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Abstract: Accurate and robust camera pose estimation is essential for high-level applications such
as augmented reality and autonomous driving. Despite the development of global feature-based
camera pose regression methods and local feature-based matching guided pose estimation methods,
challenging conditions, such as illumination changes and viewpoint changes, as well as inaccurate
keypoint localization, continue to affect the performance of camera pose estimation. In this paper, we
propose a novel relative camera pose regression framework that uses global features with rotation
consistency and local features with rotation invariance. First, we apply a multi-level deformable
network to detect and describe local features, which can learn appearances and gradient information
sensitive to rotation variants. Second, we process the detection and description processes using the
results from pixel correspondences of the input image pairs. Finally, we propose a novel loss that
combines relative regression loss and absolute regression loss, incorporating global features with
geometric constraints to optimize the pose estimation model. Our extensive experiments report
satisfactory accuracy on the 7Scenes dataset with an average mean translation error of 0.18 m and a
rotation error of 7.44° using image pairs as input. Ablation studies were also conducted to verify the
effectiveness of the proposed method in the tasks of pose estimation and image matching using the
7Scenes and HPatches datasets.

Keywords: pose estimation; image matching; local feature; global feature; deformable network;
geometric constraint.

1. Introduction
1.1. Background and Introduction

In recent years, the development of deep learning and computer vision technolo-
gies [1–3] has led to widespread research on camera pose estimation in both academia and
industry [4–6]. Accurate and robust camera pose estimation is crucial for downstream tasks,
such as object localization, size estimation, camera movement justification, activity recogni-
tion, and more, which can enable the development of smart living spaces. Examples of such
applications include fire detection, locating ingredients for cooking robots, and planning
routes to kitchens and offices. Estimating the camera’s 6 degrees of freedom (6-DoF) pose
from images captured by the camera can be achieved through end-to-end deep learning [7]
or feature matching from structure-based approaches [8]. By integrating advanced deep
learning technology with color and depth cameras as input sensors, multi-sensor systems
can assist in intelligent living.

Current image-based camera pose estimation methods are greatly affected by challeng-
ing scenes, especially illumination changes, viewpoint changes, etc. These problems lead
to inaccurate image-based pose estimation. End-to-end methods based on features and
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descriptors, such as LIFT [9], L2-Net [10], etc., aim to improve performance by changing
the network structure and order of detectors and descriptors. Regression-based methods
for camera pose estimation can either learn the mapping from image pixels to absolute
poses [11] or learn the relative poses of a pair of images, as in MapNet [12], PVL [13], and
other methods. These methods optimize the parameters of neural networks in an end-
to-end manner, enabling the use of learnable physical geometric knowledge from image
pairs to regress both absolute and relative camera poses. Geometric constraints between
the relative and absolute poses of the image pair are added to learn the absolute loss of a
single image and the relative loss of the image pair [12]. However, models based on these
methods suffer from low matching efficiency, lack robustness to challenging scenarios, and
struggle with accurate keypoint extraction.

To address the aforementioned issues and leverage the geometric constraints between
global feature image pairs, the model design is based on a combination of the deformable
network method [14,15] (which enhances the supervision of spatial sampling locations in
CNNs) and the D2-Net network. The deformable network predicts dense spatial transfor-
mations, while D2-Net simultaneously learns detectors and descriptors of key points. The
novelty of the research lies in the integration of epipolar geometry, multi-level deformable
convolution, a novel loss function in an end-to-end framework, and automatic hyperparam-
eter fine-tuning during training. This paper aims to fill the gaps in the existing literature by
proposing a more effective and accurate approach for camera pose estimation, which has
potential applications in various downstream tasks, such as object localization, object size
estimation, camera movement justification, activity recognition, and intelligent living in
smart spaces. This paper mainly combines the multi-view features of local features and
global features, and through strong supervision, the algorithm learns the shape changes
of the image to the input local features, such as point-line structure, gradient values in
different directions and dimensions, etc. Subsequently, the relevant global features are
extracted and utilized for regression-based positioning. As the deformable network can
calculate images of different scales simultaneously on a multi-layer convolutional network,
we introduce a differential deformable network as the front-end network for feature extrac-
tion, which can combine local features that are sensitive to rotation. The global rotation
consistency of invariance and global features enhances the positioning performance of the
algorithm. As a result, the algorithm is robust to both static and dynamic objects.

The main contributions of the paper are as follows:

• We propose a novel end-to-end camera pose estimation framework that uses image
pairs as input and leverages epipolar geometry to generate image pixel pairs for
estimating the camera pose. The framework also includes the automatic fine-tuning
of hyperparameters during the training process, resulting in improved accuracy and
adaptability.

• We adopt a multi-level deformable convolution approach that simultaneously detects
and describes the network to extract local features. This addresses the issue of sensi-
tivity to shape information (such as scale, orientation, etc.) and inaccurate keypoint
positioning, leading to more robust and accurate camera pose estimation;

• We propose a novel loss that integrates the detection and description loss based on
local features with the relative pose loss function based on global features. This novel
loss function enhances the accuracy of camera pose estimation by jointly optimizing
local and global feature representations, leading to improved performance compared
to existing methods;

• The proposed method is evaluated on benchmark datasets, including HPatches and
7Scenes. The HPatches dataset provides diverse image patches for illumination, view-
point, and scale evaluation, while the 7Scenes dataset offers realistic indoor sequences
for accuracy and stability testing. The experimental results verify the effectiveness
of the proposed method for image-matching tasks and camera pose estimation tasks,
and demonstrate its superiority compared to state-of-the-art methods.



