to a more general framework. They presented
generalizations that handle multiple visits and timing constraints.

In [9], an offline task-assignment problem was studied in a distributed manner for
a multi-robot system, where the tasks form disjoint groups and each robot has an upper
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bound on the number of tasks it can do both within the overall mission and within each
task group. The aim was to find the best assignment of the robots to tasks so as to maximize
the sum of the payoffs of all the robots. The authors propose centralized, decentralized,
and distributed auction-based algorithms for the problem.

Luo et al. [28] studied the multi-robot task-assignment problem with task-deadline
constraints. In this problem, the tasks form overlapping groups, and each robot can be
assigned multiple tasks in each group.

The work in [29] formulated a single-robot task, a single-task robot, time-extended
assignment, and MRTA problem with multiple, nonlinear criteria using discrete variables
that drastically reduce the computation burden. The proposed Branch and Bound (B&B)
technique tackles low-scale MRTA problems while the proposed genetic algorithm (GA)
specifically considers large-scale MRTA problems. The proposed MRTA techniques consider
three optimization criteria simultaneously: traveled distance, task execution time, and
energetic feasibility. Although the work considers thermosolar power plants as a case study,
the proposed algorithms can be used for any multi-criteria MRTA problem with a nonlinear
cost function equivalently. Performance and response of proposed methods are evaluated
in various scenarios. It is shown that the B&B technique can reach global optimality within
a reasonable time. GA converges global optimality within less computational time for
larger problems. Furthermore, a trade-off between accuracy and computation time can be
carried out easily via parameter tuning by considering the computational power.

The work in [30] considers an in-schedule-dependent MRTA problem. A main issue
with those problems is that combinatorial optimization is inherently NP-hard. This work
presents a decentralized MRTA technique by leveraging submodularity and a sampling
process of tasks. It is revealed analytically that within polynomial time complexity, it can
guarantee approximately half of the optimal solutions for monotone submodular case and a
quarter for the nonmonotone submodular case. To investigate its performance and validate
theoretical analysis, two MRTA scenarios are introduced for numerical simulations. They
show that it achieves a solution quality comparable to the state-of-the-art algorithms in
the monotone case and better quality in the nonmonotone case, with considerably less
computation complexity.

2.2. Task Allocation in Energy-Harvesting (EH) Wireless Sensor Networks (WSN)

Recently, many works have studied task-allocation problems in EH-WSN [31–33].
In the literature on task allocation in WSN [31–33], based on the known static energy
models, the tasks are assigned to sensor nodes given initially available resources and a
directed acyclic graph (DAG). However, the time-varying nature of EH-WSNs brings new
considerations for energy models and the design of task-allocation schemes.

Many works in the literature tackle resource management for real-time energy-harvesting
embedded systems. In [34,35], dynamic voltage scaling policies decrease energy consump-
tion. Nevertheless, they may violate the scheduling length constraint for task allocation to
sensors. The works in [36,37] present energy-clairvoyant lazy scheduling algorithms. Lazy
scheduling algorithms can be categorized as non-work-conserving scheduling disciplines
where a lazy scheduler may be idle although waiting tasks are ready to be processed. In
addition, the work assumes that tasks are preemptive and independent of each other. More
precisely, the currently active task may be preempted at any time and have its execution
resumed later, at no additional cost. Additionally, since LSA is only based on an “as late
as possible” heuristic, it is more likely that the battery overflows due to harvested energy,
which results in missed-recharging opportunities. Moreover, the abovementioned works
mainly focus on the task allocation to a single processor with an energy-harvesting capabil-
ity but not on the allocation of a task graph with precedence constraints to multiple nodes.

