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Abstract: Critically ill patients often lack cognitive or communicative functions, making it challenging
to assess their pain levels using self-reporting mechanisms. There is an urgent need for an accurate
system that can assess pain levels without relying on patient-reported information. Blood volume
pulse (BVP) is a relatively unexplored physiological measure with the potential to assess pain levels.
This study aims to develop an accurate pain intensity classification system based on BVP signals
through comprehensive experimental analysis. Twenty-two healthy subjects participated in the study,
in which we analyzed the classification performance of BVP signals for various pain intensities using
time, frequency, and morphological features through fourteen different machine learning classifiers.
Three experiments were conducted using leave-one-subject-out cross-validation to better examine
the hidden signatures of BVP signals for pain level classification. The results of the experiments
showed that BVP signals combined with machine learning can provide an objective and quantitative
evaluation of pain levels in clinical settings. Specifically, no pain and high pain BVP signals were
classified with 96.6% accuracy, 100% sensitivity, and 91.6% specificity using a combination of time,
frequency, and morphological features with artificial neural networks (ANNs). The classification
of no pain and low pain BVP signals yielded 83.3% accuracy using a combination of time and
morphological features with the AdaBoost classifier. Finally, the multi-class experiment, which
classified no pain, low pain, and high pain, achieved 69% overall accuracy using a combination of
time and morphological features with ANN. In conclusion, the experimental results suggest that BVP
signals combined with machine learning can offer an objective and reliable assessment of pain levels
in clinical settings.

Keywords: pain classification; blood volume pulse (BVP); PPG; feature extraction; machine learning;
pain intensity classification

1. Introduction

Pain acts as a biomarker of numerous injuries, disorders, or stress conditions and
assists the brain by providing a warning to operate against abnormalities in the body [1].
Pain serves as an autonomic warning mechanism to avoid likely alarming situations, for
example, headaches that may indicate fatigue or stress and chest pains may be a sign of
heart disease. Pain detection and sensation are essential functions of the human body
and are based on the brain, spinal cord, and peripheral nervous system (PNS) [2]. Pain-
processing mechanisms help prevent possible life-threatening conditions and are critical
for survival [3]. These pain-processing mechanisms include recording and analyzing
nociceptive sensory information, shifting the focus of attention toward pain processing,
holding the information associated with pain in working memory, establishing quick
communication with the motor system to prevent further harm, and avoiding future
damage through memory encoding the current problem [4].

Pain is a highly subjective experience, and there is a lack of clinically available di-
agnostic tools to assess it objectively. Pain sensation and its tolerance to the body varies
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among individuals. There are two prominent methods employed for the assessment of pain
in clinical procedures: self-reported and clinical assessment. In self-reported approaches,
the pain of the patient is measured through verbal communication or numeric self-rating
scales, such as verbal descriptor scales, the McGill pain questionnaire [5], or visual ana-
log scales [6]. In contrast, pain measurement through clinical judgment relies on testing
and learning from observations of the type, significance, and context of the patient’s pain
perception [7]. The self-reporting method is considered the gold standard and presents
the most valid assessment in clinical practices. However, clinical assessments can be used
when self-reports are not available or are unreliable.

Self-report-based pain assessment furnishes significant clinical information and is
considered valid in most cases, but it fails in certain scenarios [8]. For instance, patients
who suffer from advanced dementia, communication disorders, intellectual disabilities, or
are in a state of coma or in a minimally conscious condition may not be able to provide
sufficient and accurate self-reports of pain [9–11]. An inaccurate assessment of these patients
may lead to suboptimal or improper pain management, which may lead to other clinical
complications, such as depression and psychological distress [12]. In addition, the self-
reported pain assessment is highly subjective and very difficult to acquire continuously or
in real time. Therefore, there is a need for more objective metrics to measure human pain in
clinical practice to improve pain management, reduce risk factors, and contribute to a more
valid and reliable diagnosis.

Previous studies have mainly focused on the detection and classification of pain
through analysis of patterns of human behavior, such as facial expressions [13–15], body
motions [16], and vocalizations [17]. Behavior-based assessment techniques are not suitable
to be applied to patients suffering from paralysis or other motor diseases impacting their
behaviors. Significant information can be extracted from observation of an individual’s face
about the affective state, including pain. However, pain detection using facial expressions
requires targeting a particular region of the subject’s face, which may become very complex
and tedious in some clinical environments. In addition, facial expression-based pain assess-
ment can be very difficult to use for subjects who are in a prone position; head posture and
movement tracking are additional issues to consider. Keeping in view the aforementioned
problems, research has also diverted toward developing physiological signal-based pain
assessment approaches that do not depend on the individual’s behaviors [18–20].

Existing research includes pain analysis through various physiological signals. These
physiological-based assessments includes electrodermal activity (EDA) [21], heart rate
variability [22,23], electroencephalography (EEG) [24], electromyography (EMG) [25], and
functional near-infrared spectroscopy fNIRS [4,7,26]. Most of the existing research employ-
ing physiological signals for pain assessment provides qualitative analysis for differenti-
ating between pain and no pain conditions using machine learning [27]. In this context,
machine learning has been fundamental for the success of the use of physiological signals
in the study of pain; for a comprehensive review of machine learning in pain research,
the interested reader is referred to [28]. The results of these physiological-based studies
using machine learning demonstrate that the classification and identification of human
pain are plausible.

Although current studies have shown promising results, there is still a lack of accept-
able pain detection and classification method based on low-cost and convenient physiologi-
cal signals. With the growing presence of wearable technology, it is possible to design a
computer-aided diagnosis system for pain assessment using non-invasive wearable sensors.
Photoplethysmography (PPG) is a commonly available sensing modality for physiolog-
ical monitoring that provides blood volume pulse (BVP) information. As compared to
impedance plethysmography, PPG does not need skin contact [29]. BVP captures even
slight variations induced due to modulation perfusion of skin tissue using visible or IR
sensing technology [30]. As compared to multi-channel systems (e.g., EEG, fNIRS), PPG is
computationally efficient, as it has only one channel. Another advantage of PPG is that is
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less obstructive than other sensing technologies (e.g., ECG and EMG) in clinical settings, as
it can be placed on the earlobe or the fingers.