Sensors 2023, 23, 4063 3 of 20

1.2. Organization

The remainder of this paper is organized as follows. Section 2 presents a review of
the related works, including localization with sparse local feature matching and camera
localization with global feature regression, which provides the context for the proposed
approach; Section 3 provides an overview of the dataset preprocessing steps, such as
updating the depth image using the position grid, associating pixels with the color image
and depth image, and introducing epipolar geometry; Section 4 describes the proposed
method of the multi-level deformable network and local feature extraction based on pixel
matching for camera pose estimation; Section 5 presents the experiments and discussions
on the settings, multi-step image pixel reprojection, image-matching experiment on the
HPatches dataset, and pose estimation experiment on the 7Scenes dataset. Finally, Section 6
summarizes the findings and potential implications of the regression-based camera pose
estimation approach using multi-level local and global features.

2. Related Work
2.1. Localization with Sparse Local Feature Matching

According to the processing order of the descriptor and detector in the feature match-
ing method, sparse local feature matching consists of the following branches: (1) detect-
then-describe approaches that include keypoint detection stages with robust and efficient
handcrafted detectors (e.g., SIFT (scale-invariant feature transform) [16], SUSAN (smallest
univalue segment assimilating nucleus) [17]), or CNN-based invariants (Convolutional
Neural Network) [18–26], followed by descriptor extraction on a sparse set of the detected
keypoints with the help of image patch [27], Siamese CNN network [28], L2-distance [10],
or second-order similarity regularization [29]. (2) The detect-and-describe approaches take
an end-to-end approach to jointly learn keypoint locations and descriptors. LIFT (learned
invariant feature transform) [9] uses a full-featured point-handling pipeline, including
feature detecting, orientation estimating, and feature describing. LF-Net (local feature net-
work) [30] proposes to confine a two-branch network into one branch for feature extraction
in an end-to-end manner. SuperPoint [26] jointly learns keypoint detection and description,
while R2D2 (repeatable and reliable detector and descriptor) [31] trains predictors of the
local descriptor discriminator. ASLFeat [32] is based on D2-Net [33] and improves the
perception ability of geometric invariance. DH3D [34] uses an embedding of detection
and description modules in a Siamese network. (3) The describe-to-detect methods extract
descriptors first and then detect keypoints. D2-Net [33] detects keypoints on a dense feature
map for more stable detectors, while DELF [35] is proposed for training keypoints in a local
maxima way. The above methods are computationally intensive due to the multi-stage
processing periods, which rely heavily on parameter assumptions and prior knowledge.
Our approach integrates the image-matching process, detection and description process,
and global feature extraction process. The proposed framework can easily extract sparse
local features in an end-to-end manner.

2.2. Camera Localization with Global Feature Regression

The regressed global features are used to compute the absolute camera pose through
single monocular images or image sequences. PoseNet [11] initially regresses the 6-DoF
pose through a single image. According to the loss function type, global feature-based
regression methods include: (1) fixed Euclidean loss-based methods, which introduce the
scaling factor for balancing the position item and orientation item [11], or add Bernoulli
distributions to describe the uncertainty of localization [36]. Furthermore, LSTM [37,38]
adds four LSTM units and SVS [39] adds a classification module to improve performance.
(2) Learnable pose loss-based methods learn the weight pose to make the results more
stable [40]. Later, the adversarial network [41] and novel DNN [13] are added to share
the same loss function. (3) Relative sequence loss-based methods learn the loss from a
pair of images with a geometric constraint [12]. These methods combine the absolute
pose loss and the relative pose loss from an image pair, and the two terms are added with
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a weighting factor. Later, DGRNet [42] adopted a similar approach to MapNet [12] by
extracting features from image pairs. The aforementioned methods lack accuracy in the
task of pose estimation with image pairs as input and multiple parameters to optimize. Our
proposed method leverages local features from image correspondences and demonstrates
robustness in changing environments.

3. Dataset Preprocessing and Epipolar Geometry

The proposed methodology aims to estimate the camera pose by utilizing the corre-
spondences obtained from RGB and depth image pairs as input. Data processing strategies,
such as random cropping and normalization operations, are consistently applied to the
fixed-step input images. Epipolar geometry [43] is employed to calculate the pixel corre-
spondences.

3.1. Update Depth Image Using Position Grid

The correspondences between color image pairs are determined based on the pixel
positions and intensities of the corresponding depth image pairs. We designed a position
grid to assist in the processing of corner pixel identification, depth information judgment,
and interpolation.