The most closely related works are [38,39], and are closely related to our paper. Unlike
conventional computing-oriented scheduling methods, the paper [38] introduces a dy-
namic energy-oriented scheduling algorithm. By conducting decomposition, combination,
concurrent execution, and admission control, their proposed method allocates tasks based
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on the dynamically changed available energy. Evaluation results with indoor and outdoor
settings show that the proposed technique has very little energy consumption overhead,
so it is extremely lightweight. It schedules tasks effectively using dynamically available
energy. The work in [39] tackled the task-allocation problem for EH-WSNs. The aim was
to maximize the network profit while ensuring the task executions within given WSN
lifetimes. It provided an analytical approach. Then, it presented a distributed mission
assignment scheme for wireless sensor nodes with rechargeable batteries.

The work in [40] tackled the EH-aware task-allocation problem at the network level.
In other words, it considered assigning nodes to the tasks within precedence constraints
from the task graph. This differed this problem from the previous task-allocation problems
focusing on scheduling individual tasks at node level. Second, it aimed for network reward
maximization over the time horizon instead of facilitating network operation perennially.

3. System Model and Problem Definition

This paper tackles a multi-robot task-allocation problem in EH robot networks. In this
section, we will present a motivating scenario and formulate the problem based on this
motivation. We interchangeably use robot, node, and sensor in the rest of this paper. First,
we consider the system model of the robotic network. Then, we define the task-allocation
problem more precisely.

3.1. System Model

In this work, we consider a cluster in a robot network that consists of a base station
(BS) and several clusters of mobile robotic sensors. Please see Figure 1 as an example of the
multi-robot system. The index set of all robots in the cluster is denoted by S. This cluster
is composed of M + 1 robots and M tasks emerge in each round t. In a cluster, one of the
robots is elected as the cluster head. The cluster head in round t is denoted by H(t) and
H(t) = i if the robot i is the cluster head in round t. In the multi-robot system, the cluster
head robot collects data from the remaining M robots to aggregate and send directly to the
BS. Bi(t) is the energy remaining in the battery of robot i in TS t and Eh

i (t) is the energy
harvested by robot i in TS t.

Figure 1. An example of a networked system consists of six robot nodes. Here, robot node 3 is the
cluster head robot that assigns one task to each of the remaining five robots. When executing the
tasks, these robots benefit from the data collected from the sensors. On the other hand, these sensors
are removed for simplicity purposes while illustrating the MRTA problem.
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3.2. Problem Definition

We consider the energy-aware multi-robot task-allocation problem as a matching
dispatch problem. (One robot to one task assignment is a matching dispatch problem). A
M-to-M task allocation (or matching) algorithm is defined as follows.

Definition 1. An M-to-M task-allocation algorithm, denoted by π, is a one-to-one matching
function that assigns one task j to a robot i in round t. This matching function for round t is denoted
by π(·, t) : i→ j where i ∈ S− {H(t)} and j ∈ {1, . . . , M}.

Unlike most task-allocation algorithms for matching dispatch problems, we also
consider the remaining energy in the robot batteries in the multi-robot task-allocation
problem. We should not assign a task to a robot if the robot does not have enough energy
to complete that task after reaching the position of that task (sometimes “event” or “target”
is used).

E(Ti, t) denotes the energy consumed by node i to execute task Ti(t) in round t.

Definition 2. Residual energy in round t, denoted by Bi(t), is the energy remaining in the robot’s
battery i when it reaches the position of the assigned task, i.e.,

Bi(t + 1) , Bi(t) +
T

∑
τ=1

Eh
i (τ)− ‖ξi(t)− ξπ(i, t)‖Epc − E(Ti, t) (1)

where Epc is a constant energy for one unit position change in a robot; ξi(t) and ξπ(i, t) denote the
position of robot i and the position of the task assigned to robot i in round t under the algorithm π,
respectively.

Based on these factors, we define a quadratic cost for a robot and its assigned task.
As well as this, we add a constraint (a Kuhn–Tucker condition) to prevent any robot from
suffering from a lack of energy (becoming a dead node) and not completing its assigned
task. From Definitions 1 and 2, the multi-robot task-allocation (MRTA) problem is defined
as a constrained optimization problem [41] as follows.