Therefore, the objective of this study is to explore variations in pain intensities using
BVP signals to develop an efficient pain classification system. The main contributions of
this study are listed below:

1. A new BVP signal dataset featuring various pain intensities was recorded by inducing
pain at different anatomical locations of healthy human subjects.

2. The exploration of time, frequency, and morphological features extracted from BVP as
a potential indicator of various pain levels.

3. The comparison of a wide range of machine learning classification algorithms for
recognition of pain in different experimental configurations.

4. The experimental analysis demonstrates that the BVP signal is a strong candidate to
be employed for pain assessment in clinical settings.

This article is structured as follows: Section 2 “Materials and methods” provides
details about the pain dataset and developed methodologies for the assessment of pain
BVP signals. Section 3 “Results” illustrates the experimental results of the BVP signal
analysis. The discussion of results and comparison with previous studies is also provided
in Section 4. Finally, Section 5 concludes this article and provides future research directions.

2. Materials and Methods
2.1. Participants

Twenty-two participants (12 F/10 M) took part in the experiment. Their age ranged
from 19 to 36 years old (mean age 27± 4.19 std). No participants reported a prior history of
neurological or psychiatric disorder, a current unstable medical condition, chronic pain,
regularly taking medications, or being under medication at the time of testing. Partici-
pants were given a detailed explanation of the experimental procedures upon their arrival.
Written informed consent was obtained before the start of the experiment. The experimen-
tal procedures involving human subjects described in this paper were approved by the
University of Canberra’s Human Ethics Committee (number: 11837).

2.2. Experimental Procedure and Dataset

All experiments were conducted at the Human–Machine Interface Laboratory at the
University of Canberra, Australia. The participants were seated on a chair in front of
a table with both arms resting on the table. The blood volume pulse (BVP) sensor was
placed on the middle finger of the left hand, the sensor was made by Biosignal plux
(Lisbon, Portugal) [31]. On the right arm, the electrodes of a transcutaneous electrical nerve
stimulation (TENS) machine (Medihightec Medical Co., Ltd., Taiwan) were placed on the
inner forearm and on the back of the hand. These two anatomical locations will be used
to explore the possibility to identify the source of pain in our future work. The location
and intensity of pain stimulus were counterbalanced to avoid habituation to repeated
experimental pain and to avoid confounding due to order effects.

The experiment consisted of two main parts, the identification of individual pain
perceptions and the pain stimulation part. Figure 1 presents a schematic representation
of the experimental procedure. In the first part of the experiment, pain perceptions were
obtained using the quantitative sensory testing (QST) protocol [32]; no sensor was used
in this part of the experiment. The QST protocol is used to determine an individual’s
pain threshold and pain tolerance. We defined pain threshold (low pain) as the lowest
stimulus intensity at which stimulation becomes painful, and pain tolerance (high pain)
as the highest intensity of pain at which stimulus becomes unbearable [7]. The partic-
ipants were exposed to gradually increasing stimulus and were instructed to verbally
rate (0 = ‘no pain’, 10 = ‘maximum pain’) the pain intensity when the stimulation became
painful (pain threshold) and then when the stimulation became unbearable (pain tolerance).
The intensity of the TENS machine, in which the threshold and tolerance of pain occurred,
was recorded to be used as the intensity during the stimulation part.
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In the second part, the pain intensity and anatomical location were studied. Before the
start of the electrical pain stimulation sequence, the physiological sensor was placed on the
hand of the participant. At the start of the experiment, a 60 s baseline period was recorded,
in which the participants were instructed to remain calm; this baseline period served as
the no-pain condition for the classification tasks. After that, the counterbalanced design
alternated stimuli intensity (low or high) and location (forearm or hand). Six repetitions
with a duration of 10 s for each stimulus were recorded. Immediately after each stimulus,
the participants were asked to verbally rate the stimulation using the same scale (0 = no
pain, 10 = maximum pain) used during the pain perception. After rating the pain intensity,
a 40 s rest period was offered to allow all physiological signals to return to baseline. Each
experiment lasted for approximately one hour (30 min preparation and individual pain
perception, and 30 min pain stimulation experiment). Table 1 provides a summary with all
details about the dataset employed in this study. Raw BVP signals of No Pain (NP), High
Hand Pain (HHP), High Forearm Pain (HFP), Low Hand Pain (LHP), and Low Forearm
Pain (LFP) are shown in Figure 2.

Figure 1. Schematic representation of stimulation and perception of pain.

Figure 2. Raw BVP signals of No Pain (NP), High Hand Pain (HHP), High Forearm Pain (HFP), Low
Hand Pain (LHP), and Low Forearm Pain (LFP).
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Table 1. Summary of the dataset used for the detection and classification of pain.

Category Details

Sampling rate 100 Hz

Number of subjects 22

Stimulation type Electrical

Stimulation location Hand and Forearm

Pain categories/classes 1. HP—High Pain (Pain tolerance or maximum level
of Pain the subject can handle)
2. LP—Low Pain (Pain threshold or minimum level
of pain)
3. NP—No Pain (baseline data without stimulation)

Signal type Blood Volume pulse (BVP)

Length of each signal 9 s

Number of signals per class NP: 396
HP: 216
LP: 216

Signals per subject 6 subjects have three signals per pain (HP/LP) class.
14 subjects have six signals per pain (HP/LP) class.
18 signals per subject for NP class.