Given the width and height of the first image in the depth image pairs, we create a
corresponding position grid for further computation. Specifically, for a depth image size of
h× w, we construct a vector of size (2, h× w) to represent the coordinates of the position
grid. The vector contains two matrices of size (h, w) each, representing the horizontal and
vertical coordinates respectively. The first matrix is formed by stacking column vectors of
dimension (h, 1) with elements [0, h− 1] in the column space w times, while the second
matrix is formed by stacking row vectors of dimension (1, w) with elements [0, w− 1] in
the row space h times.

To eliminate the coordinate positions with unqualified pixels and perform further
pixel matching, we process the corner and depth value of the first depth image in the image
pair. Specifically, given the first depth image and its corresponding position grid, the two
dimensions of the position grid are defined as the i and j index values, respectively. Firstly,
we check whether the index values of the four corners of the depth image are within the
range of the image’s width and height, as shown in Figure 1. Next, we check whether the
depth of the pixels represented by the index values is greater than 0 (i.e., not occluded)
and less than 65,535 (the maximum value for depth information storage, corresponding to
a distance of 65 me), and update the index value that conforms to the corner and depth
information checks in the position grid.

Output: Depth map after corner and depth inspection, coordinates to eliminate 
unqualified information 

Define the two dimensions of the pixel location map as i and j index values, which 
respectively include h×w index values, and use the torch.floor() function to return so 
that each element is converted to the largest integer less than or equal to the element. 
Use the torch.ceil() function to return the largest integer greater than or equal to the 
input element; when i and j are integers, they are rounded up or down to the element 
itself; when i and j are not integers, i and j are respectively The combination of the up 
and down rounded values of is assigned to its corresponding upper left corner, upper 
right corner, lower left corner, and lower right corner to define the index value for 
judging the nature of the depth image. 

First, judge whether the pixel information at the corner point is satisfied that the index 
value is within the range of the width and height of the image, as shown in Figure 4.3; 
then judge whether the pixel depth in the index value is greater than 0 (that is, not Is 
occluded) and less than 65535 (the maximum value of depth information storage, 
converted to 65 meters), the ID that meets the conditions for both corner point 
information and depth information is stored. 
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Figure 1. Corner information and depth information pixel judgment of the depth map.

After obtaining the filtered depth image and its corresponding position grid, we use
weight coefficients, which are determined by the upper and lower bounds of the i and j
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index values, to compute new depth information values by a weighted sum of the four
nearest depth values; we use bilinear interpolation to update the pixel values of the depth
image. In addition, the 2D coordinates and 1D index values of the filtered depth images
are stored for further conversion.

3.2. Associate Pixels of the Color Image and Depth Image

To obtain pixel matches between color images, we apply epipolar geometry to the
depth map, camera intrinsics, and camera extrinsic parameters of the 7Scenes dataset.
Epipolar geometry calculates the relationships between the 3D points and points on the
projected 2D images from cameras taken from different views.

As the camera intrinsic parameters of the 7Scenes dataset were not calibrated, we
followed the official instructions and set the focal length to 585, the coordinate axis tilt
parameter to 0, and the principal point coordinates to (320, 240). KinectFusion provides the
camera’s extrinsic parameters in the 7Scenes dataset.

The pinhole camera model projects objects from the world coordinate system to the 2D
pixel plane through the camera plane. In this model, Pw = [xw, yw, zw]T , Pc = [xc, yc, zc]T ,
Pxy = [x, y]T , and Puv = [u, v]T represent the same object in the world coordinate sys-
tem, camera coordinate system, image coordinate system, and pixel coordinate system,
respectively. The depth information is lost from the camera’s coordinate system to the
image coordinate system during the projection process. Through a rigid transformation,
perspective transformation, and affine transformation, the coordinate transformation can
be performed in different coordinate systems. The specific transformation method and
equation are shown in Figures 2 and 3.

direction and position information, and the posture calculated by KinectFusion has been 
provided in the dataset pose ground truth, and contains the depth map and color map 
corresponding to this pose. 

4.2.3.2 The conversion relationship between world coordinate system, 

camera coordinate system, image coordinate system and pixel 

coordinate system 

The pinhole camera model can be used to model the process of projecting objects in the 
real-world coordinate system to the two-dimensional pixel plane through the camera 

plane. Where sG = ['G , óG , öG]J , s1 = ['1 , ó1 , ö1]J , 	s6[ = [', ó]J  and 	s<= =

[l, k]J respectively represent the same physical The coordinate values in the 
corresponding coordinate system, where the coordinates of the world coordinate system 
and the camera coordinate system are three-dimensional values, and the coordinates of 
the image coordinate system and the pixel coordinate system are two-dimensional 
values, which lose depth information during projection imaging. Different coordinate 
values can be converted through rigid transformation, projection perspective and 
radiation transformation and the corresponding internal and external camera parameters. 
The specific conversion method is shown in Figure 4.4, and the conversion formula is 
shown in Figure 4.5. Sometimes in order to simplify the matrix multiplication operation, 
the coordinate is increased by one dimension and converted into homogeneous 
coordinate calculation. 
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Since the same point in the real world has the same coordinates in the world coordinate
system, it is possible to obtain the world coordinates from the pixel coordinates in the first
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image through coordinate transformation. Then, the pixel coordinates of the same point
in the second image can be obtained from its world coordinates. This allows us to obtain
pixel correspondences between the image pairs.

