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Abstract: In this work, we developed a prototype that adopted sound-based systems for localization
of visually impaired individuals. The system was implemented based on a wireless ultrasound
network, which helped the blind and visually impaired to navigate and maneuver autonomously.
Ultrasonic-based systems use high-frequency sound waves to detect obstacles in the environment
and provide location information to the user. Voice recognition and long short-term memory (LSTM)
techniques were used to design the algorithms. The Dijkstra algorithm was also used to determine
the shortest distance between two places. Assistive hardware tools, which included an ultrasonic
sensor network, a global positioning system (GPS), and a digital compass, were utilized to implement
this method. For indoor evaluation, three nodes were localized on the doors of different rooms inside
the house, including the kitchen, bathroom, and bedroom. The coordinates (interactive latitude and
longitude points) of four outdoor areas (mosque, laundry, supermarket, and home) were identified
and stored in a microcomputer’s memory to evaluate the outdoor settings. The results showed that
the root mean square error for indoor settings after 45 trials is about 0.192. In addition, the Dijkstra
algorithm determined that the shortest distance between two places was within an accuracy of 97%.

Keywords: visually impaired people; sound source localization; indoor outdoor navigation; voice
recognition; long short-term memory

1. Introduction

Numerous technologies are currently employed to enhance the mobility of the blind
and visually impaired people (VIP). These technologies include the application of cameras,
ultrasonic sensors, and computerized travel support. However, published statistics pri-
marily classify visually impaired aids into two categories: indoor and outdoor. The indoor
sensing technologies include laser, infrared, ultrasonic, and magnetic sensors. In compari-
son, outdoor sensing equipment includes the use of camera systems, intelligent navigation
systems, GPS, mobile applications, carrying devices, robots, environment recognition
systems, computer vision, and machine learning [1–3].

For indoor sensing devices, the distance between VIP and the surrounding objects
is calculated by measuring the transmission and the receipt of some physical quality
such as light, ultrasound, etc. [3]. However, this type of sensor enters little information
about VIP. Outdoor sensing devices include a camera, smart navigation, GPS, mobile
applications, carrying devices and robots, environment recognition systems, computer
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vision, and machine learning tools. These devices can enter more information than indoor
methods. For example, the information could be about the environment surrounding the
blind. Furthermore, these devices are more expensive than their indoor counterparts due
to the processing phase, which needs computers or microprocessors [4,5].

Generally, blind individuals often face challenges when navigating their surroundings,
both indoors and outdoors. Localization techniques for blind people are critical for their
mobility, safety, and independence. The traditional localization techniques such as GPS
or visual landmarks are not always accessible to blind people. To solve the problems of
localization and interior navigation, several studies have been conducted [6–8]. For in-
stance, Nagarajan et al. [9] developed a technique that used low-power Bluetooth-emitting
devices. This technique was employed to locate various buildings according to their precise
coordinates. This research work utilized an algorithm and different data formats as well
as conducted experimental analyses to determine the optimal location for the beacons.
Furthermore, this algorithm was implemented as an Android app that provided a naviga-
tional solution for the visually handicapped without relying on any external resources [9].
With the use of the Ultra-Wideband (UWB) location detection system, a spatial database of
the environment for pathfinding via the application of the A* algorithm, and a guidance
module, another study presented SUGAR, an internal navigation system for the visually
handicapped. Through headphones, the user was communicated with via auditory signals
and voice commands. A fully operational and user-friendly prototype was tested in the
field with a visually impaired person to confirm the system’s viability for indoor navi-
gation. Various other experiments were also carried out, all of which demonstrated the
system’s accuracy [10].

Computer vision-based localization techniques are a system that uses cameras or other
sensors to detect the user’s location and surroundings and provide real-time guidance
based on that information. These systems can be effective in providing visual information
to the user [11]. In one study, a smart framework called Vision Navigator was developed
to help the visually impaired community by utilizing obstacle recognition, classification,
and the real-time alerting of the user. The Smart-alert Walker and the Smart-fold Cane
were the model’s building blocks. The Smart-fold Cane is a portable walking aid outfitted
with sensors and cameras that identify and avoid any dangers in the user’s path. The
recognition of obstacles is performed using the single-shot detection technique, and the
recurrent neural network model converts the observed obstacle into text [12]. Another
technique advocated for a smart setup, including a cyber-physical system with a human in
the loop. More specifically, the system interpreted location context information through
line-of-sight interaction based on visual signals and the distance sensing of material things.
Information gleaned from social media platforms (Tweets) was also utilized to assess the
general atmosphere of a given setting. The case study provided a more in-depth look at
the proposed localization approaches (topological, landmark, metric, crowdsourced, and
sound localization) and their applications in navigation, route verification, user tracking,
socialization, and alerts [13].