Problem 1. Energy-harvesting-aware multi-robot task-allocation problem

min
π∈G

∑
si∈S−{H(t)}

(Bi(t) +
K

∑
τ=1

Eh
i (τ)− ‖ξi(t)− ξπ(i, t)‖ × Epc − E(Ti, t)

)2

+ (λa − Bi(t))


s.t. λa < Bi(t)

where G is the set of all matching dispatch algorithms completing; λa is the required
energy for a node to stay alive (to avoid becoming a dead node); and K is the number of
time slots in each round.

Table 1 provides the notations and their explanations for ease of reference.
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Table 1. Notations and Their Explanations.

Notation Explanations

S Index set of robots

M Number of tasks

M + 1 Number of robots

t Time slot

K The number of time slots in each round

H(t) The cluster head in round t

Bi(t) Remained energy in the battery of ith robot

Eh
i (t) Energy harvested by robot i in TS t

π M-to-M task-allocation algorithm

G Set of all matching dispatch algorithms

T Index set of tasks

Ti ith task

ξi(t) Position of robot i

ξπ(i, t) Position of the task assigned to robot i in round t under the algorithm π

E(Ti, t) Energy consumed by node i to execute task Ti(t) in round t

Epc Energy consumed by a node to travel unit distance (position change)

4. Proposed Multi-Robot Task-Allocation (MRTA) Approaches

In this section, we tackle the MRTA problem (in Problem 1) which includes the distance
to be traveled by each node, the energy required for executing each task, the battery level
at each node and the energy-harvesting capabilities of the nodes.

By considering different subsets of these parameters, we present Classical MRTA
Approach, Task-aware MRTA Approach, EH and Task-aware MRTA Approach.

4.1. Classical MRTA Approach

In this subsection, we tackle the MRTA problem (in Problem 1) by considering the
distance to be traveled by each node and the battery level at each node.

We propose a solution based on the Hungarian algorithm [21]. Please note that for
M number of robots, the computational complexity of the optimal Hungarian algorithm
is O(M3). Our proposed solution in this section does not consider the energy-harvesting
capabilities of the nodes.

Our proposed solution is given in Algorithm 1.

Algorithm 1 Classical MRTA Algorithm

Initialization: The index set of tasks is T = {T1, . . . , TM}.
Algorithm:
(1) Match each robot with a task.
for i = 1 : M

(2) For each robot i, calculate the costs all of the traveled distance and battery level by each
node.

(3) For each robot i, look at the costs of other robots.
(4) If the cost decreases when the two robots change the tasks each other.
(5) The robots swap their assigned tasks.
(6) Otherwise, robots do not change their assigned tasks.

end



Sensors 2023, 23, 3284 8 of 19

The next subsection presents the Task-aware MRTA Approach, which considers the
energy required for executing each task different from the Classical MRTA Approach.

4.2. Task-Aware MRTA Approach

In this subsection, we tackle the MRTA problem (in Problem 1) by considering the
distance to be traveled by each node, the energy required for executing each task, and the
battery level at each node.

We propose the Task-aware MRTA Approach based on the Hungarian algorithm [21].
Please notice that for M number of robots, the computational complexity of the optimal
Hungarian algorithm is O(M3). Our proposed solution in this section does not consider
the energy-harvesting capabilities of the nodes.

Our proposed solution is given in Algorithm 2.

Algorithm 2 Task-aware MRTA Algorithm

Initialization: The index set of tasks is T = {T1, . . . , TM}.
Algorithm:
(1) Match each robot with a task.
for i = 1 : M

(2) For each robot i, calculate the costs all of the traveled distance, battery level by each node
and the energy required for executing each task.

(3) For each robot i, look at the costs of other robots.
(4) If the cost decreases when the two robots change the tasks each other.
(5) The robots swap their assigned tasks.
(6) Otherwise, robots do not change their assigned tasks.

end

4.3. EH and Task-Aware MRTA Approach

In this section, we tackle the MRTA problem (in Problem 1) by considering all the
traveled distance and battery level by each node, the energy required for executing each task
and the prediction of harvested energy at each node. We can predict the energy-harvesting
capabilities of the nodes.