Figure 4 depicts the process of obtaining pixel matching between image pairs with
qualified depth information. Among them, since the pixel grid coordinate system and
the pixel coordinate system are orthogonal, the mutual conversation needs to exchange
the positions of the two coordinate axes. Pixels of the second depth image (whose depth
value difference between the transformed pixels and original pixels is greater than 0.05)
are considered occluded and are filtered out. After these procedures, the filtered pixel
correspondences between the color image pairs can be obtained.

 

Figure 4.6.The coordinate point pair corresponding to the image pair generated by the 
coordinate system conversion relationship 

The depth map for each point of image 2 calculated by the above process is compared 
with the filtered depth information in the camera coordinate system in the middle of the 
calculation process. When the absolute value of the difference is determined to be less 
than 0.05, the depth point is considered not to be occluded. Record these coordinates 
and return the depth map of image 1 and image 2 under the coordinates. 

4.3 Model structure 

In order to use the advantages of simultaneous detection and description methods, such 
as robustness to challenging scenes, efficient storage and matching, etc., while 
improving its insensitivity to shape information (such as scale, direction, etc.) and lack 
of key point positioning accuracy, it also uses For geometric constraints between image 
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Figure 4. The coordinate point pair corresponds to the image pair generated by the coordinate system
conversion relationship. (Here the subgraph (1) shows the reserve computation sequence of the
coordinates while (2) shows the sequential process.

4. Method

This section presents the framework of the proposed method, which is an end-to-end
camera pose estimation network based on relative pixel correspondences and the multi-
level deformable network. We also introduce our designed loss function, which includes
the global features and local description-detection features loss. Figure 5 illustrates the
architecture of the network, which combines the supervision of local and global features.
The input to the network is an image pair that includes related depth images and pose
ground truth. The multi-level deformable network based on L2-Net is used as the feature
extractor, and different image resolutions are applied in multi-convolutional layers. The
feature detection score map is obtained by sampling and weighting different feature maps.
The extracted features are used to regress the absolute pose and relative pose through a fully
connected layer. The whole process includes four stages: data preprocessing, image feature
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extraction, image feature fusion, and image pose regression. The algorithm is illustrated in
Figure 6 with the training and testing periods.

4.1. Multi-Level Deformable Network

To enhance the modeling ability of convolutional neural networks with fixed geomet-
ric structures, a deformable convolution is introduced. It learns offset locations of spatial
samples in target tasks [14,15] through back-propagation and training the network in an
end-to-end manner. This allows for the estimation of pixel-level local feature transforma-
tions and global shape modeling using stacked convolutional networks.

4.4 Experimental verification 

4.4.1  Experimental protocol and parameter settings 

 

Figure 4.10.The network architecture fusing local and global features 

Experimental environment: The equipment used in the experiment is NVIDIA Titan X 
GPU 

Training process: Unlike the experiment in the previous chapter, the backbone network 
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experimental verification principles. The network model includes pre-differential 
network, feature fusion module and loss function calculation. 

 

Figure 4.1.Algorithm training and testing process fusing local and global features 
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Figure 6. Algorithm training and testing process fusing local and global features.

4.1.1. Deformable Convolutional Network

The deformable network has the ability to densely estimate local changes in the images
and model the transformation of CNNs by learning the offsets added in the spatial sampling
locations. The framework of the deformable network is shown in Figure 7, and it can be
trained directly from scratch. To reduce the amount of calculation, the network uses the
lightweight L2-Net [10] as the backbone network while changing the last 8× 8 convolution
layer into three 3× 3 convolution layers. The network outputs a 128-dimensional feature
map, which is 1/4 of the input resolution.

The goal of the deformable convolutional network (DCN) [14] is to improve the ability
to model geometric changes by dynamically learning the changing receptive field. To
achieve this, we use a regular grid R to sample the input feature map x in a dense and local



Sensors 2023, 23, 4063 8 of 20

manner [14]. The location enumeration pk represents a specific location on R. The output
of a single location, p0, on the feature map y can be computed as follows:

y(p0) =
K

∑
k=1

wk × x(p0 + pk) (1)

DCN enhances the regular convolution by additionally learning the sampling
offset [14] {∆pk|k = 1, . . . , K}, where K = |R|; the Equation (1) can be rewritten as:

y(p0) =
K

∑
k=1

w(pk)× x(p0 + pk + ∆pk)× ∆mk (2)

DCN enhances the regular convolution by additionally learning the sampling offset [92] 
{Δ$>|ê = 1,… ,y} and the feature amplitude [93] {Δg>|ê = 1,… ,y}, where y =
|ℛ|, the formula (4.3) can be rewritten as: 

ó($) = h q($>) ∙ Χ($ + $> + Δ$>) ∙ Δg>
#*∈ℛ

(4.4) 

Since the offset Δ°> is usually a fraction, the formula (4.4) can be realized by bilinear 
interpolation, and the feature quantity Δg> is limited to the range of (0, 1). In the 
training process, the initial values of Δ°> and Δg> are set to 0 and 0.5, respectively 
[93]. 