Machine learning-based localization techniques are also a system that uses data from
sensors and other sources to learn about the user’s behavior and preferences. The system
can use this information to provide personalized recommendations and guidance to the
user [6,14]. For instance, Ashiq et al. [15] developed to guide VIP based on a Convolution
Neural Network (CNN) model. In this study, the method implemented a web-based ap-
plication based on object detection and recognition. The user’s family was able to track
the VIP via the sharing of the current location through this application. A different study
was conducted by Tan et al. [16] to estimate the angle and distance using a sound-based
localization technique. The method adopted CNN and regression model using the interau-
ral phase difference (IPD). The system was tested with blind and visually impaired users
and was determined to be effective in providing spatial information. Another study by
Pang et al. [17] evaluated sound-based systems localization for visually impaired individu-
als using time-frequency with CNN. The system proposed to use multitask learning with
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extracted interaural time difference (ITD) and extracted interaural phase difference (IPD)
from binaural signals. The experimental results of this method demonstrated that the
localization performance is achieved under uncorrelated and diffuse noise conditions.

The many advantages of these previous techniques have yet to solve the problem of
real-time sensing. Their main weakness can be summarized as follows: traveling through
uneven surfaces and unknown places is difficult for the blind. Traditional localization
techniques, such as GPS or visual landmarks, are not always accessible to people who are
blind or visually impaired. Therefore, researchers and developers have been exploring
alternative techniques that leverage other sensory modalities, such as sound or vibration, to
provide spatial information [18]. Modern technology, such as the integration of smartphone
sensors, can identify complicated environments, discover new places, and direct users via
voice commands to move to new places. This technology is inexpensive and reaches all
blind, middle-income people [19,20]. However, the performance of these methods needs to
be improved, especially when dealing with complex environments. Robots can fulfill the
mission regarding capabilities and can cover all the required goals. Automated methods are
very effective in complex navigation tasks, especially in new places as well as in global and
local environments. Even though robots can provide useful information about obstacles,
they are still limited in local and global markets and are still under clinical trials [21,22].

The issue of localization techniques for blind people highlights the need for continued
research and development of innovative solutions that can provide accurate and reliable
spatial information to individuals with visual impairments. Therefore, this work aimed
to design and implement a sound-based localization technique that could guide and
direct VIP to the right place in real time. In this technique, the system uses spatialized
sound to provide information about the user’s location and surroundings. The user wears
headphones or earbuds, and the system provides audio instructions based on their location.
The design method considered the factors of safety and real-time processing in order to
achieve independent movement, the identification of obstacles encountered by the blind in
internal environments, and the ability to deal with new complex environments.

2. System Design

This work provides a simple, effective, and controllable electronic guidance system
that helps VIP to move around in all predetermined places. The proposed method uses an
integrated sonic system consisting of three ultrasonic sensors (indoor system). Its task is to
gather information about obstacles in the blind lane by collecting all the reflective signals
from the three sensors. Then, the software performs calculations in order to detect all the
obstacles. In the case of external guidance (outdoor system), the proposed method is inte-
grated with the positioning system to direct the visually impaired to predetermined places.

2.1. The System Architecture

Figure 1 illustrates the block diagram of the proposed method. In this work, the pro-
posed method used a hybrid navigation system that included indoor/outdoor techniques [23].
The indoor system consisted of three ultrasound sensor networks: an Arduino Uno mi-
crocontroller, 3 XBEE Wi-Fi modules as end devices, and 1 XBEE as the coordinator. The
three sensors were used in the kitchen, bathroom, and bedroom, with the possibility of
increasing the number of sensors to any quantity. These sensors were used to capture the
visually impaired person whenever they went through the ultrasonic range. Then, a high
signal was sent via the XBEE end device module to the XBEE coordinator module, which
was connected to the RaspberryPi4. As a result, the Raspberry Pi4 received a high signal
with a known identifier number.
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Figure 1. Illustrates the block diagram of proposed method.

In this work, the visually impaired person in the outdoor system utilized voice com-
mands with the use of hot keywords. The voice commands included system direction, and
the coordinates of four places, including the supermarket, mosque, laundry, and house,
were saved in the microcontroller memory for the outdoor system. In addition, the GPS
coordinates (latitude and interactive longitude points) and the paths of the external map
were also built. The outdoor devices consisted of a GPS, a digital compass, a speaker,
and a microphone. The system had two modes (inside and outside); any mode could be
activated by voice.

