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Abstract: A multi-sensor medical-image fusion technique, which integrates useful information
from different single-modal images of the same tissue and provides a fused image that is more
comprehensive and objective than a single-source image, is becoming an increasingly important
technique in clinical diagnosis and treatment planning. The salient information in medical images
often visually describes the tissue. To effectively embed salient information in the fused image, a
multi-sensor medical image fusion method is proposed based on an embedding bilateral filter in
least squares and salient detection via a deformed smoothness constraint. First, source images are
decomposed into base and detail layers using a bilateral filter in least squares. Then, the detail layers
are treated as superpositions of salient regions and background information; a fusion rule for this
layer based on the deformed smoothness constraint and guided filtering was designed to successfully
conserve the salient structure and detail information of the source images. A base-layer fusion rule
based on modified Laplace energy and local energy is proposed to preserve the energy information of
these source images. The experimental results demonstrate that the proposed method outperformed
nine state-of-the-art methods in both subjective and objective quality assessments on the Harvard
Medical School dataset.

Keywords: medical-image fusion; embedding bilateral filter; salient detection

1. Introduction

The technique of image fusion integrates multiple images generated by different
sensors with different descriptions of the same scene to produce an image with more
compatible and accurate information [1]. The main image fusion technologies include
multi-focus image fusion, medical image fusion, infrared and visible image fusion, remote
sensing image fusion, etc. This technique has been widely applied in the fields of surveil-
lance, clinical diagnostics, automation, national defense, biometrics, and remote sensing.
Medical image fusion, which integrates all the useful complementary information from
different medical images into a fused image, as a branch of image fusion, occupies a crucial
position in research. The use of a single sensor-formed image as a basis for judgment
has limitations while describing the health status of tissues (for example, using computed
tomography (CT) that detects only dense structures such as bones and implants; magnetic
resonance imaging (MRI) that provides soft tissue information; positron emission tomogra-
phy (PET), which reflects the biological activity of cells and molecules; and single-photon
emission computed tomography (SPECT), which reflects the blood flow through tissues and
organs). Fused images can provide a more comprehensive, reliable, and better description
of lesions, thereby making a significant contribution to biomedical research and clinical
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diagnosis techniques, such as surgical navigation, radiotherapy planning, and future-health
prediction methods [2].

In recent years, multi-sensor medical-image fusion techniques have been devel-
oped. The four main types include: spatial domain-based (SDB), transform domain-based
(TDB) [3], sparse representation-based (SRD) [4], and deep learning-based (DLB) meth-
ods [5].

The TDB method typically consists of three steps: multiscale decomposition, fusion,
and multiscale reconstruction. This kind of method decomposes images into different scales,
which is analogous to the process of human eyes dealing with visual information ranging
from coarse to fine, enabling a better signal-to-noise ratio [6]. Zhu et al. [7] decomposed
images using a non-subsampled contourlet transform (NSCT) and fused the corresponding
high and low frequencies using phase congruency (PC) and local Laplacian energy (LLE),
respectively. Li et al. [8] used the Laplacian redecomposition (LRD) scheme to decompose
images and fused subbands based on overlapping and non-overlapping domains. In
addition to selecting transform tools, fusion rules also play an integral role in TDB methods.
Because fusion rules achieve image fusion by directly processing pixels or regions that tend
to be considered in terms of points or regions, they cannot solve the problem of extracting
edge information correctly. Moreover, TDB methods are computationally expensive and
may result in inevitable losses in details and generate artifacts during decomposition and
reconstruction, which could reduce the fusion performance [9,10].

SRB methods mainly work on the concept that image signals can be considered a
linear combination of atoms in an overcomplete dictionary. Most SRB methods involve the
following steps [4]: (a) segmenting the source image into overlapping patches, (b) sparse
encoding of the patches using a dictionary to obtain their sparse coefficients, (c) combining
the sparse coefficients, and (d) reconstructing the images from the sparse coefficients
and a dictionary. Common sparse representation (SR) models include the traditional SR
model [11], group-sparsity SR model [12], robust SR model [13], non-negative SR model [14],
and joint convolutional analysis and synthesis [15]. Li et al. [11] used low-pass filtering
and structured texture filtering to decompose an image and fused high-frequency layers
with sparse representation to achieve image fusion and denoising. Jie et al. [16] used sparse
representation and a rolling guidance filter (RGF) to fuse texture layers using cartoon–
texture image decomposition. When compared to TDB methods, SRB methods allow for a
more meaningful and stable representation of the source image owing to the overcomplete
dictionary containing richer basis atoms. Moreover, using a fixed step size to acquire image
blocks is also effective in reducing artifacts and improving robustness to misalignment.
Additionally, sparse encoding under SRB methods is usually time-consuming and complex,
and important information from the source images is inevitably lost [16,17].

In recent years, DLB methods have received considerable attention owing to their
powerful nonlinear fitting capability. In the convolutional neural network (CNN)-based
approach proposed by Zhang et al. [18], two convolutional layers were used to achieve
feature extraction and the reconstruction of images. In addition to CNNs, generative adver-
sarial networks (GANs) have also been applied to image domains. Ma et al. [19] proposed
a GAN for image fusion using a generator and a discriminator to achieve maintenance
of intensity and detail information in the source image. The auto-encoder-based fusion
framework for feature extraction and image reconstruction uses pre-trained autoencoders.
Luo et al. [20] used a multi-branch encoder with contrast constraints to learn the public
and private features of an image, fused the private features using an adaptive fusion rule
based on energy, and then reconstructed the image using a decoder. The end-to-end fusion
process in DLB methods effectively reduces pre-processing, parameter tuning, and post-
processing. However, DLB methods are time-consuming for model training and require
large datasets [21,22].
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SDB methods rely on detecting pixel-level activities, which reflect features such as the
level of image sharpness and structural saliency. The main steps are as follows. First, the
activity of a pixel or region is detected by a specific function or algorithm to obtain the
activity map of the image. Then, according to a given rule (e.g., the “maximum absolute
value (Abs)” rule), it generates an active decision map. Finally, the decision map is used to
reconstruct the source image to obtain a fused image. In SDB methods, image processing
using edge-preserving filters has become increasingly common. The base layer of the image
is obtained using an edge-preserving filter to potentially capture large variations and a
set of detail layers to preserve detail at progressively more refined levels. Mo et al. [23]
proposed an attribute-filter-based image fusion method wherein the prominent objects
in the image were first extracted using attribute- and edge-preserving filters, and then
the fusion results were obtained using a weight-based Laplacian-pyramid image-fusion
strategy. Overall, SDB methods are simple and fast, but pixel-level activity detection is
not an easy task, and incorrect activity detection may lead to the occurrence of blocking
(region) artifacts, introduce certain spectral distortions, and degrade the sharpness of the
fusion results [24].