2.3. BVP Signal Preprocessing

Signal preprocessing is a crucial step in signal analysis and classification frameworks.
Preprocessing is performed to remove the unwanted frequencies and offsets incurred
during data recording activities. In this research, the BVP signals of various pain levels
were first preprocessed through an IIR band pass filter of the 4th order. The passband
frequency range of 0.5 Hz to 5 Hz was selected for the filtration operation. The filter
was designed to suppress the DC offset contained by the input signal. It also efficiently
attenuates high-frequency components and harmonics. Figure 3 illustrates the preprocessed
BVP signals of NP, HHP, HFP, LHP, and LFP.

Figure 3. Processed signals of No Pain (NP), High Hand Pain (HHP), High Forearm Pain (HFP), Low
Hand Pain (LHP), and Low Forearm Pain (LFP).
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2.4. Feature Extraction

Features express the most important patterns of the signal data in a binary, categorical,
or continuous form. The objective of the feature extraction step is to represent signal data
in a simplified and compact manner having maximum representation from the raw data.
Feature extraction is performed after preprocessing and signal denoising operations. The
extracted features are identified to possess minimum differences within the same class
and maximum differences between centroids of other classes. In this study, we extracted
features of various types from the BVP signal to better classify pain and its intensities.
These features include time, frequency, and morphological type features (explained below).
In general, pain causes sympathetic nervous system activation, leading to vasoconstriction
and reduced blood flow to the affected area. This can result in a decrease in BVP amplitude
in the affected area, indicating reduced blood volume. This variation in signal amplitude is
better captured through time and morphological features. Frequency domain analysis of
BVP signals can provide valuable insights into changes in the signal due to pain stimulation,
particularly in terms of sympathetic and parasympathetic activity. For each classification
task, the analysis is performed using an individual set of features as well as their different
combination in order to determine the optimal features.

2.4.1. Time Features

The shape of BVP is normally divided into two periods. The rising part of the wave
is called the anacrotic phase, and the falling edge of the pulse is known as the catacrotic
phase. The first part is related to the systole, and the second phase is concerned with
diastole and wave reflections from the periphery. A set of twelve-time domain features
such as mean (M), variance (V), skewness (S), kurtosis (K), crest factor (CF), shape factor
(SF), impulse factor (IF), margin factor (MF), Shannon energy (SE), log energy (LE), mobility
(Mob), and complexity (Comp) were extracted from BVP signal to represent the pain and
non-pain signals in a compact manner [33]. Table 2 provides a mathematical description of
all time-domain features used in this work.

2.4.2. Frequency Features

Fourier transform maps the preprocessed BVP signal to the frequency domain and
exposes the spectral information of the signal. This spectral information helps to extract
discriminative features from the BVP signals about various pain conditions. In this study,
we extracted a set of twelve frequency domain features, namely, spectral flux (SpF), spectral
crest (SpC), spectral flatness (SpFt), spectral centroid (SpCent), spectral kurtosis (SpK),
spectral spread (SpSp), spectral roll-off (SpR), spectral slope (SpS), spectral decrease (SpD),
spectral entropy (SpE), and mean frequency (SpM) [34]. Mathematical formulation of all
spectral features is provided in Table 2.

Table 2. Mathematical description of time and spectral features used in this work.

Time Features Spectral Features

Mob =

√
V
(

dP(t)
dt

)
V(P(t)) SpS =

c2
∑

k=c1

( fq−SpM)(Fq−µF)

c2
∑

k=c1

( fq−SpM)2

M = 1
n

n
∑

i=1
Pi SpD =

c2
∑

q=c1+1

Fq−Fc1
q−1

c2
∑

q=c1
Fq

K = 1
n

n
∑

i=1
(Pi−M)4

σ4 SpF =

(
∑c2

q=c1 |Fq(t)− Fq(t− 1)|p
) 1

p
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Table 2. Cont.

Time Features Spectral Features

CF =
Ppeak
Prms SpSk =

c2
∑

q=c1
( fq−SpCent)3 Fq

µ3
c2
∑

q=c1
Fq

SF = Prms
Pam SpCent =

c2
∑

q=c1
fq .Fq

c2
∑

q=c1
Fq

IF =
Ppeak
Pam SpK =

c2
∑

q=b1

( fq−SpCent)4 Fq

µ4
c2
∑

q=c1
Fq

MF =
Ppeak

Pam
2 SpSp =

√√√√√√
c2
∑

q=c1
( fq−SpCent)2

c2
∑

q=c1
Fq

LE = ∑n
i=1 log(P2

i ) SpR = i s.t.
i

∑
q=c1

|Fq| = k
c2

∑
q=c1

Fq

S = 1
n

n
∑

i=1
(Pi−M)3

σ3
SpC =

max(Fq∈[c1,c2 ]
)

1
c2−c1

c2
∑

k=c1

Fq

V =

n
∑

i=1
(Pi−M)2

n SpFt =

(
c2
∏

q=c1
Fq

) 1
c2−c1

1
c2−c1

c2
∑

q=c1
Fq

SE = −∑n
i=1 P2

i log(P2
i ) SpM =

∑N
j=1 f j Fj

∑N
j=1 Fj

Comp =
Mob( dP(t)

dt )
Mob(P(t)) SpE =

−∑
c2
k=c1

Fk log(sk)

log(c2−c1)

Pam is the absolute mean, Ppeak is the peak value, and Prms is the root mean square value of the preprocessed BVP
signal P. Fq and fq are the spectral and frequency values (Hz) at bin q, respectively. µs is the mean spectral value,
p is the norm type, and c1 and c2 are band edges.

2.4.3. Morphological Features

Morphological features represent the shape characteristics of the BVP signal of no pain
and various pain categories. Analysis revealed that there exist significant differences in the
dicrotic notch portion of the BVP signal for various cardiac conditions [35]. In this study,
we extracted a group of twelve morphological features. Table 3 provides complete details
of selected morphological features used in this study.