We propose the EH and Task-aware MRTA Approach based on the Hungarian algo-
rithm [21]. Please notice that for M number of robots, the computational complexity of the
optimal Hungarian algorithm is O(M3).

Our proposed solution is given in Algorithm 3.

Algorithm 3 EH and Task-aware MRTA Algorithm

Initialization: The index set of tasks is T = {T1, . . . , TM}.
Algorithm:
(1) Match each robot with a task.
for i = 1 : M

(2) For each robot i, calculate the costs all of the traveled distance and battery level by each
node, the energy required for executing each task and the prediction of harvested energy at each
node.

(3) For each robot i, look at the costs of other robots.
(4) If the cost decreases when the two robots change the tasks with each other.
(5) The robots swap their assigned tasks.
(6) Otherwise, robots do not change their assigned tasks.

end

Many algorithms have recently been proposed to predict energy harvesting pro-
cesses [42]. As a robust solution, we use a weighted moving average-based algorithm for
predicting energy-harvesting processes.
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5. Numerical Results

As stated in Section 2, the pioneering approach for the MRTA problem is the Hun-
garian algorithm [21]. As we consider the MRTA problem by also considering the energy-
harvesting capabilities of nodes, the problem is changed. Therefore, this paper compares
the proposed EH and Task-aware MRTA Approach with two benchmark policies—the
Classical MRTA algorithm, and the Task-aware MRTA algorithm, which are based on the
Hungarian algorithm [21].

In this section, we evaluate the performance of the proposed algorithms (Classical
MRTA Approach, Task-aware MRTA Approach, EH and Task-aware MRTA Approach)
under both independent and identically distributed (i.i.d.) and Markov EH processes. For
each process, we consider two cases: five robot–five task and 10 robot–10 task cases.

Normally, the number of robots is one more than the number of tasks, because the
cluster head robot does not execute a task, but just assigns one task to one robot in each
round. To focus on the one-to-one matching problem, we ignore the location of the cluster
head robot in the figures in this section.

Numerical experiments are conducted on a 1000 m × 1000 m field where a robot can
move to the location of its assigned task with a velocity of v = 10 m/s. At the beginning,
each node has a full battery that can store Bi = 600 mJ energy.

5.1. Independent and Identically Distributed (I.I.D.) EH Process

In this subsection, we will consider two cases under i.i.d. EH process: five robot–five
task task and 10 robot–10 task cases. The i.i.d. process at each node is generated as a
Poisson process with different means for each node.

5.1.1. 5 I.I.D. EH Robot Case

In this subsubsection, we will consider a case with five i.i.d. EH robots and five tasks.
Figure 2 illustrates the locations of the five i.i.d. EH robot nodes and the locations of

the five tasks in a 1000 m × 1000 m field.
In Figure 2, the locations of the five i.i.d. EH robot nodes are given as (ξ1(0), ξ2(0), ξ3(0),

ξ4(0), ξ5(0)) = ((−472, 99), (−302, 15), (31, 219), (492, 287), (−248,−437)).
In Figure 2, the locations of the five tasks in round 1 are given as (ξ(1, 1), ξ(2, 1), ξ(3, 1),

ξ(4, 1), ξ(5, 1)) = ((−282, 346), (−137, 475), (148, 334), (443,−137), (−484,−317)).
Figure 3 exhibits the total remaining energy in the batteries of the five i.i.d. EH robot

nodes versus the number of rounds under Poisson i.i.d. EH processes.
Considering the general trend, EH and Task-aware MRTA and Task-aware MRTA

show better performance than MRTA. This is expected because Task-aware MRTA considers
the energy to be consumed for each task execution, while conventional MRTA does not
consider this energy. In addition to energy to be consumed for each task execution, EH
and Task-aware MRTA consider the energy-harvesting process at each node by predicting
harvested energy. Therefore, EH and Task-aware MRTA shows better performance than
not only conventional MRTA but also Task-aware MRTA.