Although existing multi-sensor medical-image fusion techniques have achieved great
success, certain shortcomings still exist. For example, the atoms of the dictionary in SRB
methods have a limited ability to represent salient features in the image [25]. The fusion
rules in TDB and SDB methods are often based on pixels or regions without consideration
of edges or structures in the image [26]. In addition, most existing methods lack attention
to salient information, which is often a visual reflection of tissue health status in medical
images. To retain the salient information in the source images, in this paper, we propose
a medical image fusion method based on least-squares using the bilateral filter (BLF-LS)
and deformation smoothness constraint (DSC) [24], which can effectively retain the salient
information, edge, and energy from source images.

The BLF-LS is a recently developed edge-preserving filter. It takes advantage of
bilateral filtering and the least-squares (LS) model, effectively smoothing the edges within
the texture region while producing results without gradient reversals and halos; it also offers
the advantage of fast operation [27]. Therefore, we introduced the BLF-LS to decompose
the source image. A fusion rule combining DSC and the rolling guidance filter (RGF) [25]
was designed to fuse detail layers. Saliency describes what attracts the visual attention of
humans in a bottom-up manner. Salient detection can maintain the integrity of important
target regions and enables high-quality image fusion. The main contributions of this study
are as follows:

1. A medical image fusion method based on the BLF-LS and salient detection is proposed.
To the best of our knowledge, this is the first time the BLF-LS has been applied in
medical-image fusion. The source images are decomposed into the detail and base
layers.

2. A detail-layer fusion rule based on DSC and RGF is proposed, which fully considers
the low contrast between the target and background.

3. A fusion rule based on modified Laplace energy and local energy (MLEN) was
designed to maintain detailed information and energy in the base layer.

4. The proposed fusion method can be effectively extended to the IR- and VIS-image
fusion problem and yield competing fusion performance.

The remainder of this paper is organized as follows. In Section 2, the background of
the BLF-LS and salient detection using a DSC is briefly introduced. Section 3 explains the
proposed image-fusion algorithm. The experimental results and discussion are presented
in Section 4. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Embedding Bilateral Filter in Least Squares

Edge-preserving filters offer many advantages, such as accurately separating image
structures at different scales while maintaining the spatial consistency of these structures, re-
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ducing the blurring effects around edges, providing a good edge- and boundary-preserving
performance, and smoothing background information. The BLF-LS is an edge-preserving
filter achieved using global methods [27]. The smoothing result of this filter is free of
gradient reversals and halos. Additionally, the BLF-LS runs faster because it utilizes the
efficiency of bilateral filter (BLF) and the LS model. To facilitate the understanding of the
BLF-LS, we first describe BLF. For a given image g, the output image µ through the BLF is
computed as follows:

µs =
1

GσS(‖s− t‖)Gσr (‖gs − gt‖) ∑
tεN(S)

GσS(‖s− t‖)Gσr (‖gs − gt‖)gt, (1)

where s and t denote different pixel points, GσS denotes the Gaussian kernel that determines
the spatial support, and Gσr denotes the Gaussian kernel that controls the sensitivity to the
edges. The BLF has the advantage of fast image processing. However, because the edges
are sharpened in the smoothed image and boosted in the reverse direction in the enhanced
image, gradient inversion and halos are produced in the result.

Suppose fBLF(∇g∗) denotes the smoothing gradients, and ∗ denotes the axis direction
of the input image g with the BLF; embedding fBLF(∇g) into the LS framework achieves
efficient edge-preserving smoothing. This approach allows the BLF-LS to achieve both the
edge-smoothing quality of the LS and BLF models with a proper processing efficiency, as
described below. Given an input image g, the output image µ with BLF-LS is:

min
µ

∑
s

(µs − gs)
2 + λ ∑

∗∈{x,y}
(∇µ∗,s − ( fBLF(∇g∗))s)

2

, (2)

where s denotes the pixel position. When the value of λ is large enough, the gradient of the
image µ, that is, ∇µ∗,s, will resemble fBLF(∇g∗)(∗ ∈ {x, y}), which guarantees the smooth
quality of the BLF-LS. Because the LS model can be solved in the Fourier domain, the speed
of the BLF-LS is guaranteed. Equation (2) can be solved as follows:

µ = F−1

(
F (g) + λ ∑∗∈{x,y}(F ( fBLF(∇g∗)))

F (1) + λ ∑∗∈{x,y} F (∂∗)·F (∂∗)

)
, (3)

where F (·) and F−1(·) are the fast Fourier transform (FFT) and inverse fast Fourier
transform (IFFT) operators, respectively; F (·) denotes the complex conjugate of F (·);
and F (1) is the FFT of the delta function. Additionally, multiplication and division are
both point-wise operations.

2.2. Salient Detection via Deformed Smoothness Constraint

The DSC [28] is a propagation model that can capture significant targets when there is
low contrast between the object regions and background. It comprises three main steps.
First, the image is segmented using superpixels, and the segmentation result is represented
as a graph. Then, a coarse map is generated via the background seeds and a deformed
smoothness-based manifold ranking model, and the objectness map is built through the
object proposal. Finally, the coarse and objectness maps are used to generate a refined map.