Table 3. Details of morphological features extracted from BVP signals.

Abbreviation Details

SDNN The standard deviation of intervals

RMSSD The square root of the mean of the squares of the successive differences
between adjacent intervals

SDSD The standard deviation of the successive differences between
adjacent intervals

NN50 The number of pairs of successive intervals that differ by more than 50 ms
pNN50 The proportion of NN50 divided by the total number of intervals
NN20 The number of pairs of successive intervals that differ by more than 20 ms

pNN20 The proportion of NN20 divided by the total number of intervals
VLF Total spectral power of all intervals between 0 and 0.04 Hz
LF Total spectral power of all intervals between 0.04 and 0.15 Hz
HF Total spectral power of all intervals between 0.15 and 0.4 Hz

SD1 The standard deviation of the Poincaré plot perpendicular to the line of
identity

SD2 The standard deviation of the Poincaré plot along to the line of identity
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2.5. Classification Methods

Detection and classification of pain using extracted time, frequency, and morpholog-
ical features were performed using shallow classifiers: support vector machines (SVM),
adaboost (AB), random forest (RF), and fine-decision tree (Ftree), k-nearest neighbors
(KNN), and different versions of artificial neural networks (ANNs). These algorithms are
commonly employed for classification tasks in biomedical signals [36–38].

KNN is a type of supervised machine learning model typically used for regression
and classification applications [33]. KNN determines the class of input data by computing
the distance of current features will previous data points. The output class is predicted
using class information of the close neighbors. KNN does not have any specific training
algorithm, and all training data are used to compare the input features in the prediction
stage; therefore, the computational cost of KNN is very high. The value of ‘K’ is selected to
determine the number of neighbors to be considered for output prediction. In this work,
we employed Fine-KNN (FKNN), where the value of K is set to 1, and Weighted-KNN
(WKNN) uses a weighted distance metric to compute the similarity between data points.

Support vector machine (SVM) a supervised learning algorithm that adopts a hyperplane-
based mechanism to classify features of various categories. A hyperplane is the form of a
separation line designed to separate binary classes. SVM enhances the difference between
classes using kernel trick. Data are translated/mapped to higher dimensions using non-
linear kernel functions, such as quadratic, cubic, Gaussian, and radial basis functions. In
this study, we used Linear-SVM (LSVM), Quadratic-SVM (QSVM), Cubic-SVM (CSVM),
Gaussian-SVM (GSVM), and Radial-SVM (RSVM) [36,39,40].

Ensemble classification algorithms are based on numerous classifiers that train multi-
ple hypotheses to address the same problem. RF is constructed using a set of decision tree
classifiers to distribute the feature data into multiple classes fitting to tree branches [41].
Output prediction is based on the feature similarity of the random features. The AB (adap-
tive boosting) ensemble learning algorithm used for the classification of BVP signals of pain
uses numerous iterations to construct a single composite powerful learner [42]. This model
is created by adding a new weak learner in each round by adjusting the weighting vector
in a way that the focus is on correctly predicting the observations that were misclassified in
the previous round. As a result, an ensemble of various weak models is generated that has
an overall better performance. AB is more resistant to the overfitting problem as compared
to other machine learning classifiers.

Artificial neural networks (ANNs) are used to model the complex relationships be-
tween inputs and outputs or to find patterns in data [43,44]. Feed-forward neural networks
consist of input, output, and hidden layers. The neurons in the input layer get features
extracted from the BVP signal as input and pass them to fully connected hidden layers.
Hidden layers fine-tune the input weightings until the neural network’s loss function
is minimized. Information from the hidden layers is passed to the output layer, which
depends on the number of classes in the given dataset. In this study, four types of neural
network structures were used for the analysis of pain BVP signals. A narrow neural net-
work (NN) consists of a single hidden layer of size 10. A wide neural network (WNN) is
created using 100 neurons in a hidden layer. Two hidden layers, each with 100 neurons,
were used in a bi-layered neural network (BLNN). A tri-layered neural network (TLNN)
was constructed with three hidden layers, each having 100 neurons. All networks were
trained using a backpropagation algorithm that iteratively minimized the mean square
error between the output produced by feed-forward networks and target labels. Rectified
linear unit (ReLU) was used as an activation function with an iteration limit set to 1000. In
the present study, an experimental evaluation of BVP pain assessment was performed on
14 baseline ML models. The reason to maintain default parameters was to avoid building
models that were highly optimized for our specific dataset. However, we report results
for the five most prominent classification algorithms in all three learning tasks, i.e., QSVM,
WKNN, AB, BLNN, and TLNN. The classification parameters of these models are shown
in Table 4.
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Table 4. Hyperparameters used for each classifier.

Classifier Parameters

QSVM Kernel function: Polynomial, Polynomial order: 2, Box constraint: 1,
Standardization: True, Coding: one vs. one

WKNN Distance: Euclidean, Number of neighbors: 10, Distance weight: Sqauared
inverse, Standardization: True

AB Method: AdaBoost M1, Maximum number of splits: 20, Number of learning
cycles: 30, Learning rate: 0.1

BLNN Layer sizes: [100 100], Activation function: ReLU, Iteration limit: 1000,
Standardization: True

TLNN Layer sizes: [100 100 100], Activation function: ReLU, Iteration limit: 1000,
Standardization: True

2.6. Leave One Subject Out Cross-Validation

The performance of the proposed pain assessment system is evaluated using leave
one subject out cross-validation (LOSOCV). Figure 4 illustrates the complete flow of the
LOSOCV scheme and the details of the reported performance analysis in this article. In
LOSOCV, features belonging to only one subject/person are employed as test sets (Ts),
while the remaining subject data are combined to make a training set. LOSOCV provides
reliable performance evaluation of the classification model by using the unseen subject’s
data during the training stage. Mixing the same subject’s data in both test and training
sets gives the classification model prior knowledge and results in biased high performance.
Hence, LOSOCV provides a better-generalized assessment of the algorithms for unseen
subject data. Validation is carried out using 10-fold cross validation (CV).