Table 2 shows the remaining total energy in the batteries of the five i.i.d. EH robot
nodes, which are located initially as given in Figure 2 versus the number of rounds under
i.i.d. EH processes. As there are five robots, the total remaining energy in the batteries of
the nodes is 5× 600 = 3000 mJ initially (denoted as round 0).

From Table 2, we can make the following observations. In the first three rounds, EH
and Task-aware MRTA performs the same as Task-aware MRTA, where both algorithms
shows slightly better performance (stores 7.5%-more energy) than (conventional) MRTA
algorithm. In round 4, EH and Task-aware MRTA start to show better performance than
Task-aware MRTA, too. Especially in round 7, EH and Task-aware MRTA shows its best
relative performance (43.6% more) compared with MRTA. Task-aware MRTA also shows its
best relative performance (28.3% more) compared with MRTA. In addition, EH and Task-
aware MRTA shows its best relative performance (11.9% more) compared with Task-aware
MRTA in round 7.
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Figure 3. Total remaining energy in the batteries of the 5 i.i.d. EH robot nodes versus the number of
rounds under i.i.d. EH processes.
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Table 2. Total remaining energy in the batteries of the five robot nodes which are located initially as
given in Figure 2 versus the number of rounds under i.i.d. EH processes.

Round 0 1 2 3 4 5 6 7 8 9 10

EH & Task-aware MRTA 3000 2646 2307 2001 1689 1525 1346 1182 1002 920 916

Task-aware MRTA 3000 2646 2307 2001 1619 1366 1215 1056 937 829 838

MRTA 3000 2584 2158 1864 1412 1291 1027 823 788 753 733

EH & Task-aware MRTA/MRTA 1.000 1.024 1.069 1.073 1.196 1.181 1.311 1.436 1.272 1.222 1.250

Task-aware MRTA/MRTA 1.000 1.024 1.069 1.073 1.147 1.058 1.183 1.283 1.189 1.101 1.143

5.1.2. 10 I.I.D. EH Robot Case

In this subsubsection, we will consider a case with 10 i.i.d. EH robots and 10 tasks.
Figure 4 illustrates the locations of the 10 i.i.d. EH robot nodes and the locations of the

10 tasks in a 1000 m × 1000 m field.
In Figure 4, the locations of the 10 i.i.d. EH robot nodes are given as (ξ1(0), ξ2(0), ξ3(0),

ξ4(0), ξ5(0), ξ6(0), ξ7(0), ξ8(0), ξ9(0), ξ10(0)) = (367, 350), (263, 111), (436, 388), (223, 418),
(−121, 300), (222,−161), (98, 378), (−449, 460), (−329,−326), (370, 121)).

In Figure 4, the locations of the 10 tasks in round 1 are given as (ξ(1, 1), ξ(2, 1), ξ(3, 1),
ξ(4, 1), ξ(5, 1), ξ(6, 1), ξ(7, 1), ξ(8, 1), ξ(9, 1), ξ(10, 1)) = ((−469, 300), (−386,−35), (−355,
40), (−49,−93), (49, 251), (302, 190), (493,−208), (411,−198), (170,−149), (−396,−407)).
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Figure 4. The locations of the 10 i.i.d. EH robot nodes and the locations of the 10 tasks are represented
as “square” and “cross” markers, respectively.

Figure 5 exhibits the total remaining energy in the batteries of the 10 i.i.d. EH robot
nodes versus the number of rounds under Poisson i.i.d. EH processes.