The input image I generates a significant detection map g described as follows:

min
1
2

g

{
gT
[

Dc −Wc + µ

(
I− Dc

vc

)]
g + ‖g−Mc‖2 + gTDog

}
, (4)

where Mc is the coarse map; Dc and vc are the degree matrix and volume of Mc respectively;
Wc is a weight matrix computed by Mc; µ is a non-negative parameter that balances the
weights of the two smoothness constraints; Mo denotes the objectness map obtained for
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each node using an edge box (Mo =
(
mo

i
)

n); and Do =
(
do

ii
)

n×n represents a diagonal
matrix with do

ii = diag
(
exp
(
−mo

i
))

.
The optimal solution of Equation (4) is expressed as:

g =

[
Dc −Wc + µ2

(
I− Dc

vc

)
+ Do

]−1
Mc (5)

The elements of g were normalized to [0, 1] and assigned to the corresponding super-
pixels to generate a saliency detection map.

3. Proposed Method

The proposed method is illustrated in Figure 1. First, the source images are decom-
posed into a base layer and a detail layer via the BLF-LS. The base layer, which is obtained
by decomposing the source image, is fused based on the MLEN fusion rules to retain
the energy information of the source image. Moreover, the detail layers are considered
a superposition of the salient regions and background information. The detail layers are
decomposed into background-detail layers and salient-detail layers using a model based
on the DSC and RGF. To fully retain the energy information, the background-detail layer
of the fused image is obtained using the fusion rule, Abs. Regarding the salient-detail
layers that contain important salient targets, the overlap between the two salient-detail
layers is removed using the DSC-RGF model, and a direct summation method is used to
obtain the salient-detail layer of the fused image. Finally, the fused image is obtained by
reconstruction.
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Figure 1. Flowchart of proposed image-fusion method.

Additionally, for a functional medical image fusion problem, the following conversion
scheme is used: red, green, and blue (RGB)→luma, blue projection, and red projection
(YUV)→RGB, as shown in Figure 2.
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3.1. Decomposition of Base Layer and Detail Layer

BLF-LS achieves useful edge-preserving smoothing by embedding the BLF into the LS
framework. First, we employed a BLF-LS to decompose the source images into a base layer
and a detail layer. The details of the base layer are as follows:

Bn = In ∗ FBLF−LS (n = 1, 2), (6)

where I1 and I2 denote the source images, B1 and B2 are the base layers obtained by
decomposing I1 and I2, respectively; and FBLF−LS is a BLF−LS used for smoothing the
images described in Equation (2). After the base layer is obtained, it can be subtracted from
the source image to obtain the detail layer:

Dn = In − Bn (n = 1, 2), (7)

where D1 and D2 are the detail layers obtained by decomposing I1 and I2, respectively.
The base layer can potentially capture large variations in intensity, and the detail layer can
preserve details at fine scales.

3.2. Decomposition of Detail Layer Based on DSC-RGF Algorithm

In recent years, many saliency detection methods that can detect salient visual areas
or objects and easily draw visual attention have been proposed. It is typically easier to
detect salient targets in the detail layer obtained using a smoothing filter. To this end, we
designed a method based on the DSC and RGF to fuse the detail layer, as shown in Figure 3;
this method mainly consists of the following steps. First, the initial salient decision map
is obtained by applying the DSC to the detail layer. Second, the overlapping part of the
two initial salient decision maps produces ghosting in the fusion results and affects the
visual effect; therefore, the overlap-removal procedure is performed on the initial salient
decision map. Then, in view of the edge-smoothing problem of the significant target in
the salient decision map, the RGF is used to process the salient decision map to obtain the
salient guided filtering (SGF) map. Finally, the detail layer is decomposed into background
and salient-detail layers using this map.

The details of each step are as follows. First, the DSC model is used to detect the detail
layer to obtain the salient information, and threshold correction is adopted to process the
salient information of the initial salient decision map.

In
ID(x, y) =

{
1 Dn(x, y) ∗ FDSC ≥ T
0 Dn(x, y) ∗ FDSC < T (n = 1, 2), (8)
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where ∗FDSC denotes the salient-detection operation using the DSC model in Equation (4);
T is the threshold value; and I1

ISD(x, y) and I2
ISD(x, y) are the initial salient decision maps

obtained from D1(x, y) and D2(x, y), respectively.
Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

 

Figure 3. Deformed smoothness constraint–rolling guidance filter (DSC-RGF) algorithm. 

The details of each step are as follows. First, the DSC model is used to detect the detail 

layer to obtain the salient information, and threshold correction is adopted to process the 

salient information of the initial salient decision map. 

𝐼𝐼𝐷
𝑛 (𝑥, 𝑦)  =  {

1    𝐷𝑛(𝑥, 𝑦) ∗ 𝐹𝐷𝑆𝐶 ≥ 𝑇

0    𝐷𝑛(𝑥, 𝑦) ∗ 𝐹𝐷𝑆𝐶 < 𝑇
        (𝑛 =  1, 2), (8) 

where ∗ 𝐹DSC denotes the salient-detection operation using the DSC model in Equation 

(4); T is the threshold value; and 𝐼𝐼𝑆𝐷
1 (𝑥, 𝑦) and 𝐼𝐼𝑆𝐷

2 (𝑥, 𝑦) are the initial salient decision 

maps obtained from 𝐷1(𝑥, 𝑦) and 𝐷2(𝑥, 𝑦), respectively. 

Second, it is necessary to remove the overlapping part 𝐼𝑅, which is generated by mul-

tiplying 𝐼𝐼𝑆𝐷
1  and 𝐼𝐼𝑆𝐷

2  (𝐼𝑅  =  𝐼𝐼𝑆𝐷
1 ∙ 𝐼𝐼𝑆𝐷

2 ). Directly phasing it into the fusion result causes 

ghosting, which affects the visual effect. 

𝐼𝑆𝐷
𝑛  =  𝐼𝐼𝑆𝐷

𝑛 − 𝐼𝑅         (𝑛 =  1, 2), (9) 

where 𝐼𝑆𝐷
1  and 𝐼𝑆𝐷

2  represent the salient decision maps obtained after removing the over-

lapping parts. Considering the edge-smoothing problem of the significant target in the 

salient decision map, we used RGF to process 𝐼𝑆𝐷
𝑛  to obtain the SGF map. 