Figure 4. Performance evaluation scheme using leave one subject out cross validation (LOSOCV).
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2.7. Performance Evaluation

Experiments were performed by considering pain BVP signals as a ‘positive class’
and ‘non-pain’ as a ‘negative class’. The overall accuracy (Acc) of the model is defined
as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where True Positive (TP)—pain signals correctly predicted as pain; false positive (FP)—
no-pain BVP signals misclassified as pain class; true negative (TN)—no-pain recordings
are rightly identified as no-pain; and false negative (FN)—pain signals were incorrectly
predicted as no-pain. Standard performance measures of sensitivity (Sen), specificity (Sp),
positive predictive value (PPV), negative predictive value (NPV), and F1-score were also
used to consolidate the experimental analysis.

2.8. Overview

Finally, Figure 5 illustrates the flowchart of the steps adopted in this work to develop
a pain classification mechanism. In the first step, the blood volume pulse (BVP) signal
is denoised using an IIR band pass filter with a cutoff range from 0.5 Hz to 5 Hz. Next,
the denoised BVP signal is passed to the feature extraction stage, where a set of time,
frequency, and morphological features are computed. The feature dataset was divided into
training and testing segments using the leave one subject out cross-validation (LOSOCV)
strategy. Individual feature sets and their various combinations were applied to train
well-known classification methods, such as support vector machines, ensemble methods,
neural networks, k-nearest neighbors, etc.

Figure 5. Design of study for assessment of pain using BVP signatures. Performance results are
reported using the five most consistent classifiers.
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Three different experiments were performed for better assessment of BVP signals
towards the identification of pain. Experiment 1 is a binary problem and aims to classify
no pain against high pain. Experiment 2 aims to distinguish no pain vs. low pain classes of
BVP signals. Experiment 3 is a multiclass problem and classifies no pain vs. low pain vs.
high pain.

3. Results

Our motivation is to investigate the performance of time, frequency, and morpho-
logical features extracted from BVP features with well-known classification techniques.
Comprehensive analysis is conducted in three experimental configurations. All experi-
ments were performed in MATLAB 2020 running on a personal laptop (Intel Core i5 with
16 GB RAM). The experimental analysis from each experiment is discussed in detail in the
following sections.

3.1. Experiment 1: No Pain vs. High Pain

The binary class experiment was designed to distinguish no pain (NP) and high
pain (HP) BVP signals collected from arm and forearm positions. This makes the dataset
of BVP signals more diverse and enables the algorithm to detect different signatures of
pain originating from multiple locations. A set of time, frequency, and morphological
features was tested separately with well-known classification methods. Figure 6 shows
a graphical comparison of different classifiers with time, frequency, and morphological
features. The best performance of 83.3% accuracy, 100% sensitivity, and 58.3% specificity
was obtained via time domain features with the WKNN classifier. Frequency domain
features offered 76.7% accuracy with BLNN and 73.3% when used in conjunction with
WKNN and QSVM. Individual classification ability of morphological features was on the
lower side as compared to time and frequency features.

Figure 6. Performance evaluation with time, frequency (Frq), and morphological (Mrp) features
using different classifiers for Experiment 1 (no pain vs. high pain). (QSVM: Quadratic-SVM, WKNN:
Weighted-KNN, AB: AdaBoost, BLNN: bi-layered neural network, TLNN: tri-layered neural network).

The analysis of single-domain features exhibited that the use of these features indepen-
dently was not adequate to provide discriminative information of pain from BVP signals
(Figure 6). Therefore, the experimental analysis was extended by including feature sets that
were composed of attributes from different domains. Table 5 provides a comprehensive
performance evaluation of these combined features and classifiers for the classification of
NP and HP BVP signals.
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Table 5. Performance evaluation with combinations of time, frequency (Frq), and morphological
(Mrp) features using different classifiers for Experiment 1 (no pain vs. high pain). (QSVM: Quadratic-
SVM, WKNN: Weighted-KNN, AB: AdaBoost, BLNN: Bi-layered Neural Network, TLNN: Tri-layered
Neural Network). Bold text indicates the best results.

Classifier Feature Combination Acc Sen Sp PPV NPV F1-Score

QSVM

Time + Frq 80.00 100.00 50.00 75.00 100.00 85.71
Time + Mrp 73.33 83.33 58.33 75.00 70.00 78.95
Frq + Mrp 53.33 66.67 33.33 60.00 40.00 63.16
Time + Frq + Mrp 70.00 88.89 41.67 69.57 71.43 78.05

WKNN

Time + Frq 80.00 88.89 66.67 80.00 80.00 84.21
Time + Mrp 80.00 94.44 58.33 77.27 87.50 85.00
Frq + Mrp 76.67 100.00 41.67 72.00 100.00 83.72
Time + Frq + Mrp 83.33 100.00 58.33 78.26 100.00 87.80

AB

Time + Frq 66.67 66.67 66.67 75.00 57.14 70.59
Time + Mrp 60.00 55.56 66.67 71.43 50.00 62.50
Frq + Mrp 70.00 88.89 41.67 69.57 71.43 78.05
Time + Frq + Mrp 63.33 55.56 75.00 76.92 52.94 64.52

BLNN

Time + Frq 76.67 83.33 66.67 78.95 72.73 81.08
Time + Mrp 66.67 61.11 75.00 78.57 56.25 68.75
Frq + Mrp 63.33 55.56 75.00 76.92 52.94 64.52
Time + Frq + Mrp 80.00 83.33 75.00 83.33 75.00 83.33