2.2. The Prototype Assembly

Figure 2 illustrates the prototype of the smart wearable system. The hardware of the
system design consisted of the following:

a. Ultrasound sensors (HC-SR04, Kuongshun Electronic, Shenzhen, China): Ultrasonic
sensors are used to detect a person entering/leaving a room. The ultrasonic sensor is
a piece of electronic equipment that uses the duration of the time interval between
the sound wave traveling from the trigger and the wave coming back after colliding
with a target.

b. Arduino Uno microcontroller (ATmega328P, embedded chip, Microchip Technology
Inc, Chandler, Arizona, USA): The microcontroller is used to collect ultrasonic,
GPS, and compass data. Arduino is a microcontroller-based platform that uses
an electronic environment and flash memory to save user programs and data. In
the study, the Arduino module was used to read the input data that came from
a different sensor.
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c. XBEE module s2 and wireless communication (771-6333, Digi International, Inc.
Hopkins, MI, U.S): This is a radio frequency module (RF) that uses ZigBee mesh
communication protocols (IEEE 802.15.4 PHY).

d. Raspberry Pi4 (Single-board computer, Rockchip RK3399 CP, clocked up to 2 GHz,
Creative Commons Corporation, Mountain View, CA, USA): As the central core
of the system, this is used to receive data from different modules, such as Wi-Fi
communications, via an XBEE module, or via a serial port such as a GPS, compass,
microphone, etc.

e. GPS module (HW-658 for Raspberry Pi, Dynamic—IT Solutions, Joppa, MD, USA):
This is used to detect and locate user destinations. The GPS module (hw-658) is
connected directly to the Arduino, which transfers GPS data to Raspberry Pi4 via
a USB cable.

f. Digital compass (HMC5883L chip, three-axis magnetic sensor, made by Honeywell
Aerospace Inc., Phoenix, AZ, USA): This is a 3-axis digital compass that is used to
determine the current direction of the module based on the magnetic field. The
module must be kept in a horizontal position all the time. The study used the
hmc5883l compass, which is suitable for Arduino applications.

g. Headset (Razer Kraken Gaming Headset, Irvine, CA, USA): A headset is used for
the audio communication between Raspberry Pi4 and the user so as to provide
a good level of audio data transmission. The unidirectional microphone of the
headset leaves no room for miscommunication and delivers crystal clear sound
reproduction, with balanced, natural vocal tones and less background noise.
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Table A1 in Appendix A illustrates all component specifications of hardware for the
proposed system.

3. Method

The system has two modes, and any of these modes could be activated vocally.
The first mode is activated when the visually impaired person says the hot keyword
“Inside”; then, the indoor navigation system tools start. The second mode is activated
when the visually impaired says the hot keyword “Outside”; then, the system tools ac-
tivate the GPS navigation tool, incorporating the external map previously saved in the
microcontroller’s memory.
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In this work, the blind person requests one set of location coordinates by saying the
hot keyword through the microphone. After that, the system receives the audio file and
then processes this file through the voice recognition software. It then converts the voice file
into a text file. The application compares the text files with the previously saved location’s
name. Supposing that the program detects a match in the values, it then starts collecting
the location coordinates and subsequently sends this information to the blind person over
the headset in the form of audio files, telling the blind how to reach the place. GPS is used
to determine global positioning in real-time. The digital compass is used to determine the
current direction in real time. During the movement of the blind person, the system helps
to describe the direction to the desired location via a wireless headset (voice message). In
addition, the blind person is alerted about the nearest objects.

3.1. The Indoor Navigation Algorithm

The indoor system design consists of hardware hanging on the doors of three house
rooms (kitchen “Node 1”, bedroom “Node 2”, and bathroom “Node 3”), as shown in
Figure 3. Each part of the hardware is called a node XBEE module, and each module consists
of an ultrasonic sensor, an Arduino module, an XBEE radio frequency module, and an XBEE
shield. The ultrasonic ranging sensor is used to catch the visually impaired body if it is
located within the sensor’s range. The Arduino Uno module reads the ultrasonic signal and
calculates the distance between the blind and the sensor. If the distance between the visually
impaired and the platform is less than 1.5 m, the microcontroller considers this as the
visually impaired person approaching the detector. Then, the microcontroller sends a high
signal via the XBEE module to the central Arduino held by the blind user; this Arduino
is considered the coordinator microcontroller (coordinator XBEE module). The central
Arduino then sends Raspberry Pi4 an identification code that was assigned to a specific
router (the terminal XBEE modules), and Raspberry Pi4 recognizes the identification code
that the programmer predefined. At this point, Raspberry Pi4 prepares an audio message
(about the door in front of the blind), which is then sent to the blind person’s headset. This
simple method allows for communication between the terminal units (kitchen, sleeping
quarters, and bathroom) and the coordinator held by the blind user.
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3.2. The Outdoor Navigation Algorithm