 

Figure 4.7.Multi-level deformable network infrastructure 

(2) Multi-level feature detection network 
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of key points, so restoring spatial resolution is an effective method to improve 
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Figure 7. Multi-level deformable network infrastructure.

∆pk and ∆mk represent the learnable offset and module scale factor of the k − th
position. The range of ∆mk is in [0, 1], and ∆pk has no constraints on the range. The bilinear
interpolation could be applied to the computation of x(p0 + pk + ∆pk). In the training
period, the initial values of ∆pk and ∆mk are given 0 and 0.5, respectively [15].

4.1.2. Multi-Level Feature Detection Network

Obtaining features from low-resolution feature maps may limit positioning accuracy.
Restoring spatial resolution has proven effective in improving positioning accuracy, such as
using other feature decoders (e.g., SuperPoint [26]) or employing dilation convolution (e.g.,
R2D2 [31]). However, these methods increase the number of learning hyperparameters and
require significant GPU storage and computational resources. This method uses the multi-
level detection method proposed by ASLFeat [32]. This method achieves the restoration of
image spatial resolution in a simple and effective way by combining the multi-level feature
detection using the inherent pyramid feature of the convolutional network.

Specifically, the method utilizes a feature hierarchical structure composed of several
levels of {t(1), t(2), . . . , t(p)} where {1, 2, . . . , 2(p−1)} is the step size, and the detection
network is applied at each level to obtain a set of detection scores {q(1), q(2), . . . , q(p)}; each
score map is up-sampled to have the same spatial resolution as the input image, and then
combined using a weighting value:

ŝ =
∑p wpq(l)

∑p wp
(3)
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The advantages of multi-level detection are embodied in three aspects. First, it uses a
multi-level detection method, which conforms to the classic space theory [44] because it has
different sizes of receptive fields to locate key points; second, compared with U-Net [45],
it recovers the spatial resolution without additional learning weights to achieve pixel-by-
pixel accuracy. Finally, it keeps the low-level features unchanged but integrates multi-level
semantic detection [46] to help preserve low-level structures, such as corners or edges. The
architecture of the entire network is shown in Table 1, where the initial resolution of the
input image is 256 × 256.

Table 1. Architecture parameter settings based on the L2-Net network. (Here X means this layer is
applied in the convolution layer.)

Layer Input Channel Output Channel Kernel Size Stride Resolution BN Layer ReLU Layer Padding Dilation

Input 3 ×1
Conv0 3 32 3 1 ×1 X X 1 1
Conv1 32 32 3 1 ×1 X X 1 1
Conv2 32 64 3 2 ×1/2 X X 1 1
Conv3 64 64 3 1 ×1/2 X X 1 1
Conv4 64 128 3 2 ×1/4 X X 1 1
Conv5 128 128 3 1 ×1/4 X X 1 1
Conv6 128 128 3 1 ×1/4 X X 1 1
Conv7 128 128 3 1 ×1/4 X X 1 1
Conv8 128 128 3 1 ×1/4 1 1

After performing feature extraction through the aforementioned multi-level deformable
network, the subsequent multi-layer perceptron outputs the estimated posture location and
rotation of the 3D feature through the fully connected layer. Since the network operates on
input image pairs, a group of identical networks is copied to form a set of parallel networks
that accept input image pairs. Finally, the network output contains a set of image pairs.
The pose, feature map, and score feature map of the image are used in the subsequent
split calculation process. Among them, the output of the last convolutional layer in the
multi-level network is a feature map, and the weighted sum of the score map is transformed
into a score feature map.

The specific calculation process is as follows: first, obtain the feature maps of the
network conv1, conv3, and conv8 layers as input. Then, normalize the feature map by
dividing each value by the largest value in the feature map. Next, fill the feature map
with mirroring and perform two-dimensional average pooling with a step size of 1 and a
pooling area size of 5 to obtain a feature map with the same size as the input. Subtract the
normalized feature map and the pooled feature map from the average value of the pooled
feature map to obtain the maximum scores on the channel and local levels, respectively.
The maximum score multiplied by the maximum value is bilinearly interpolated to the
original input image size to obtain the score feature map corresponding to the feature map;
the weight coefficient is multiplied and the final score feature map is obtained.

The last three layers of L2-Net, conv6, conv7, and conv8, are replaced by DCN. To
calculate multi-level features, conv1, conv3, and conv8 are selected. The weighted pro-
portion in Equation (1) is wi = 1, 2, 3, and the expansion rate of searching for neighboring
pixels is set to N(i, j) = 3, 2, 1, respectively. The basic network of this method uses a
multi-level deformable network as the feature extraction network, which will be introduced
separately below.

4.2. Local Feature Extraction Based on Pixel Matching

In contrast to the traditional “detect first and then describe” approach, which consists
of two separate stages, D2-Net [33] proposes a method that computes dense features of an
image by simultaneously obtaining detector and descriptor representations. On the other
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hand, ASLFeat [32] has improved the measurement method by calculating the loss of local
detection and description features. On this basis, this section proposes the loss of fusing the
local features and global features. During the global image training process, the loss of the
position and direction in positioning is returned. By weighing and calculating the global
loss and local loss to minimize it, the positioning performance can be improved, satisfying
both local rotation invariance and global rotation consistency. This section will introduce
the process and method of local feature extraction based on pixel matching.