TLNN

Time + Frq 73.33 66.67 83.33 85.71 62.50 75.00
Time + Mrp 63.33 61.11 66.67 73.33 53.33 66.67
Frq + Mrp 70.00 88.89 41.67 69.57 71.43 78.05
Time + Frq + Mrp 96.67 100.00 91.67 94.74 100.00 97.30

The highest performance results of 96.6% accuracy, 100% sensitivity, and 91.6% speci-
ficity were obtained through a hybrid feature set that consists of combined attributes
computed from the time, frequency, and morphological domains and the TLNN classifier.
The same feature set offered 83.3% mean accuracy with WKNN and 80% with BLNN
classification methods (Table 5). A combination of time and frequency features showed 80%
accuracy with both QSVM and WKNN classifiers. A combination of time and frequency
features with QSVM and WKNN classifiers yielded 80% mean accuracy. An improvement
in accuracy was observed by including morphological features with time and frequency
features when employed with the TLNN classification model (from 73.3% to 96.6%).

To summarize, Figure 7 shows the simplified view of the classification mechanism of
HP and NP BVP signals through hybrid features (time+frequency+morphological) with
the 3-layered neural network structure.

Figure 7. The proposed methodology for experiment 1 (no pain vs. high pain).

3.2. Experiment 2: No Pain vs. Low Pain

Experiment 2 was designed to analyze the difference between the no pain (NP) and
low pain (LP) classes of BVP signals. The LP signals were recorded by stimulating in two
sites, i.e., hand and forearm. This was done to increase the diversity of data recorded
from the same subjects. This diversity also makes the classification tasks more challenging.
Similarly to Experiment 1, a comprehensive analysis was performed using a set of time,
frequency, and morphological features with a range of machine learning classifiers. The
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results of the analysis with individual feature sets are illustrated in Figure 8 in terms
of accuracy, sensitivity, and specificity. The highest individual feature performance of
70% accuracy for distinguishing NP and LP BVP signals was obtained via morphological
features and the WKNN classifier. The time and frequency domain features offered 66.6%
and 63.3% accuracies with AB, and WKNN classifiers, respectively. It is important to
highlight that only morphological features with WKNN achieved good accuracy of 70%
and sensitivity value of 100%, but the specificity value dropped to 25%. However, this
shows that morphological features have better recognition for positive class (sensitivity),
which is LP in our case. A balanced performance of 72.2% sensitivity and 58% specificity
was obtained with time features and AB classifier.

Figure 8. Performance evaluation with time, frequency (Frq), and morphological (Mrp) features
using different classifiers for Experiment 2 (No Pain vs. Low Pain). (QSVM: Quadratic-SVM, WKNN:
Weighted-KNN, AB: AdaBoost, BLNN: bi-layered neural network, TLNN: tri-layered neural network).

The individual feature analysis (Figure 8) demonstrated that a single type of feature
was not ample for identifying hidden distinguishable content from BVP signals for NP and
LP conditions. Again, the experimental analysis was extended by validating the classifi-
cation algorithms through hybrid features that were constructed by combining features
from different domains. Table 6 provides a comprehensive comparison of different clas-
sifiers with a combination of time, frequency, and morphological features. The highest
results of 86.6% accuracy, 100% sensitivity, and 66% specificity were obtained through
the AB ensemble classifier with a hybrid feature set consisting of time, frequency, and
morphological features of BVP signals. While a fusion of time+morphological and fre-
quency+morphological feature sets yielded, with QSVM classifiers, 83.3% and 80% accuracy,
respectively. A combination of time+morphological features achieved a performance of
73.3% accuracy with the TLNN classifier.

Table 6. Performance evaluation with combinations of time, frequency (Frq), and morphological
(Mrp) features using different classifiers for Experiment 2 (no pain vs. low pain). (QSVM: Quadratic-
SVM, WKNN: Weighted-KNN, AB: AdaBoost, BLNN: bi-layered neural network, TLNN: tri-layered
neural network). Bold text indicates the best results.

Classifier Feature Combination Acc Sen Sp PPV NPV F1-Score

QSVM

Time + Frq 70.00 100.00 25.00 66.67 100.00 80.00
Time + Mrp 83.33 100.00 58.33 78.26 100.00 87.80
Frq + Mrp 80.00 100.00 50.00 75.00 100.00 85.71
Time + Frq + Mrp 76.67 100.00 41.67 72.00 100.00 83.72

WKNN

Time + Frq 63.33 83.33 33.33 65.22 57.14 73.17
Time + Mrp 73.33 94.44 41.67 70.83 83.33 80.95
Frq + Mrp 70.00 100.00 25.00 66.67 100.00 80.00
Time + Frq + Mrp 66.67 100.00 16.67 64.29 100.00 78.26
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Table 6. Cont.

Classifier Feature Combination Acc Sen Sp PPV NPV F1-Score

AB

Time + Frq 66.67 72.22 58.33 72.22 58.33 72.22
Time + Mrp 80.00 83.33 75.00 83.33 75.00 83.33
Frq + Mrp 73.33 100.00 33.33 69.23 100.00 81.82
Time + Frq + Mrp 86.67 100.00 66.67 81.82 100.00 90.00

BLNN

Time + Frq 46.67 50.00 41.67 56.25 35.71 52.94
Time + Mrp 63.33 83.33 33.33 65.22 57.14 73.17
Frq + Mrp 63.33 61.11 66.67 73.33 53.33 66.67
Time + Frq + Mrp 70.00 94.44 33.33 68.00 80.00 79.07

TLNN

Time + Frq 46.67 50.00 41.67 56.25 35.71 52.94
Time + Mrp 73.33 88.89 50.00 72.73 75.00 80.00
Frq + Mrp 63.33 72.22 50.00 68.42 54.55 70.27
Time + Frq + Mrp 60.00 83.33 25.00 62.50 50.00 71.43

The results obtained through the AB were the highest as compared to QSVM, WKNN,
BLNN, and TLNN classifiers. Figure 9 summarizes the best-performing methodology for
the classification of NP and LP BVP signals.