In outdoor locations, several predefined destinations were saved previously in the
Raspberry Pi4 memory. The VIP requests for the coordinates of one location by saying the
hot keyword through the microphone, which sends the system the audio file. Here, a voice
recognition approach was adopted in order to produce a frequency map for each audio file.
The long short-term memory (LSTM) model was also adopted to identify and filter out the
output files.
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3.3. Voice Recognition Approach

In this approach, the Mel-frequency cepstral coefficients (MFCC) are used to extract
the feature map of the audio file information [24,25]. Thus, in the extraction, a finite impulse
response filter (FIR) is used for each audio file, as expressed by the following equation:

γ(n) = r(n)− δr(n− 1), (1)

where γ(n) is the filter output, r(n) is the audio file, n is the number of samplings, and δ is
given as (0 < δ ≤ 1).

To reduce signal discontinuity, framing and windowing (∅(n)) are employed as follows:

∅(n) =
{

1− ε(1 + cos(2πn/∆− 1)) n = 0, 1, . . . , ∆− 1
0 otherwise

, (2)

where ε and ∆ are the constant and the number of frames, respectively.
To determine each frame’s spectrum magnitude, fast Fourier transform (FFT) is applied

as in the equation below:

γ(k)= ∑∆−1
n=0 γ(n)e−j2πkn/∆, n = 0, 1, . . . , ∆− 1. (3)

As a result, the Mel filter bank ( f [m]) can be used as boundary points and be written
as follows:

f [m] = (N/Fs)B−1
(

B( fl) + m
B( fh)− B( fl)

M

)
, (4)

where B( f ) = 1125 ln((700 + f )/700); fl is the lowest hertz and fh is the highest hertz; M
and N are the number of the filter and the size of the FFT, respectively.

In this study, we employ an approximation homomorphic transform to eliminate the
noise and spectral estimation errors, which is expressed as follows:

β(m) = ln
(
∑∆−1

k=0
|γ(k) f [m]|

)
. (5)

In the final step of the MFCC processing, we recall the discrete cosine transformer
(DCT) function in order to obtain high decorrelation properties for the system, which is
carried out as follows:

dl(n) =
√

2/M ∑M
m=1 β(m)cos

(nπ

M
(m− 0.5)

)
, n = 0, 1, 2, . . . , l < M. (6)

The system feature map is achieved by taking the first and second derivatives of
Equation (6). As a result, the LSTM creates and utilizes the database, which is applicable to
all recordings that were made.

3.4. LSTM Model Adoption

A vanilla LSTM structure is adopted to classify the spectrum file [26–28]. The model
architecture is composed of several memory block-style sub-networks that are continuously
connected to each other as shown in Figure 4. The model consists of a cell, an input gate,
an output gate, and a forget gate. In this model, a sigmoid function (σ) is used to identify
and eliminate the current input (qt) and the last output (yt−1) data. This can be achieved by
using the forgetting function gate (gt), as expressed by the equation below:

gt = σ
(

w f (yt−1, qt) + j f

)
, (7)

where w f represents the weight matrices, and j f is the bias weight vector.
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By using the sigmoid layer and the tanh layer, the model is required to store the new
input data and then update that data in the cell state (Ct) as follows:

Ct = Ct−1gt + HtRt, (8)

where Ht = σ(wi(yt−1, qt) + ji), and Rt = tanh((wc(yt−1, qt) + jc)).
As a result, the output value is provided as follows:

yt = gttan h(Ct). (9)

3.5. Dijkstra SPF Algorithm

This algorithm is used to calculate the shortest distance between two points (shortest
path first, SPF) [29,30]. The coordinate path is saved in matrix form. As a result, whenever
the user activates any path, the Dijkstra SPF algorithm calls the priority queue tool. This tool
compares the elements and selects the one with high priority before the element with low
priority. The below-described Algorithm 1 was implemented to accomplish this process.
Figure 5 illustrates the flowchart of outdoor system.