The loss function module includes the global feature loss and the local feature loss.
The global feature loss is the weighted sum of the absolute pose loss of the query image
and the relative pose loss between image pairs. The local feature loss is the combination
of the descriptor loss and the detector loss. The combination is obtained by maximizing
and normalizing the product by matching the corresponding positive and negative sample
triple loss and the product of the local maximum score obtained in the feature map and the
channel maximum score.

4.2.1. Loss of Feature Descriptor

After the input training image I passes through the multi-level deformable convo-
lutional network F, a three-dimensional tensor F = F(I), F ∈ Rh×w×n can be obtained,
where h × w is the feature map size and n is the number of channels. The most direct
representation of the three-dimensional tensor F is to set the descriptor vector d as a dense
set where dij = Fij:, d ∈ Rn. Here, i = 1, . . . , h and j = 1, . . . , w. Through the descriptor
vector, it is easier to compare the difference between images and establish corresponding
relationships using the Euclidean distance. These descriptors will be dynamically adjusted
during the training phase. Even if the image contains strong appearance changes, the same
set of points in the scene can produce similar descriptors. Before comparing the descriptors,

it is necessary to apply L2 normalization to the descriptors: d̂ij =
dij
||dij ||2 .

First, we introduce the calculation method of the ternary boundary ranking loss. Given
a set of image pairs (I1, I2) and its corresponding relationship c : A←→ B, where A ∈ I1,

B ∈ I2, this loss corresponds to the distance between the pixel descriptors
ˆ

d(1)N1 and d̂(2)N2,

p(c) = ||d̂(1)A − d̂(2)B ||2 is minimized, the distance between it and the descriptor
ˆ

d(1)N1, and d̂(2)N2

of the negative sample pixel in another image is n(c) = min(||d̂(1)A − d̂(2)N2||2, ||d̂(1)N1 − d̂(2)B ||2).
The negative sample points on the two images are defined as N1 = argminP∈I1 ||d̂

(1)
P −

d̂(2)B ||2 s.t.||P− A||∞ > K, N2 = argminP∈I2 ||d̂
(1)
A − d̂(2)P ||2 s.t.||P− B||∞ > K. The calcula-

tion formula of the ternary boundary ranking loss is m(c) = max(0, M + p(c)2 − n(c)2).
The calculation diagram describing the loss is shown in Figure 8.
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Figure 8. The calculation demonstration of feature description loss. (The target of the loss function is
to minize p(n2) and p(n1), and maximize p(c)).

4.2.2. Feature Detection Sub-Loss

The three-dimensional tensor F can be represented by another set of two-dimensional
responses D [47], Dk = F::k, Dk ∈ Rh×w, where k = 1, . . . , n, in this interpretation, the
feature extraction function F can be regarded as n different feature detection functions Dk,
each of which generates a two-dimensional response graph Dk. These detection response
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maps are similar to the Gaussian difference (DoG) response maps obtained in the scale-
invariant feature transformation (SIFT [9]), or the score maps obtained in the Harris corner
detection algorithm [48].

Traditional feature detection methods (such as DoG) make the detection map sparse
by suppressing the non-maximum value of the space part. Selecting the detected point (i, j)
from multiple detection images Dk(k = 1, . . . , n) requires meeting the following criteria: in
Dk, Dk

ij is the local maximum, and the value of k is such that Dt
ij is the maximum value of t.

It can be intuitively understood that for each pixel (i, j), we first select the best detector Dk

in the different channels, and then verify whether the response graph Dk of the detector is
on (i, j). There is a local maximum. Because backpropagation is required during network
training, a series of scores are used to represent the detection information of pixels. First,
the local maximum score is defined as the keypoint peak detection:

αk
ij = so f tplus(Dk

ij −
∑(i′ ,j′)∈N(i,j) exp(Dk

i′ j′)

|N(i, j)| ) (4)

Among them, N(i, j) is a collection of nine pixels, including the pixel (i, j) and its
surroundings. The channel selection is defined as the non-maximum suppression of each
descriptor on the channel:

βk
ij = so f tplus(Dk

ij −
∑t Dt

ij

K
) (5)

In order to consider both the on-channel and local scores, all feature maps are multi-
plied and maximized to obtain a score map:

yij = maxtα
k
ijβ

k
ij (6)

The score is obtained by performing image-level normalization on the pixel point (i, j):

sij =
yij

∑i′ j′ yi′ j′
(7)

The schematic of the detection loss is shown in Figure 9. To make the neural network
more robust to scale changes and viewpoint changes, an image pyramid is used to send the
input image to the neural network at three resolutions of 0.5, 1, and 2 times, respectively.
For each resolution ρ, the feature map Fρ is calculated. Then, the feature map of the smaller-
resolution image is transferred to the feature of the larger-resolution image. The summation
between feature maps of different resolutions needs to use bilinear interpolation to adjust
the resolution of the feature maps to the same.