Considering the general trend, EH and Task-aware MRTA and Task-aware MRTA show
better performance than MRTA. This is expected because Task-aware MRTA considers the
energy to be consumed for each task execution while conventional MRTA do not consider
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this energy. In addition to energy to be consumed for each task execution, EH and Task-
aware MRTA consider the energy-harvesting process at each node by predicting harvested
energy. Therefore, EH and Task-aware MRTA shows better performance than not only
conventional MRTA but also Task-aware MRTA.
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Figure 5. Total remaining energy in the batteries of the 10 robot nodes versus the number of rounds
under i.i.d. EH processes.

Table 3 shows the remaining total energy in the batteries of the 10 robot nodes lo-
cated initially as given in Figure 4 versus the number of rounds under Poisson EH pro-
cesses. As there are 10 robots, the total remaining energy in the batteries of the nodes is
10 × 600 = 6000 mJ initially (denoted as round 0).

From Table 3, we can make the following observations. In the first five rounds, EH and
Task-aware MRTA performs the same as Task-aware MRTA where both algorithms show
slightly better performance (stores at most 10% more energy) than the (conventional) MRTA
algorithm. In later rounds, EH and Task-aware MRTA starts to show better performance
than Task-aware MRTA and MRTA. In round 10, EH and Task-aware MRTA shows its best
relative performance (20% more) compared with MRTA. Task-aware MRTA also shows its
best relative performance (17% more) compared with MRTA in round 8.

Table 3. The total remaining energy in the batteries of the 10 robot nodes, which are located initially
as given in Figure 4 versus the number of rounds under Poisson EH processes.

Round 0 1 2 3 4 5 6 7 8 9 10

EH & Task-aware MRTA 6000 5069 4365 3768 3107 2615 2313 1994 1830 1678 1620

Task-aware MRTA 6000 5069 4316 3727 3067 2731 2277 1978 1789 1600 1563

MRTA 6000 5069 4304 3718 2973 2589 2072 1737 1526 1439 1351

EH & Task-aware MRTA/MRTA 1.000 1.000 1.014 1.013 1.045 1.110 1.116 1.148 1.199 1.166 1.199

Task-aware MRTA/MRTA 1.000 1.000 1.003 1.002 1.032 1.055 1.099 1.139 1.172 1.112 1.157
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5.2. Markov EH Process

In this subsection, we will consider two cases under the Markov EH process: five
robot–five task and 10 robot–10 task cases. The Markov process at each node is generated
as a Markov process with a different mean for each node.

5.2.1. 5 Markov EH Robot Case

This subsubsection will consider a case with five Markov EH robots and five tasks.
Figure 6 illustrates the locations of the five Markov EH robot nodes and the locations

of the five tasks in a 1000 m × 1000 m field.
In Figure 6, the locations of the five Markov EH robot nodes are given as (ξ1(0), ξ2(0),

ξ3(0), ξ4(0), ξ5(0)) = ((477, 175), (368,−282), (−468, 99), (−37,−329), (−431, 482)).
In Figure 6, the locations of the five tasks in round 1 are given as (ξ(1, 1), ξ(2, 1), ξ(3, 1),

ξ(4, 1), ξ(5, 1)) = ((−373, 457), (56, 123), (106, 16), (136, 20), (−117,−195)).
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Figure 6. The locations of the five Markov EH robot nodes and the locations of the five tasks are
represented as “square” and “cross” markers, respectively.

Figure 7 exhibits the total remaining energy in the batteries of the five Markov EH
robot nodes versus the number of rounds under Markov EH processes.

Considering the general trend, EH and Task-aware MRTA and Task-aware MRTA
show better performance than MRTA. This is expected because Task-aware MRTA considers
the energy to be consumed for each task execution while conventional MRTA does not
consider this energy. In addition to energy to be consumed for each task execution, EH
and Task-aware MRTA considers the energy-harvesting process at each node by predicting
harvested energy. Therefore, EH and Task-aware MRTA shows better performance than
both conventional MRTA and Task-aware MRTA. It should be noted that in round 10,
conventional MRTA cannot even do task execution due to insufficient stored energy in
the batteries of the nodes. As Markov EH process has a different memory from the i.i.d.
EH process, its prediction is harder. As a result, the total energy stored under Markov EH
process is less than i.i.d. EH process.
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Figure 7. Total remaining energy in the batteries of the five Markov EH robot nodes versus the
number of rounds under Markov EH processes.