Algorithm 1: Dijkstra SPF

Input: “voice command data”
Output: GPS “SPF”
1: Start
2: Initialization: {distances to source node (s) = 0; distances to other nodes is empty (n) = ∅;
queue (q) ∈ {all nodes}}
3: Start value← 0
4: for all N ∈ n-{s}
5: dist [n]← ∞ (all other distances should be set to infinity)
6: while q 6= ∅ (while there is a queue)
7: do x← min_distance (q, dist) (choose the q with the lowest distance)
8: For all N ∈ neighbors [x]
9: do if dist [N] > dist [x] + w (x, N) (if a new shortest path is discovered)
10: then d[v]← d[x] + w (x, N) (change the shortest path with new value)
Return dist
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4. Simulation Protocols and Evaluation Methods

Python and the C++ software were used to control the algorithms in the hardware [31].
An English speech group consisting of separate words, provided by the Health and Basic
Sciences Research Center at Majmaah University, was used to evaluate the proposed
method. The correct pronunciation of all 3500 words included in the group was derived for
7 fluent Arabic speakers. Data were recorded at a sampling rate of 25 kHz, with a resolution
of 16 bits. Speed, dynamic range, noise as well as forward and backward time shifts were
subsequently adjusted. Approximately 80% of the samples (2800) were used to create the
training set (training and validation), while the remaining 20% was used to create the test
set (700). All trials were carried out for a total of 50 epochs, and there were 4 participants in
each batch.

In order to verify the accuracy of target detection within the ultrasound range for the
indoor experiment, the root mean square error (RMSE) was used to compare observed (Xo)
and predicted (Xp) values:

RMSE =

√√√√√
 n

∑
i=1

[
Xo,i − Xp,i

]2/n

. (10)

As for the outdoor experiment, in order to provide a measure of the quality and
accuracy of the proposed system’s predictions, we computed the F-score with precision (p)
and recall (r) using the following formula:
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F = 2[p ∗ r/(p + r)], (11)

where p =
[
tp/
(
tp + fp

)]
and r =

[
tp/
(
tp + fn

)]
; here, tp, fp, and fn are the true positive,

false positive, and false negative, respectively.
The coordinate paths and nodes of four places outside the house were saved in

the microcontroller memory. Each path contains a different number of nodes (latitude,
longitude), and the number of these interactive points is based on the distance between the
start node and the destination node.

5. Results
5.1. Indoor System Test

This mode was activated through indoor navigation tools whenever the visually
impaired person said the hot keyword “inside”. Three ultrasonic sensors were placed in the
kitchen, bedroom, and bathroom to ensure the indoor system worked perfectly. To perform
this experiment, we chose three participants who were 18–50 years in age and 90–150 cm
in height. Each participant repeated the experiment fifteen times. During the experiment,
the participants were sent a voice message through the headset, telling them the specific
room toward which they were headed, as shown in Table 1. Then, the information from the
internal ultrasonic sensors was sent to the Raspberry Pi4; each ultrasonic device had its
own IP address, XBEE: ID.

Table 1. Indoor destination information (feedback for the system).

Raspberry Voice Command IP Address Detected

You are going to the bedroom Bedroom
You are going to the kitchen Kitchen

You are going to the bathroom Bathroom

For example, suppose the participant was headed in the direction of the kitchen. In
that case, the ultrasound sensor near the kitchen door would pick up the movement of
the object and send this information to the Raspberry Pi4 located in the tools used by the
participant. Then, the Raspberry Pi4 would generate voice messages that tell the blind
person where they were at that moment.

Table 2 depicts the accuracy of target detection within the ultrasound range. Based
on another experiment’s results, the accuracy ratio is high enough. The root mean square
error for the three cases is equal to 0.192.

Table 2. Detection ratio of the ultrasonic sensor (human participants).

Number of Trials

Rooms Name

Kitchen Bedroom Path Room

Detected Undetected Detected Undetected Detected Undetected

1 1 0 1 0 1 0
2 1 0 1 0 1 0
3 1 0 1 0 1 0
4 1 0 1 0 1 0
5 0 1 1 0 1 0
6 1 0 1 0 1 0
7 1 0 1 0 1 0
8 1 0 1 0 1 0
9 1 0 0 1 1 0
10 1 0 1 0 1 0
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Table 2. Cont.

Number of Trials

Rooms Name

Kitchen Bedroom Path Room

Detected Undetected Detected Undetected Detected Undetected

11 1 0 1 0 1 0
12 1 0 1 0 1 0
13 1 0 1 0 1 0
14 1 0 1 0 1 0
15 1 0 1 0 1 0

Root means square error 0.192

5.2. Outdoor System Test

In this test, the outdoor mode was activated through navigation tools whenever the
visually impaired said the hot keyword “outside”. As a result, three paths were saved in
the Raspberry Pi4 memory (“from home to a mosque”; “from home to laundry”; “from
home to Supermarket”). In addition, the latitudinal and longitudinal nodes located at
different distances along the path were also saved, as shown in Figure 6.
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The processing started with the conversion of the audio file waves into their frequency
domain using Fourier analysis. Then, these frequency domain waves were converted into
spectrograms and used as input for the LSTM model. The confusion matrix was constructed
with the help of the preliminary findings, as can be seen in Table 3. When considering
all four voice commands, the average accuracy was approximately 97% of the accurate
forecast. To provide a clearer picture of the classification process, we used the terms “true
positives”, “true negatives”, “false positives”, and “false negatives”. Table 4 displays the
results of the computations for the ratio of the voice-command predictions, as well as those
for accuracy and precision.
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Table 3. Normalized confusion matrix.