𝐼𝑆𝐺𝐹
𝑛  =  𝐼𝐷

𝑛 ∗ 𝐹𝑅𝐺𝐹(𝑇′, r, 𝜀)       (𝑛 =  1, 2), (10) 

where 𝐹𝑅𝐺𝐹(∙) represents the RGF function; 𝑇′denotes the number of iterations; r denotes 

the filter size; 𝜀 denotes the degree of blur; and 𝐼𝑆𝐺𝐹
1  and 𝐼𝑆𝐺𝐹

2  denote the SGF maps used 

to decompose the detail-layer maps of the source image. 

Finally, the salient-detail layers are obtained by multiplying the SGF maps by the 

detail layers, and the background-detail maps are obtained by removing the salient parts 

of the detail layers, as described below. 

𝑆𝐷𝑛(𝑥, 𝑦)  =  𝐷𝑛(𝑥, 𝑦) ∙ 𝐼𝑆𝐺𝐹
𝑛 (𝑥, 𝑦)       (𝑛 =  1, 2),  (11) 

𝐵𝐷𝑛(𝑥, 𝑦)  =  𝐷𝑛(𝑥, 𝑦) ∙ (1 − 𝐼𝐷𝐺𝐹
1 (𝑥, 𝑦) − 𝐼𝐷𝐺𝐹

2 (𝑥, 𝑦))        (𝑛 =  1, 2) (12) 

where 𝑆𝐷1(𝑥, 𝑦) and 𝑆𝐷2(𝑥, 𝑦) denote the salient detail layers obtained from the decom-

position of 𝐷1(𝑥, 𝑦) and 𝐷1(𝑥, 𝑦), respectively; and 𝐵𝐷1(𝑥, 𝑦) and 𝐵𝐷2(𝑥, 𝑦) denote the 

Detail layer 1

Detail layer 2

Salience detail 1

Salience detail 2

Background detail 1

Background detail 2

DSC

DSC map 1

RGF

Salient guided 

filtering  map 1

Overlapping part

Initial salient 

decision map 1

Initial salient 

decision map 2

Salient decision map 2

Salient decision map 1

Salient guided 

filtering  map 2

Figure 3. Deformed smoothness constraint–rolling guidance filter (DSC-RGF) algorithm.

Second, it is necessary to remove the overlapping part IR, which is generated by
multiplying I1

ISD and I2
ISD

(
IR = I1

ISD·I2
ISD
)
. Directly phasing it into the fusion result causes

ghosting, which affects the visual effect.

In
SD = In

ISD − IR (n = 1, 2), (9)

where I1
SD and I2

SD represent the salient decision maps obtained after removing the overlap-
ping parts. Considering the edge-smoothing problem of the significant target in the salient
decision map, we used RGF to process In

SD to obtain the SGF map.

In
SGF = In

D ∗ FRGF
(
T′, r, ε

)
(n = 1, 2), (10)

where FRGF(·) represents the RGF function; T′ denotes the number of iterations; r denotes
the filter size; ε denotes the degree of blur; and I1

SGF and I2
SGF denote the SGF maps used to

decompose the detail-layer maps of the source image.
Finally, the salient-detail layers are obtained by multiplying the SGF maps by the

detail layers, and the background-detail maps are obtained by removing the salient parts
of the detail layers, as described below.

SDn(x, y) = Dn(x, y)·In
SGF(x, y) (n = 1, 2), (11)

BDn(x, y) = Dn(x, y)·
(

1− I1
DGF(x, y)− I2

DGF(x, y)
)

(n = 1, 2) (12)

where SD1(x, y) and SD2(x, y) denote the salient detail layers obtained from the decom-
position of D1(x, y) and D2(x, y), respectively; and BD1(x, y) and BD2(x, y) denote the
background detail layers obtained from the decomposition of D1(x, y) and D2(x, y), respec-
tively.
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3.3. Fusion of Base Layer Based on MLEN

The pair of base layers obtained under the BLF-LS decomposition contain abundant
energy information and little information on the detail in the source image. Therefore, we
considered using local energy (LEN) to extract the energy information and sum-modified
Laplacian (SML) energy to extract the detail-related information from the base layers and
finally add these two types of information to obtain the fused base layer. SML is defined as
follows [29]:

SMLn(x, y) =
M

∑
m=−M

N

∑
n=−N

MLn(x + m, y + n)2 (n = 1, 2), (13)

where M × N denotes the window size centered at (x,y), and MLn(x, y) denotes the
modified Laplacian (ML) at point (x,y); MLn(x, y) is defined as follows:

MLn(x, y) = |2Bn(x, y)− Bn(x− 1, y)− Bn(x + 1, y)|+ |2Bn(x, y)− Bn(x, y− 1)− Bn(x, y + 1)| (n = 1, 2), (14)

where B1 and B2 are the base layers decomposed from I1 and I2, respectively. LEN is
defined as follows:

LENn(x, y) =
M

∑
m=−M

N

∑
n=−N

Bn(x + m, y + n)2 (n = 1, 2), (15)

where M × N denotes the window size centered at (x, y), and the fusion of the base layer
can be briefly described as follows:

BF(x, y) =

{
B1(x, y), SML1(x, y) ≥ SML2(x, y) or LEN1(x, y) ≥ LEN2(x, y)
B2(x, y), else

(16)

where BF(x, y) denotes the base layer of the fused image.