Figure 9. The proposed methodology for Experiment 2 (no pain vs. low pain).

3.3. Experiment 3: No Pain vs. Low Pain vs. High Pain

This experiment was designed to identify different levels of pain (LP and HP) and
baseline (NP) BVP signals. HP BVP dataset consists of High Hand Pain (HHP) and High
Forearm Pain (HFP), and the LP class consists of BVP recordings of Low Hand Pain (LHP)
and Low Forearm Pain (LFP). Again, the analysis of preprocessed BVP signals for these
categories was performed by computing time, frequency, and morphological features and
classifying them with a range of different machine-learning models.

Figure 10 illustrates the graphical comparison of individual feature sets with QSVM,
WKNN, AB, BLNN, and TLNN classifiers. The highest accuracy of 54.7% was obtained via
time features with the WKNN classifier. Time features with QSVM provided comparable
results with 52.3% accuracy for identifying NP, LP, and HP BVP signals. The highest
performance of frequency domain features was similar to the time features achieving
54.7% accuracy with the WKNN classifier. Individual feature analysis showed that the
time and frequency domain features have better recognition capability as compared to
morphological features.

In order to perform successful multiclass classification of NP, LP, and HP BVP sig-
nals, time, frequency, and morphological features were further examined by using hybrid
features composed of multiple domains. Table 7 provides a comprehensive analysis of
results for multilevel pain assessment using a combination of two or more feature sets
with QSVM, WKNN, AB, BLNN, and TLNN classifiers. The overall best performance
of 69% accuracy, 83.3% sensitivity, and 75% specificity were obtained using a combina-
tion of time and morphological features with a BLNN classifier. The combination of
time+frequency+morphological features also provided comparable results of 64% accuracy
with WKNN and 61% accuracy with TLNN.
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Figure 10. Performance evaluation with time, frequency (Frq), and morphological (Mrp) features
using different classifiers for Experiment 3 (no pain vs. low pain vs. high pain). (QSVM: Quadratic-
SVM, WKNN: Weighted-KNN, AB: AdaBoost, BLNN: bi-layered neural network, TLNN: tri-layered
neural network).

Table 7. Performance evaluation with combinations of time, frequency (Frq), and morphological
(Mrp) features using different classifiers for Experiment 3 (No Pain vs. Low Pain vs. High Pain).
(QSVM: Quadratic-SVM, WKNN: Weighted-KNN, AB: AdaBoost, BLNN: bi-layered neural network,
TLNN: tri-layered neural network. Bold text indicates the best results.

Classifier Feature Combination Acc Sen Sp PPV NPV F1-Score

QSVM

Time + Frq 54.76 88.89 50.00 57.14 85.71 69.57
Time + Mrp 50.00 61.11 62.50 55.00 68.18 57.89
Frq + Mrp 50.00 83.33 37.50 50.00 75.00 62.50
Time + Frq + Mrp 52.38 83.33 45.83 53.57 78.57 65.22

WKNN

Time + Frq 52.38 61.11 66.67 57.89 69.57 59.46
Time + Mrp 61.90 94.44 54.17 60.71 92.86 73.91
Frq + Mrp 61.90 100.00 45.83 58.06 100.00 73.47
Time + Frq + Mrp 64.29 94.44 58.33 62.96 93.33 75.56

AB

Time + Frq 35.71 55.56 54.17 47.62 61.90 51.28
Time + Mrp 38.10 72.22 54.17 54.17 72.22 61.90
Frq + Mrp 47.62 88.89 25.00 47.06 75.00 61.54
Time + Frq + Mrp 40.48 66.67 58.33 54.55 70.00 60.00

BLNN

Time + Frq 40.48 50.00 75.00 60.00 66.67 54.55
Time + Mrp 69.05 83.33 75.00 71.43 85.71 76.92
Frq + Mrp 42.86 38.89 83.33 63.64 64.52 48.28
Time + Frq + Mrp 57.14 88.89 66.67 66.67 88.89 76.19

TLNN

Time + Frq 54.76 61.11 87.50 78.57 75.00 68.75
Time + Mrp 52.38 61.11 83.33 73.33 74.07 66.67
Frq + Mrp 59.52 72.22 66.67 61.90 76.19 66.67
Time + Frq + Mrp 61.90 77.78 70.83 66.67 80.95 71.79

Figure 11 illustrates the overall best-performing framework that consists of the filtra-
tion stage, a combination of time and morphological features and the BLNN classifier.

Figure 11. The proposed methodology for Experiment 3 (no pain vs. low pain vs. high pain).
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4. Discussion

In this study, we employed different experimental configurations for the assessment of
pain intensities using BVP signals. BVP signals were analyzed with various time, frequency,
and morphological features using a diverse range of classification methods. A summary of
the best results for all experiments is provided in Table 8.

Experiment 1 (NP vs. HP) using BVP signals obtained the best results of 96.6% ac-
curacy using a hybrid of time, frequency, and morphological features with the TLNN
classifier. Direct comparisons with other studies are difficult because of the use of different
experimental conditions (e.g., thermal, mechanical, or electrical stimuli), BVP acquisi-
tion systems, sampled populations with different demographics, validation methods, and
classification models. However, in relation to other similar studies, our study presented
comparable results. For example, Cao et al. [45] performed a classification of No Pain
versus high-intensity pain using PPG signals and reported an accuracy of 79.4%. The
authors employed empirical mode decomposition-based features combined with SVM for
classification. Thiam et al. [46] reported 66% accuracy for the classification of No Pain
(baseline) against high-intensity pain using respiratory signals. In comparison to [45,46],
the results of our methods are significantly high, i.e., 96.6%. It is important to mention
that 65 features were used in [46] as compared to our 36 features. Compared to the re-
sults provided in [45,46], our proposed framework achieved 17.2% and 36% increases,
respectively.