Actual Voice Command

Prediction
ratio

%

Class Mosque Laundry Supermarket Home
Mosque 96% 1% 2% 3%
Laundry 1% 98% 2% 2%

Supermarket 2% 2% 97% 1%
Home 3% 2% 1% 96%

Table 4. Accuracy, precision, recall, and F-score for voice commands.

Class Accuracy Precision Recall F-Score

Mosque 95% 0.73 0.74 0.735
Laundry 96.3% 0.75 0.75 0.75

Supermarket 98.2% 0.77 0.75 0.76
Home 94.8% 0.75 0.73 0.74

Figure 7 shows the mode of the outdoor map where the evaluation occurred (Al-Arid
district, Riyadh City). In this mode, the visually impaired attempted to use the path from
home to the laundry, as shown in Figure 7, with the coordinates given in Table 5. The
system provided a map with 49 nodes, which extended from the start node (home) to the
end node (laundry). The distance between each node was between 1 and 3 m. Instructions
on how to keep moving down the path were sent to the visually impaired person. The
system presented the location and provided advice, and family members who joined the
journey followed the blind person all the way. The visually impaired person walked and
received the GPS data and the digital compass navigation via a headset. All the nodes
through which the visually impaired had passed were recorded.
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Table 5. Example for one student participant and one destination.

Planned Longitude Planned Latitude Actual Longitude Actual Latitude

24.89482 46.61831 24.89499 46.618357
24.894803 46.61832 24.89485 46.618365
24.894784 46.61832 24.894799 46.618373
24.894765 46.61833 24.894795 46.618381
24.894748 46.61834 24.894792 46.618389
24.894731 46.61835 24.894787 46.618387
24.894712 46.61836 24.894712 46.61836
24.894697 46.61837 24.894697 46.618393
24.894673 46.61838 24.894699 46.618398
24.894651 46.61839 24.894689 46.618391
24.894629 46.6184 24.894679 46.618399
24.894612 46.6184 24.894662 46.618454
24.894595 46.61841 24.894595 46.618442
24.894558 46.61844 24.894598 46.618466
24.894541 46.61844 24.894589 46.618474
24.894522 46.61846 24.894572 46.618477
24.894503 46.61847 24.894503 46.61847
24.894484 46.61848 24.894494 46.618493
24.89446 46.61849 24.89486 46.618494

24.894423 46.6185 24.894463 46.618544
24.894406 46.61852 24.894456 46.618555
24.894382 46.61852 24.894392 46.618558
24.894348 46.61849 24.894388 46.618494
24.894326 46.61846 24.894366 46.618499
24.894311 46.61842 24.894361 46.618446
24.894296 46.61839 24.894296 46.618399
24.894272 46.61835 24.894262 46.618389
24.89425 46.61833 24.89475 46.618358

24.894231 46.61831 24.894271 46.618339
24.894216 46.61826 24.894266 46.618291
24.894197 46.61819 24.894157 46.618194
24.89417 46.61814 24.89417 46.618135

24.894148 46.61808 24.894178 46.618081
24.894129 46.61803 24.894129 46.61803
24.89408 46.61803 24.89408 46.618025

24.894034 46.61804 24.894094 46.618061
24.894 46.61805 24.894 46.618084

24.893949 46.61808 24.893989 46.618098
24.893908 46.6181 24.893948 46.618142
24.893872 46.61812 24.893892 46.618151
24.893831 46.61815 24.893891 46.618178
24.893804 46.61817 24.893854 46.618189
24.893782 46.61819 24.893792 46.618198
24.893765 46.61827 24.893785 46.618296

5.3. Outdoor Shortest Path First (SPF)

The Dijkstra SPF algorithm was set to work in the automatic mode. As a result, the
shorter distance between any of the places could be determined through the predefined
nodes. By applying the Dijkstra algorithm, the calculation for the shortest path between
two nodes (home and laundry) could be performed, as shown in Figure 8. The algorithm
was tested in three trials. Table 6 illustrates that the Dijkstra algorithm can easily discover
the shortest distance between two places.
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Table 6. Dijkstra shortest path first (SPF) algorithm.