3.4. Fusion Result

BD1(x, y) and BD2(x, y) contain most of the energy information from the original
image. To avoid excessive energy loss in the fused image, we used the fusion rule of taking
the Abs to obtain the background-detail layer of the fused image BDF(x, y):

BDF(x, y) =

{
BD1(x, y), BD1(x, y) ≥ BD2(x, y)
BD2(x, y), else

. (17)

Because the salient-detail layers contain significant information, they are fused by
direct summation, as follows:

SDF(x, y) = SD1(x, y) + SD2(x, y). (18)

where SDF(x, y) denotes the salient-detail layers of the fused image. Finally, the fused
image is obtained by combining the base, salient-detail, and background-detail layers, as
follows:

IF(x, y) = BF(x, y) + BDF(x, y) + SDF(x, y). (19)

The formal mechanism of the proposed method is described in Algorithm 1.
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Algorithm 1 Steps in proposed fusion method

Inputs: Medical CT Image I1; Medical MRI Image I2
Output: Fused image F
Step 1: The BLF-LS is employed to decompose I1 and I2 to obtain the corresponding base layers B1
and B2 and detail layers D1 and D2 (Equations (6) and (7)).
Step 2: The DSC-RGF algorithm is utilized to decompose the detail layers D1 and D2 to obtain the
corresponding significant-detail layers SD1 and SD2 and background-detail layers BD1 and
BD2 (Equations (8)–(12)).
Step 3: The fusion base layer BF is obtained using the MLEN rule (Equations (13)–(16)). Then, the
fusion Abs rule is employed to fuse BD1 and BD2 and thereby obtain the fusion base layer BDF
(Equation (17)). SD1 and SD2 are added to obtain the significant-detail layer SDF of the fused
image (Equation (18)).
Step 4: The fused image is obtained by summing GDF, BF, and SDF (Equation (19)).

4. Experimental Results and Comparisons
4.1. Experimental Setup
4.1.1. Test Data

The experimental dataset was selected from 100 sets each comprising a CT-MRI, PET-
MRI, and SPECT-MRI image, amounting to 300 source images for testing. The source
images were images of the human brain captured by different imaging mechanisms; each
image was 256 × 256 pixels, and each pair of images was aligned. The test images were
obtained from a database of Harvard Medical School (http://www.med.harvard.edu/
aanlib/home.html, accessed on 8 November 2022).

4.1.2. Quantitative Evaluation Metrics

Subjective quality assessment of image fusion represents human intuition but lacks
quantitative description, so objective quality assessment is also needed to evaluate the
performance of fusion algorithms. The metrics used for objective quality evaluation of
images typically include three categories: information theory-based, image feature-based,
and human perception-inspired fusion metrics. In this study, six common metrics were
selected to objectively assess the fusion performance: normalized mutual information
(QMI) [30], image fusion metric based on a multiscale scheme (QM) [31], nonlinear cor-
relation information entropy (QNCIE) [32], metric based on phase congruency (QP) [33],
entropy (EN) [34], and visual information fidelity (VIF) [35].

QMI is a quality index that describes the quantity of information conveyed from the
source image to the fused image; QNCIE is used to display the nonlinear correlation degree
of the concerned multivariable dataset; EN measures the amount of information contained
in the fused image; QMI , QNCIE, and EN are evaluation metrics based on information
theory. QM evaluates the retention value of the edge information in fused images from
multiple scales; QP is defined by the maximum and minimum moments of phase coherence
and is used to evaluate the angle and edge information measures; QM and QP are evaluation
metrics based on image features. The VIF metric measures the information fidelity of the
fused image, and the distortions of the images include additive noise, blur, and global or
local changes in contrast. VIF is a fusion measure inspired by human perception. Table 1
shows a summary of these six metrics. A comprehensive and objective evaluation of the
fused image quality is achieved by considering these metrics, and the larger the value of all
these metrics, the better the quality of the fused image [36].

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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Table 1. Quantitative evaluation metrics used in the experiments.

Metric Mathematical Expression Definition Best Value Outcomes

1 QMI [30] QMI = 2
[

MI(A,F)
H(A)+H(F) +

MI(B,F)
H(B)+H(F)

] Measure of retention value of
edge information Higher

2 QNCIE [32] QNCIE = 1 +
3
∑

i=1

λi
3 logb

λi
3

Measure of nonlinear correlation
information entropy

Higher

3 QM [31] QM =
N
∏

s=1

(
Q

AB
F

s

)αs Measure of retention value of
edge information

Higher

4 QP [33] QP =
(

Pp
)α
(PM)β(Pm)

γ, Measure of phase congruency Higher

5 EN [34] EN = −
L−1
∑

l=0
pilog2 pi

Evaluation metrics based on
information theory

Higher

6 VIF [35] VIF =
∑j∈subbands I(

→
C

N,j
;
→
F

N,j
|sN,j)

∑j∈subbands I(
→
C

N,j
;
→
E

N,j
|sN,j)

A fusion measure inspired by
human perception Higher

4.1.3. Methods Compared with Proposed Methods

To verify the effectiveness of the proposed methods, our results were compared
with those of nine state-of-the-art fusion algorithms, including two SD methods, namely
information of interest in local Laplacian filtering (ILLF) [37] and LRD [8]; two TDB
methods, namely non-subsampled shearlet transform–pulse coupled neural network (NSST-
PCNN) [38] and NSCT–PCLLE [7]; and five DL methods, namely zero-learning fast (Zero-
LF) [39], image fusion framework based on CNN (IFCNN) [18], squeeze-and-decomposition
network (SDNet) [40], enhanced medical image fusion network (EMFusion) [41], and
unified unsupervised image fusion network (U2Fusion) [42]. For a fair comparison, the
parameter settings of all the methods were consistent with the original text. The methods
ILLF, LRD, TDB, NSST-PCNN, and NSCT-PCLLE were implemented in MATLAB 2019a,
methods Zero-LF, IFCNN, SDNet, EMFusion, and U2Fusion were implemented in PyCharm
2022. All of the fusion methods were implemented on a PC with Intel® Core™; i7-5500U
2.40 GHz-CPU (2394 MHz) and 12-GB RAM.