Table 4 shows the remaining total energy in the batteries of the five Markov EH robot
nodes located initially as given in Figure 6 versus the number of rounds under Markov EH
processes. As there are five robots, the total remaining energy in the batteries of the nodes
is 5× 600 = 3000 mJ initially (denoted as round 0).

From Table 4, we can make the following observations. In first four rounds, EH
and Task-aware MRTA performs same as Task-aware MRTA where both algorithms show
slightly better performance (stores at most 6% more energy) than the (conventional) MRTA
algorithm. In round 9, EH and Task-aware MRTA start to show much better performance
than Task-aware MRTA and MRTA, so that EH and Task-aware MRTA stores twice more
energy as MRTA. Moreover, EH and Task-aware MRTA shows its best relative performance
(14.65% more) compared with Task-aware MRTA in round 9. In round 10, EH and Task-
aware MRTA and Task-aware MRTA cannot show relative performance because MRTA
even cannot show any performance due to a lack of energy.

Table 4. Total remaining energy in the batteries of the five Markov EH robot nodes, which are located
initially as given in Figure 6 versus the number of rounds under Markov EH processes. “NA” denotes
not applicable.

Round 0 1 2 3 4 5 6 7 8 9 10

EH & Task-aware MRTA 3000 2580 2101 1794 1510 1181 902 732 480 274 84

Task-aware MRTA 3000 2580 2101 1766 1439 1077 830 659 408 239 80

MRTA 3000 2580 2129 1717 1424 1025 761 594 346 140 NA

EH & Task-aware MRTA/MRTA 1.000 1.000 1.013 1.042 1.060 1.152 1.185 1.232 1.179 1.957 NA

Task-aware MRTA/MRTA 1.000 1.000 1.013 1.029 1.011 1.051 1.091 1.109 1.179 1.707 NA
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5.2.2. 10 Markov EH Robot Case

In this subsubsection, we will consider a case with 10 Markov EH robots and 10 tasks.
Figure 8 illustrates the locations of the 10 Markov EH robot nodes and the locations of

the 10 tasks in a 1000 m × 1000 m field.
In Figure 8, the locations of the 10 robot nodes are given as (ξ1(0), ξ2(0), ξ3(0), ξ4(0),

ξ5(0), ξ6(0), ξ7(0), ξ8(0), ξ9(0), ξ10(0)) = (−31,−271), (366, 147), (21, 134), (−155,−336),
(−358,−358), (−459,−241), (57,−120), (28,−395), (238, 385), (354, 263)).

In Figure 8, the locations of the 10 tasks in round 1 are given as (ξ(1, 1), ξ(2, 1), ξ(3, 1),
ξ(4, 1), ξ(5, 1), ξ(6, 1), ξ(7, 1), ξ(8, 1), ξ(9, 1), ξ(10, 1)) = ((−429, 65), (−60, 149), (−69, 465),
(287, 496), (351, 280), (409,−412), (202,−331), (−13,−14), (−96,−111), (−417,−411)).
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Figure 8. The locations of the 10 Markov EH robot nodes and the locations of the 10 tasks are
represented as “square” and “cross” markers, respectively.

Figure 9 exhibits the total remaining energy in the batteries of the 10 Markov EH robot
nodes versus the number of rounds under Markov EH processes.