Experiment 2 was designed to discriminate BVP signal features for NP and Low Pain
(LP) states. The proposed method achieved 86.6% accuracy using a combination of time,
frequency, and morphological features with the AdaBoost (AB) classifier. In comparison
to published studies, Cao et al. reported 81.4% accuracy for no pain versus low-intensity
pain using an SVM classifier [45]. In another study [46], authors obtained 50% accuracy for
respiratory signal-based low-intensity pain assessment. The proposed method in this study
for the binary classification of no pain and low pain levels using BVP signals provided
better results.

Experiment 3 was designed to explore the discriminating power of BVP signals for
multi-levels of pain intensities with baseline (no pain). The proposed method obtained
69% accuracy for a three-class problem (NP vs. LP vs. HP) using a combination of time
and morphological features and a BLNN classifier. As compared to the first two binary
experiments, the performance of the multi-class model is slightly low; however, this was
expected, as the baseline accuracy in the three-class classification problem would be 33.33%
or 1/3. Another explanation for the low accuracy might be due to the similarities between
BVP signals of various pain intensity levels. To our best knowledge, the existing research
lacks multi-class pain analysis. Most of the existing research followed a binary classification
approach where baseline (no pain) was compared with various pain levels [45,47].

Previous research on pain assessment utilizing PPG signals were unable to introduce
models capable of distinguishing between various pain signatures. This deficiency is
a crucial concern for pain assessment within the human body, considering the various
origins, intensities, and durations of pain (such as peripheral, visceral, emotional, and
phantom pain) [4]. Each pain type exhibits unique signatures and is transmitted to the
central nervous system through distinct sensory receptors. Therefore, developing machine
learning models that can differentiate between multiple pain signatures with varying
intensities would be more practical for real-life scenarios. This is particularly critical for
patients who are unable to communicate verbally, such as those in a coma or with advanced
dementia, or when the source of pain is unclear [48].

The selection and appropriate use of different features and machine learning models
significantly contribute towards better performance. In our research, we found that the
best-performing models for all experiments include time and morphological features that
show their valuable contribution. Typically, pain triggers the activation of the sympathetic
nervous system, which induces vasoconstriction and reduces blood flow to the area of
pain. Consequently, there is a reduction in the amplitude of BVP in the affected region,
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reflecting a decrease in blood volume. The changes in signal amplitude are more accurately
represented by examining the time and morphological features of the BVP signal. This is
confirmed by the findings of this study as well.

Table 8. Summary of best-performing features and classification methods for all experiments. Experi-
ment 1: no pain vs. high pain, Experiment 2: no pain vs. low pain, Experiment 3: no pain vs. low
pain vs. high pain. Bold text indicates significant results.

Features FVL Experiment 1 Experiment 2 Experiment 3

Time 12 WKNN: 83.3% WNN: 70% WKNN: 54.7%
Frq 12 WNN: 76.6% WKNN: 63.3% NNN: 57.1%
Mrp 12 AB: 53.3% LSVM: 63.3% LSVM: 45.2%

Time + Frq 24 BLNN: 76.6% QSVM: 70.0% TLNN: 54.7%
Time + Mrp 24 QSVM:73.3% QSVM: 83.3% BLNN: 69.04%
Frq+ Mrp 24 FKNN: 83.33% WNN: 73.33% FKNN: 61.9%

Time + Frq + Mrp 36 TLNN: 96.66% AB: 86.66% WKNN: 64.28%

Preliminary results presented in this study are promising; however, we acknowledge
that this study presents some limitations that should be addressed in our future research.
Confounding factors, such as stress or anxiety, can affect the quality of the data, in particular,
due to anticipation of the upcoming pain stimulation. Therefore, in our future research
experiments, we will try to minimize the participants’ stress as much as possible by asking
subjects to keep their eyes closed to avoid pain anticipation [49]. Another limitation of
the current study is the short length of pain stimulation (∼9 s) used in this experiment,
in clinical contexts pain may have variable onset dynamics; thus, employing stimuli of
different lengths will be more realistic in our future research. In the present study, baseline
ML classification algorithms were used for the analysis; however, in future work, we will
analyze the prediction performance by tuning the hyperparameters of classifiers. Finally,
we will validate the obtained features to improve their feasibility in more realistic scenarios
and their physiological significance and will include participants with a broader age range,
so the learning model could generalize better to different populations.

5. Conclusions

In this study, we aimed to assess pain and its intensities using BVP signals in a scenario
that is independent of the person being tested. To achieve this, we collected a new dataset
that consisted of BVP recordings from healthy individuals who experienced various levels
of pain induced in different locations of their bodies. Our findings demonstrate that BVP
signatures exhibit good performance and offer a desirable trade-off between computational
cost and accuracy, compared to other modalities. We conducted different experiments with
varying pain configurations, utilizing a wide range of features and classifiers. The results
of the experiments revealed classification performances of 96.6% (no pain vs. high pain),
86.66% (no pain vs. low pain), and 69% (no pain vs. low pain vs. high pain). These findings
demonstrate the potential of BVP signals for pain assessment tasks.

In the future, our research group aims to explore more advanced feature descrip-
tors using BVP and other modalities. We will also explore more advanced classification
techniques (e.g., deep learning) that can help us improve the current results [50]. Our
future work will also target pain assessment through the inclusion of non-communicable
patients and newborns. We also plan to design a portable embedded system for the accurate
classification of pain levels using wearables.
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