4.2. Parameter Analysis

Different parameters determine the performance of the algorithm. In the proposed
method, the parameter T in Equation (8) plays a decisive role in the performance of the
algorithm, mainly because after processing the detail layers using saliency detection to
obtain salient information, a decision map (SGF) was needed to extract this information
to the salient detail layer. It was found using Equation (11) that there was more salient
information when there was more favorable SGF to the salient information layer. According
to Equation (8), the threshold value T was the key factor affecting the initial salient decision
maps, influencing the SGF through Equations (9) and (10). For smaller values of T, the SGF
was more favorable to the salient detail layers, and more salient information was contained
in the salient detail layer. However, when T was too small, the noise in the salient detail
layer could not be reduced effectively, so we needed a reasonable size of T. The selection of
the parameter T in the proposed model is discussed here. We selected five sets of source
images and set the variation range of T to 0.01–0.09 data (eight sets in total) because it was
difficult to clearly distinguish the differences in quality of these fusion results using only
subjective quality assessment. Six metrics were used to evaluate the fusion results, and
the average value of the objective evaluation of the five sets of images was obtained, as
shown in Figure 4. QMI has a large value when T is 0.01, QM, QP, and VIF have large
values when T is 0.08, QNICE has a large value when T is 0.07, and EN has a large value
when T is 0.04. Considering these indicators, we set T to 0.07.
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Figure 4. Fusion performance under different values of parameter T.

For the other parameters, the GRF filter was set to [filter size r = 3, blur degree ε = 0.3,
iteration number T′ = 4]. Based on previous suggestions [27], the BLF-LS was set to [σS = 12,
σr = 0.02], and the window size for the SML in Equation (13) and LEN in Equation (15)
were set to 3 × 3.

4.3. Subjective Quality Assessment

For conciseness, we have only shown the results of three sets of images in the subjective
evaluation. Figures 5–7 show the fusion results of different types of medical images
obtained by different image fusion algorithms.
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Figure 5. Comparison of performances of various methods on computed tomography magnetic
resonance imaging (CT-MRI) source images. For a clear comparison, we select a same region (i.e., the
yellow box) in each image and zoom in it in the bottom left corner.
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Figure 6. Comparison of performances of various methods on the positron emission tomography
(PET)-MRI source images. For a clear comparison, we select a same region (i.e., the red box) in each
image and zoom in it in the bottom left corner.
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Figure 7. Comparison of performances of various methods on the single-photon emission computed
tomography (SPECT)-MRI images. For a clear comparison, we select two same regions (i.e., the green
and red boxes) in each image, and the green boxes are zoomed in the bottom left corner.
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The fusion results of the different methods on CT-MRI medical images are shown in
Figure 5. The local areas are marked by colored rectangles, which are enlarged in the lower
left corners for better comparison. All the methods retained the main information and
features, as shown in Figure 5; however, there were still significant differences regarding
the features. ILLF showed color distortion, which led to the introduction of speckles in the
fusion results. Zero-LF, IFCNN, SDNet, EMFusion, and U2Fusion could not completely
retain the energy in the CT images, leading to low brightness and contrast in the fusion
results. Second, NSCT-PCLLE, NSST-PCNN, LDR, SDNet, EMFusion, and U2Fusion were
unable to retain the detail information in the MRI images (yellow part of the magnification
area). Figure 5 shows that the proposed method outperformed the other methods in terms
of the energy retention of CT-MRI medical-source images. It also successfully preserved
information such as the details and structures in the source images without artifacts and
brightness distortion.

Figure 6 shows a set of PET-MRI images fused by different methods. The fusion results
of ILLF, LDR, Zero-LF, IFCNN, and U2Fusion show their insufficient ability in retaining
the color in the PET images, which led to color distortion in the fusion results. LDR, SDNet,
EMFusin, and U2Fusion performed poorly in retaining the luminance information of the
MIR images; the luminance-oversaturation phenomenon occurred in the fusion results
under LDR. Under SDNet, EMFusion, and U2Fusion, most of the energy from the MRI
images was lost, particularly under SDNet, which led to a low overall illuminance in the
images. The enlarged portion in the lower left corners shows that our method was able to
retain the detailed part of the MIR image. Additionally, under our method, jagged edges
can be observed in the fused image, while these edges were slightly missing under the
other methods, demonstrating the superior performance of our method. Overall, Figure 6
indicates that our method could retain the structural information of the source image and
outperformed the other methods in expressing intensity-based features.

In Figure 7, under ILLF, LDR, IFCNN, and EMFusion, there are deviations in color
in the source SPECT image. Regarding the source image, the ILLF results show grayscale
information, the LDR and IFCNN results show lighter colors, and the EMFusion results
show color enhancement. NSCT-PCLLE, NSST-PCNN, Zero-LF, SDNet, and U2Fusion
did not completely capture the luminance information of the MRI images, and this is
represented by a small black shading in the marked red area. The fusion results of NSCT-
PCLLE, NSST-PCNN, Zero-LF, SDNet, and U2Fusion show black blocks. As shown by
the green enlarged area in the lower left corner of the images, ILLF, NSST-PCLLE, LDR,
IFCNN, SDNet, and U2Fusion were not completely capable of retaining the details in the
source image, while our method was able to retain them well. Figure 7 shows that the
images fused under our proposed method are more informative, clearer, and have a higher
contrast than those under the existing methods.

4.4. Objective Quality Assessment

Tables 2–4 show the objective evaluations of the different methods. Table 2 shows the
objective evaluation results of the CT-MRI images. Our proposed method ranked first for
the indicators QMI , QNCIE, QM, QP and VIF. This shows that our method obtained good
results regarding the amount of information it could transfer from the source image to
the fused image, the degree of nonlinear correlation, edge information, phase consistency,
and information fidelity. Although it did not rank high for EN, the difference between its
value and the highest value was small; therefore, we concluded that the proposed method
was able to produce good results for the CT-MRI images under an objective evaluation
assessment.
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Table 2. Comparison of performance of proposed fusion method with those of nine existing methods
on CT-MRI images; the best results are shown in bold.