Expected Tracks Found the Shortest
Distance (Dijkstra)

Could Not Find the Shortest
Distance (Dijkstra)

Home to mosque 738 m —-
Home to supermarket 561 m —-

Home to laundry 214 m —-
Mosque to home 738 m —-
Laundry to home 214 m —-

Supermarket to home 561 m —-
Mosque to supermarket 940 m —-

Mosque to laundry 584 m —-
Laundry to supermarket 676 m —-

Laundry to mosque 584 m —-
Supermarket to mosque 940 m —-

6. Discussion

Sound-based systems provide a means of localization for visually impaired individu-
als that rely on auditory cues. These systems use sound to provide users with information
about their environment and their location in space. Sound-based systems have the ad-
vantage of being relatively low-cost and easy to implement. However, the effectiveness of
these systems depends on the user’s ability to interpret auditory cues and the quality of the
sound-based system used [23].

This study aimed to develop and implement a robust and affordable sound local-
ization system for aiding and directing people with visual impairments. This concept
was conceived to help blind people become significantly more independent, ultimately
improving their quality of life. The suggested innovative wearable prototype expands
the capabilities of existing system designs by integrating cutting-edge intelligent control
systems such as speech recognition, LSTM model, and GPS navigation technologies. Voice
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recognition technology, wireless network systems, and considerable advances in sensor
technologies have all contributed to the widespread adoption of navigation technology for
guiding blind individuals.

The proposed system is generally characterized by the simplicity with which the
electrical and electronic circuits can be installed, as well as by its low cost and low energy
consumption. The prototype of a straightforward electronic circuit connection is shown
in Figure 2. Regarding the materials and methods utilized, their ability to be modified,
personalized, and then conveyed to the end-user, the design is both highly efficient and
inexpensive. It is possible to avoid every impediment with an average response time of
about 0.5 s when processing a single task. This smart prototype’s programs and applications
can all function without an internet connection. Additionally, the suggested software
operates with great precision even when there is outside noise.

For indoor navigation, the study investigated the accuracy of detecting the desired
object. By using voice commands, the user could navigate to the right destination; the
RMSD was used to represent the navigational errors. The experimental results exhibited
a significantly high root mean square error ratio. As can be seen in Table 2, the average
RMSE after 45 experimental trials using ultrasonic sensor detection is 0.192. The system
also exhibited a high prediction ratio via a normalized confusion matrix, as presented in
Table 3. In addition, the results presented in Table 4 for the accuracy, precision, recall, and
F-score of the voice commands demonstrate that the designed system works efficiently.
The Dijkstra algorithm was also developed and incorporated into the designed system in
order to determine the shortest distance between any two places. By using the Dijkstra
algorithm, the system was able to detect the shortest distance with an accuracy of 99%.

Based on comparisons to prior studies on efficacy, reliability, and cost, we believe
that our design and implementation approach in this study has addressed numerous
complexities. For example, a recent study conducted by Ramadhan, A.J. [32] implemented
and tested a wearable smart system to help VIP based on sensors that track the path and
alert the user of obstacles. To carry out the performance with high accuracy, the design
had to be able to produce a sound emitted through a buzzer and vibrations on the wrist.
Furthermore, this system depended on other people and sent SMS messages to family
members for additional assistance. A different study used the Uasisi system to assist VIP. In
this system, the modular and adaptable wearable technique was implemented. The authors
incorporated the vibratory feedback mode with cloud infrastructure to sense the proximity
of objects and navigate the patterns of the user. Although this work was evaluated and
tested, it is still in the initial stages and needs to add more sensors to detect obstacles in the
user’s environment [33].

In general, the system performance of sound-based localization for visually impaired
individuals can be affected by the presence of multiple speakers in the surrounding en-
vironment. Thus, the ability of the system to accurately localize the target sound source
can be increased in the presence of competing sounds or background noise. To achieve
this goal, the present study focused on developing voice recognition algorithms techniques
using MFCC and LSTM to improve the robustness of the proposed system. The study
results demonstrated that the system achieved accuracy of 97% when the signal-to-noise
ratio (SNR) was at a minimum of 15.5 dB (refer to Table A1 in Appendix A). On the hand,
by comparing localization techniques, a quantitative metric such as accuracy is often used
to measure the performance of each method. This metric can be used to evaluate each
technique’s effectiveness and determine which performs best for a specific application.
Table 7 summarizes the technique, method, and accuracy reported in different studies using
different approaches. Compared with our study, implementing ultrasonic-based systems
with the LSTM model is a promising solution for the localization of visually impaired indi-
viduals. These systems showed promise in providing location information and detecting
obstacles in real-world environments.
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Table 7. Summarizing the technique, method, and accuracy for different studies.