F̃ρ = Fρ + ∑
y<ρ

Fy (8)

c*B = max
?
5*BH V*BH (4.8) 

The score is obtained by performing image-level normalization on the pixel point (i, j): 

\*B =
c*B

∑ c*%B%(*%B%	)
(4.9) 

The schematic of the detection loss is shown in Figure 4.9. 
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Figure 9. The calculation demonstration of the feature detection loss.

In order to use a single neural network to train the detection and description process
at the same time, it is necessary to use a loss function that optimizes the detection and
description while targeting local features, so that the key points in the detection process are
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repeatable in viewpoint changes and illumination changes. During the description process,
each descriptor is intentionally made different from each other to avoid mismatches. The
ternary boundary ranking loss is used to optimize the descriptors while maintaining their
distinctiveness. To increase the optimization of the repeatability of the detector, the loss
of the detection item sij is added to the ternary boundary ranking loss. The detection and
description processes can be optimized at the same time, so the loss function of the local
feature is:

loss(Itotal) =
1
K ∑

k∈K

si
ksj

k

∑q∈K si
qsj

q
m(p(k), n(k)) (9)

4.2.3. Loss Function Based on the Image Sequence for Global Features

For global features, in addition to the loss function of learnable weights that can
constrain geometric information, MapNet [12] proposes the use of time constraints on
image pairs. This helps to force the network to learn global features that achieve overall
positioning accuracy. The method in this section uses geometric constraints and time
constraints as the loss functions of the global feature, expressed as:

loss(Iglobal) = loss(Ii) + α ∑
i 6=j

loss(Iij) (10)

Among them, i and j represent the index values of a pair of image pairs, Iij = (pi −
pj, qi − qj) represents the relative pose between the images Ij and Ij, and α is the absolute
pose loss obtained from a single image. The weighting factor between the relative pose loss
obtained from the image pair loss(Ii) is used to describe the distance between the predicted
value of the camera pose and the pose ground truth, which is defined as:

loss(Ii) = ||p− p∗||1e−β + β + ||q− q∗||1e−y + y (11)

5. Experiment and Discussion
5.1. Experimental Settings
5.1.1. Datasets

The 7Scenes dataset [49] is released by Microsoft; it uses Kinect to collect indoor
datasets with color maps, depth maps, and pose ground truth in 7 scenes. It is popular as a
benchmark in indoor camera pose estimation experiments.

The HPatches dataset [50] includes 116 image sequences and the ground truth of
homography matrices, which could be used to evaluate the extraction performance of
local descriptors. The 57 sequences include illumination conversion and the 59 sequences
include viewpoint/occlusion conversion.

5.1.2. Implementation Details

The experiment was implemented with PyTorch [51] on NVIDIA Titan X GPU [52].
The following experiment parameters were chosen based on empirical experimentation:

• Batch size of 4. This choice balances computational efficiency and memory usage;
• Number of matching correspondences of 128. This value is commonly used in related

literature for keypoint matching tasks [33];
• Training iterations of 1000. This value was determined based on empirical experimen-

tation to achieve optimal convergence and performance;
• Balancing factors between detection loss and description loss, absolute loss and relative

loss, and local loss and global loss, all set to 1. These values were chosen to give equal
importance to different components of the loss function, which could also achieve
better performance according to the experiments;
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• Initial learning rate of 1× 10−5 for the first 100 iterations, divided by 5 for every
100 iterations thereafter. This learning rate scheduling was determined based on
empirical experimentation to achieve optimal training progress and convergence.

We use a batch size of 4, with 128 matching correspondences. The balancing factors
between the detection loss and description loss, the absolute loss and the relative loss, and
the local loss and global loss are all set to 1. The training iterations are set to 1000, with
an initial learning rate of 1× 10−5 for the first 100 iterations, and then divided by 5 for
every 100 iterations. The backbone network is trained from scratch without pretraining on
the classification dataset. The input images are uniformly scaled to 256 pixels on the short
side and then randomly cropped to 256× 256. For every iteration, a pair of images with a
frame index difference of 10 is selected. The stochastic gradient descent optimizer is used
with the Adam [53] solver for fine-tuning. During inference, the input images are scaled to
256 pixels on the short side and then center-cropped to 256× 256.

5.2. Multi-Step Image Pixel Reprojection

Given the index gap of 10 and a total of 2 images, we can obtain a set of image pairs
from the 7Scenes dataset, which includes depth images, color images, and camera intrinsic
and extrinsic parameters. Through image processing and epipolar geometry, the pixel
correspondences of the image pairs could be computed.

Taking the image pair with an index gap of 400 as an example, the process is illustrated
in Figure 10. The initial number of pixels for each image in the pair is h× w = 320× 640 =
307,200. Firstly, we filter out invalid pixels using the depth check of the first depth image
resulting in 245,574 pixels. Secondly, we obtain the corresponding pixel position in the
second depth image using epipolar geometry, resulting in 245,574 pixels. Then, we filter
out pixels with invalid depth values and corner indices resulting in 148, 857 pixels. We
further filter out pixels with a projected depth difference greater than 0.05 m compared to
their own depth resulting in 126,411 pixel pairs. Finally, we randomly sample 512 pixel
pairs. The matching correspondences are shown in Figure 11.