Methods QMI QNCIE QM QP EN VIF

Objective
evaluation
of different

fused
images in
Figure 5

ILLF 0.5554 0.8054 0.1583 0.2049 5.7517 0.1330
NSST-PCNN 0.6502 0.8050 0.6791 0.3444(3) 4.7473 0.2048
NSCT-PCLLE 0.6232 0.8047 0.6962(3) 0.2792 4.6168 0.2194(3)

LRD 0.7302 0.8056(3) 0.2218 0.3292 4.5160 0.1702
Zero-LF 0.7918(3) 0.8056 1.5481 0.1172 4.0112 0.0874
IFCNN 0.6690 0.8047 0.1469 0.2907 4.2017 0.1669
SDNet 0.6513 0.8051 0.1084 0.2840 4.8154(2) 0.1712

EMFusion 0.8345(2) 0.8063(2) 0.1309 0.5829 4.2328 0.3247
U2Fusion 0.6059 0.8045 0.0849 0.2925 4.4836 0.1862
Proposed 0.8443 0.8070 1.1038(2) 0.4424(2) 4.7689(3) 0.2293(2)

Average
evaluation

mean of 100
groups of

images

ILLF 0.7265 0.8048 0.1635 0.2890 4.1261 0.2087
NSST-PCNN 0.7532 0.8049 0.6157 0.2896 3.9475 0.2488
NSCT-PCLLE 0.7319 0.8048 0.7197(3) 0.2726 3.9428 0.2736(3)

LRD 0.7861 0.8052 0.3345 0.2548 3.8813 0.1994
Zero-LF 0.8749(3) 0.8057(3) 1.6937 0.1465 3.6424 0.0993
IFCNN 0.7512 0.8047 0.1797 0.2904 3.7007 0.1915
SDNet 0.7578 0.8052 0.1282 0.2713 4.1732(2) 0.1928

EMFusion 0.8933(2) 0.8057(2) 0.1510 0.4295 3.6298 0.3504
U2Fusion 0.6976 0.8045 0.1138 0.3130 3.9285 0.2249
Proposed 0.8935 0.8064 1.1555 (2) 0.3820 (2) 4.0829(3) 0.2903(2)

Table 3. Comparison of performance of proposed fusion method with those of nine methods on
PET-MRI images; the best results are shown in bold.

Methods QMI QNCIE QM QP EN VIF

Objective
evaluation

of
performance

for images
in Figure 6

ILLF 0.3732 0.8035 0.0547 0.0167 4.6800 0.0095
NSST-PCNN 0.6509(2) 0.8078(2) 1.4767(2) 0.4576 5.8536 0.2977
NSCT-PCLLE 0.6040 0.8069 1.3982(3) 0.4276 5.9460(3) 0.2982(3)

LRD 0.5225 0.8060 0.2486 0.3397 6.4027 0.1808
Zero-LF 0.6229(3) 0.8074(3) 0.3195 0.4543 5.6813 0.2352
IFCNN 0.6073 0.8072 0.2155 0.4949(2) 5.8007 0.2461
SDNet 0.6062 0.8057 0.1035 0.2804 5.0403 0.1451

EMFusion 0.5906 0.8072 0.2717 0.5669 5.8329 0.2688
U2Fusion 0.5653 0.8055 0.0879 0.3689 5.0805 0.3071(2)
Proposed 0.8319 0.8129 1.9020 0.4902(3) 6.2604(2) 0.3170

Average
evaluation

mean of 100
groups of

images

ILLF 0.3448 0.8035 0.1230 0.0956 5.1814 0.0503
NSST-PCNN 0.7019(2) 0.8088(3) 1.6547(2) 0.5141 5.7223 0.3330
NSCT-PCLLE 0.6635(3) 0.8081 1.6272(3) 0.4939 5.7743 0.3369

LRD 0.5533 0.8064 0.3332 0.3583 6.2651 0.1920
Zero-LF 0.6558 0.8077 0.6523 0.4809 5.6436 0.2434
IFCNN 0.6187 0.8072 0.3018 0.5403(2) 5.6759 0.2572
SDNet 0.6235 0.8057 0.1288 0.2815 4.9340 0.1528

EMFusion 0.6160 0.8242 0.3305 0.6479 5.8601(3) 0.2819
U2Fusion 0.5753 0.8055 0.1161 0.4202 4.9477 0.3341(3)
Proposed 0.8836 0.8134(2) 2.0628 0.5148(3) 5.9378(2) 0.3342(2)
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Table 4. Comparison of performance of proposed fusion method with those of nine methods on
MRI-SPECT images; the best results are shown in bold.

Methods QMI QNCIE QM QP EN VIF

Objective
evaluation
of different

fused
images in
Figure 7

ILLF 0.5339 0.8063 0.2813 0.2664 5.8953 0.1818
NSST-PCNN 0.6030 0.8073 1.0805(3) 0.3283 6.0048(2) 0.3171
NSCT-PCLLE 0.5940 0.8072 1.0262 0.3452(3) 5.9899(3) 0.3561(2)

LRD 0.6423 0.8081 0.7759 0.3395 6.1174 0.3051
Zero-LF 0.6972(3) 0.8087(3) 1.3326(2) 0.3233 5.7236 0.2191
IFCNN 0.5995 0.8069 0.5536 0.3206 5.6857 0.2846
SDNet 0.6525 0.8074 0.2431 0.2395 5.6691 0.2214

EMFusion 0.7402(2) 0.8102(2) 0.6409 0.5500 5.6414 0.3927
U2Fusion 0.5883 0.8063 0.2151 0.2791 5.2268 0.3342(3)
Proposed 0.8526 0.8132 1.4879 0.4283(2) 5.9386(4) 0.3226(4)

Average
evaluation

mean of 100
groups of

images

ILLF 0.5761 0.7898 0.2838 0.3237 5.1492 0.1933
NSST-PCNN 0.6856 0.7914 1.1394(3) 0.4271 5.1601(3) 0.3365
NSCT-PCLLE 0.6908 0.7915 1.0820 0.4422(3) 5.1117 0.3657(3)

LRD 0.6687 0.7912 0.6880 0.4002 5.3850 0.2965
Zero-LF 0.7677(2) 0.7921(3) 1.3337(2) 0.3971 4.8929 0.2486
IFCNN 0.6542 0.7903 0.5443 0.4083 4.8430 0.2917
SDNet 0.7127 0.7904 0.2070 0.2964 4.5649 0.2427

EMFusion 0.7638(3) 0.7927(2) 0.5768 0.6211 4.8813 0.3799
U2Fusion 0.6307 0.7896 0.1951 0.3483 4.4321 0.3703(2)
Proposed 0.8736 0.7955 1.4704 0.4701(2) 5.2540(2) 0.3194(5)

Tables 3 and 4 show the objective evaluation results of the nine methods on the PET-
MRI and MRI-SPECT color images, respectively. Our method did not rank first in certain
metrics, but its overall ranking was at the top. It also achieved good results for the PET-MRI
and MRI-SPECT images under the objective evaluation assessment.