Considering the general trend, EH and Task-aware MRTA and Task-aware MRTA
show better performance than MRTA. This is expected because Task-aware MRTA considers
the energy to be consumed for each task execution while conventional MRTA does not
consider this energy. In addition to energy to be consumed for each task execution, EH
and Task-aware MRTA considers the energy-harvesting process at each node by predicting
harvested energy. Therefore, EH and Task-aware MRTA shows better performance than
not only conventional MRTA but also Task-aware MRTA. As the Markov EH process has a
memory different from i.i.d. EH process, its prediction is harder. The Markov process has a
memory, so the energy harvests under the Markov process are more correlated than those
under the i.i.d. process. The energy harvested under the Markov process is considerably
lower than that under the i.i.d. process. As a result, the total energy stored under the
Markov EH process is less than the i.i.d. EH process.
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Figure 9. Total remaining energy in the batteries of the 10 robot nodes versus the number of rounds
under Markov EH processes.

Table 5 shows the remaining total energy in the batteries of the 10 Markov EH robot
nodes, which are located initially as given in Figure 8 versus the number of rounds under
Markov EH processes. As there are 10 robots, the total remaining energy in the batteries of
the nodes is 10× 600 = 6000 mJ initially (denoted as round 0).

From Table 5, we can make the following observations. In the first five rounds, EH and
Task-aware MRTA performs the same as Task-aware MRTA, where both algorithms show
slightly better performance (stores at most 9.1% more energy) than the (conventional) MRTA
algorithm. In round 8, EH and Task-aware MRTA start to show much better performance
than Task-aware MRTA and MRTA. Especially in round 10, EH and Task-aware MRTA
shows its best relative performance (57.5%) compared with MRTA in round 10. Task-aware
MRTA also shows its best relative performance (28.1% more) compared with MRTA in
round 10. Moreover, EH and Task-aware MRTA shows its best relative performance (23.0%)
compared with Task-aware MRTA in round 10.

Table 5. Total remaining energy in the batteries of the 10 robot nodes which are located initially as
given in Figure 8 versus the number of rounds under Markov EH processes.

Round 0 1 2 3 4 5 6 7 8 9 10

EH & Task-aware MRTA 6000 5138 4339 3662 3072 2616 2149 1768 1404 894 729

Task-aware MRTA 6000 5138 4325 3687 3061 2503 1977 1655 1270 813 593

MRTA 6000 5138 4339 3659 2937 2398 1893 1544 1140 680 463

EH & Task-aware MRTA/MRTA 1.000 1.000 1.000 1.016 1.046 1.091 1.135 1.145 1.232 1.315 1.575

Task-aware MRTA/MRTA 1.000 1.000 0.997 1.001 1.042 1.044 1.044 1.072 1.114 1.196 1.281
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6. Conclusions

In this work, we investigate a multi-robot task-allocation (MRTA) problem occurring
in a cluster of robots. In the cluster, a robot operates as a cluster head. Each of the remaining
(non-cluster head) robots is assigned to do a task in a round. This task-allocation algorithm
between robots and tasks considers both distances and remaining energy while assigning
tasks to the robots. The problem is defined as a one-to-one matching dispatch problem.

This paper tackles the multi-robot task-allocation (MRTA) problem by considering the
distance to be traveled by each node, the energy required for executing each task, the battery
level at each node, and the energy-harvesting capabilities of the nodes. Then, this work
presents three algorithms: Classical MRTA Approach, Task-aware MRTA Approach, and
EH and Task-aware MRTA Approach. The performances of the proposed MRTA algorithms
are evaluated for different energy-harvesting processes and the different number of robots
(with the same number of tasks).

In contrast to classical MRTA and Task-aware MRTA Approaches, EH and Task-
aware MRTA Approach considers all of the distance to be traveled by each node, the
energy required for executing each task, the battery level at each node, and the energy-
harvesting capabilities of the nodes. Therefore, it shows the best performance among all
MRTA approaches by keeping up to 100% more energy in the battery than the Classical
MRTA Approach and keeping up to 20% more energy in the battery than the Task-aware
MRTA Approach.

In the future, we will consider low-complexity MRTA approaches in the related
literature other than the Hungarian algorithm. Thus, we aim to propose a more robust
energy-aware multi-robot task-allocation (MRTA) algorithm in energy-harvesting wireless
sensor networks.
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GA Genetic Algorithm
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