Authors Technique Method Average Accuracy

Tan et al. [16] Interaural phase difference (IPD) Convolutional Neural Network and
Regression Model 98.96%–98.31%

Pang et al. [17] ITD, IPD, and
Microphone-array geometry

Time–frequency convolutional neural
network (TF-CNN) 90%

Yiwere et al. [34] Labeling of audio data Deep Learning: An
Image Classification 88.23%

Hu et al. [35] Relative harmonic coefficients Semi-supervised
multi-source algorithm 50% to 90%

MA et al. [36] Phased microphone array Deep Learning 70.8%–100%

Rahman et al. [37] Ultrasonic and PIR motion sensor Obstacle and Fall Detection based
on Bluetooth 98.34%

Sipos et al. [38] RFID reader Obstacle detection 40%–99%
AL-Madani et al. [39] Bluetooth Low Energy (BLE) beacons Fuzzy Logic Type-2 98.2%

In addition, this study presented a power consumption of a system designed for indoor
and outdoor localization to estimate its lifetime when integrated into an assistive device.
The system is evaluated regarding power consumption, with measurements taken for
indoor and outdoor environments. Results indicate that the power consumption of outdoor
localization is higher than that of indoor localization, with an average of 1.5 and 1 watt,
respectively. The system’s lifetime is then estimated based on the battery capacity of the
assistive device, with the analysis revealing that the system can run for approximately 5 h
in outdoor environments and 7 h indoors. These findings provide important insights for
the development of assistive devices that incorporate localization systems, ensuring that
they can operate effectively for extended periods in various environments.

7. Conclusions

In this work, sound-based localization prototype was developed to automatically
guide the blind and VIP. Software and hardware tools were used to implement the pro-
posed prototype. Assistive hardware tools, including Raspberry Pi4, ultrasound sensors,
the Arduino Uno microcontroller, an XBEE module, a GPS module, a digital compass,
and a headset, were utilized to implement this method. Python and the C++ software
were developed through the use of robust algorithms in order to control the hardware
components via an offline Wi-Fi hotspot. To train and identify various voice commands
such as mosque, laundry, supermarket, and home, a built-in voice recognition model was
created using the LSTM model. The Dijkstra algorithm was also adopted to determine the
shortest distance between any two places.

The simulation protocols and evaluation techniques used three thousand five hundred
varied word utterances recorded from seven proficient Arabic speakers. Data recording
was performed at a resolution of 16 bits and a sampling rate of 25 kHz. The accuracy,
precision, recall, and F-score for all the voice commands were computed with a normalized
confusion matrix. The results from the actual testing showed that controlled interior and
outdoor navigation algorithms have a high degree of accuracy. Furthermore, it was shown
that the calculated RMSD between the intended and actual nodes during indoor/outdoor
movement was accurate. To conclude, the realized prototype is simple, inexpensive,
independent, secure, and also includes other benefits.
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Appendix A

The following tables show the component specifications of hardware for the proposed
system (Table A1) and the ultrasound sensor (HC-SR04) specification with our study
results (Table A2).

Table A1. The hardware specifications.

Parameter Value

Raspberry pi4

SoC: quad-core, 64-bit @ 1.5 GHz.
Networking: 2.4 GHz and 5 GHz wireless LAN.
Bluetooth: Bluetooth 5.0
RAM: 4 GB SDRAM.
GPU: Broadcom Video Core VI.
Storage: microSD.

Ultrasound sensors

Supply Voltage: 5 V.
Current Consumption: 15 mA.
Frequency: 40 kHz.
Trigger Pulse Width: 10 µs.

Arduino Uno mi-controller

ATmega328P: (embedded chip).
Analog inputs: 6.
Digital input/output pins: I14.
Connection: USB.

XBEE module s2 1 MB / 128 KB RAM (32 KB are available for Micro Python)

GPS module

Speed precision: <0.1 m/s.
Capturing sensitivity: −148 dm.
Voltage: 3.3–5 V.
Location precision: <2.5 m CEP.

Digital compass Voltage: 3–5 V
Measuring range: ±1.3–8 gauss.

Headset

Min Frequency Response: 20 Hz.
Max Frequency Response: 20 kHz.
Impedance: 32 Ohm.
Power Input: 50 mW.
Sound Features: Sensitivity 112 dB/mW.

Table A2. The proposed indoor/ outdoor accuracy evaluation.

Sensor
Specification

Sensor type Ultrasound sensor: HC-SR04

Target Object Human

Operating min range 2 cm

Operating max range 400 cm

Operating frequency range 40 kHz
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Table A2. Cont.

Study result

The required targeting range The dead zone is <0.5 cm > 151 cm.
The active zone is <150 cm >1 cm

Participant numbers 35 in active zone 35 in dead zone

Positive 34 1

Negative 1 34

Accuracy 97%
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