Based on the above subjective visual evaluation and objective metrics analysis, we
concluded that the fusion performance of our method was the highest of all methods.
This was mainly due to the good decomposition of the details and basis values of the
images from using the BLF-LS, the effective preservation of the significant structure and
edge information of the source image in the fused image using saliency detection, and the
processing of the weight map using the RGF, which makes full use of the strong correlation
between the neighboring pixels.

4.5. Discussion on Time Efficiency

In this section, we compared the time efficiency of the proposed method with those of
the other nine methods on grayscale images. As shown by the results in Table 5, the Zero-LF,
IFCNN, SDNet, EMFusion, and U2Fusion DL methods trained the models in advance,
allowing them to process the images quickly. The ILLF method had the longest running
time because the ILLF filter was not as fast as the other multi-scale tools and computed
the decomposition of the image at different scales. The LRD algorithm took too long in
the gradient-domain image enhancement owing to its over-reliance on the fitting function.
NSST-PCNN also required more time than our method because of the PCNN iterations
that were involved. Although the proposed method was not the fastest, considering its
high performance, it was still effective. Moreover, we believe that if we fully optimize the
code behind the working of our method and convert it to increase its efficiency using tools
such as the graphical processing unit (GPU) and C++, the time required to execute our
method will be significantly shorter, enabling the method to satisfy the requirements of
more applications.
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Table 5. Running times of different methods for fusing two source images of 256 × 256 pixels each.

Methods ILLF NSST-PCNN NSCT-PCLLE LRD Zero-LF

Time 161.51 10.01 3.26 126.64 2.45
Methods IFCNN SDNet EMFusion U2Fusion Proposed

Time 0.21 0.16 0.57 0.36 4.24

4.6. Extension to Infrared (IR) and Visible (VIS) Image Fusion

To justify the ability of our proposed method to generalize, we tested the fusion
ability of our method on ten sets of IR-VIS images (shown in Figure 8). Six advanced
fusion methods for IR-VIS images were selected for comparison: visual saliency map and
weighted least square optimization (VSWL) [43], Gaussian curvature filtering (GCF) [44],
IFCNN [18], SDNet [40], U2Fusion [42], and SwinFusion [45].
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As shown in Figure 9, although all seven methods could retain the energy in the IR
image and the details in the VIS image, differences still existed. The red box with the
pedestrian in the lower right corner of Figure 9 shows that although all seven methods
obtained the detailed and contour information of the person in the source image, the overall
brightness, specifically under the SDNet, U2Fusion, and SwinFusion methods, was low.
In the fusion results of the proposed methods, the person’s edges did not appear as black
shadows owing to the smoothing of the edges of the significant target using RGF. Second,
regarding the poster board framed in green in the lower-left corner of the image in Figure 9,
the VSWL, GCF, IFCNN, SDNet, U2Fusion, and SwinFusion methods compared the light
map without retaining the overall luminance information of the light sign. The above
analysis proves that our algorithm had the best detail retention and color fidelity and was
more consistent with the subjective vision for processing object edges in an image.
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Figure 9. Comparison of performance of various methods on source images of Queens Road, Bristol.
For a clear comparison, we select two same regions (i.e., the green and red boxes) in each image, and
the green boxes are zoomed in the bottom left corner.

Figure 10 shows the objective evaluation results for the “Queens Road, Bristol” image,
and the average value of the objective evaluation of the 10 IR-VIS images (the 10 sets of images
shown in Figure 8). The horizontal and vertical coordinates represent the different methods
and the values of different evaluation metrics, respectively. The red line shows the objective
evaluation of the different methods on the image “Queens Road, Bristol”, and the blue line
shows the average value of the objective evaluation of the different methods in Figure 8.
Regarding the objective evaluation assessment, our method ranked first in QMI , QNCIE, QM,
EN, and the average VIF index for the 10 IR-VIS images. Although the result for QP was not
the highest, its difference from the best value was not pronounced. Thus, the validity of the
proposed method in terms of objective assessment is confirmed. The above evaluation shows
that our method can be effectively extended to IR-VIS image fusion.
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5. Conclusions

In this study, we proposed a multi-sensor medical-image fusion method based on the
BLF-LS and DSC. First, the image decomposition of the base layer using the BLF-LS was
simple and effective as it potentially captured large changes in intensity. The detail layer
preserved details such as the structure, texture, and edges of the original image efficiently.
The DCS model effectively detected the salient information, and the GRF made full use of
the strong correlation between the neighboring pixels for weight optimization, allowing
the fused detail layer to effectively retain the salient structure and edge information in the
source image. Finally, the base-layer fusion rules based on the MLEN effectively preserved
the energy information of the source images.

The fusion results of different methods on CT-MRI, PET-MRI and MRI-SPECT images
were demonstrated. The experimental results showed the advantages of the proposed
method in both subjective visual and objective quantitative evaluations. Compared to
the nine state-of-the-art methods used in the study, the proposed medical image fusion
algorithm can provide fusion images with clearer edge details, complete salient information,
more brightness, and superior colors. Additionally, this method is also applicable to IR-VIS
image fusion. However, the proposed fusion method is easily affected by noise because
the inputs are in alignment pairs. In the future, we will work on solving the effect of
noise on images, thus bridging the gap between medical image fusion and actual clinical
applications.
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