Sensors 2023, 1, 0 13 of 20

• Initial learning rate of 1× 10−5 for the first 100 iterations, divided by 5 for every 100
iterations thereafter. This learning rate scheduling was determined based on empirical
experimentation to achieve optimal training progress and convergence.

We use a batch size of 4, with 128 matching correspondences. The balancing factors
between the detection loss and description loss, the absolute loss and the relative loss, and
the local loss and global loss are all set to 1. The training iterations are set to 1000, with
an initial learning rate of 1× 10−5 for the first 100 iterations, and then divided by 5 for
every 100 iterations. The backbone network is trained from scratch without pretraining on
the classification dataset. The input images are uniformly scaled to 256 pixels on the short
side and then randomly cropped to 256× 256. For every iteration, a pair of images with a
frame index difference of 10 is selected. The stochastic gradient descent optimizer is used
with the Adam [53] solver for fine-tuning. During inference, the input images are scaled to
256 pixels on the short side and then center-cropped to 256× 256.

5.2. Multi-Step Image Pixel Reprojection

Given the index gap of 10 and a total of 2 images, we can obtain a set of image pairs
from the 7Scenes dataset, which includes depth images, color images, and camera intrinsic
and extrinsic parameters. Through image processing and epipolar geometry, the pixel
correspondences of the image pairs could be computed.

Taking the image pair with an index gap of 400 as an example, the process is illustrated
in Figure 10. The initial number of pixels for each image in the pair is h× w = 320× 640 =
307, 200. Firstly, we filter out invalid pixels using the depth check of the first depth image
resulting in 245, 574 pixels. Secondly, we obtain the corresponding pixel position in the
second depth image using epipolar geometry, resulting in 245, 574 pixels. Then, we filter
out pixels with invalid depth values and corner indices resulting in 148, 857 pixels. We
further filter out pixels with a projected depth difference greater than 0.05 m compared to
their own depth resulting in 126, 411 pixel pairs. Finally, we randomly sample 512 pixel
pairs. The matching correspondences are shown in Figure 11.

Figure 10. The calculation process of the corresponding relationship between image pairs.
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We evaluate the performance of local descriptors on the HPatches dataset using the
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the co-visible view; (2) descriptor matching score (%MS): the ratio of correct matches
and the minimum number of keypoints in the co-visible view; (3) mean average accuracy

Figure 10. The calculation process of the corresponding relationship between image pairs.

5.3. Image-Matching Experiment on HPatches Dataset

We evaluate the performance of local descriptors on the HPatches dataset using the
following metrics: (1) keypoint repeatability (%Rep.): the ratio of potential matches in
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the co-visible view; (2) descriptor matching score (%MS): the ratio of correct matches
and the minimum number of keypoints in the co-visible view; (3) mean average accuracy
(%MMA): the ratio of correct matches to potential matches. A matching pair is defined as
the nearest neighbors after searching, and the distance between the points is less than the
error threshold. For the above indicators, Table 2 compares the average values of image
pairs in the dataset with SuperPoint [26] and D2-Net [33]. SuperPoint [26] is a widely
recognized and commonly used method for keypoint detection and description, known
for its repeatability and accuracy in challenging scenarios. D2-Net [33] is another state-of-
the-art method that has demonstrated excellent performance in local feature extraction,
matching, and camera pose estimation tasks.

Figure 12 compares the multi-step matching keypoints results by SIFT features and
the multi-step matching method in the chess scene of the 7Scenes dataset. This step
represents the frame index gap. The number of keypoints from SIFT features decreases
as the step increases, while the keypoints from the multi-step matching could provide
constant matches within a given range, which improves the robustness of image matching
and the reliability of gradient values.

Table 2. Comparison of the local descriptor matching performance between this method and other
methods on the HPatches dataset (HPatches dataset error threshold @4px).

%Rep. %M.S. %MMA

SuperPoint [26] 45.80 31.23 39.82
D2-Net [33] 47.86 23.58 43.00
This method 72.33 42.58 68.31

It is essential to obtain robust and accurate image-matching results efficiently in
challenging environmental conditions. The most popular image-matching methods could
be divided into sparse matching (including detection and description processes) and dense
matching (including description processes). Table 3 summarizes the process, advantages,
and disadvantages of various public matching methods. Detect-then-describe methods
have low robustness due to the low-dimensional features of local detectors being sensitive
to pixel intensities. The dense matching methods perform well in changing illumination
areas; however, the matching memory and time consumption are high.

the depth value is invalid and the index value exceeds the image frame. Value (the 
number of pixel pairs is 148857), compare the calculated depth with its own depth value, 
keep the positions where the absolute value difference is ≤0.05 m (the number of pixel 
pairs is 126411), and finally set the random sampling of the obtained pixel positions 
(The number of pixel pairs is 512). The final matching relationship is shown in Figure 
4.12. 
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4.4.3.2 Image matching experiment 

Table 4.2.Comparison of local descriptor matching performance between this method 
and other methods on the HPatches data set 

HPatches dataset error threshold @ 4px 
 %Rep.  %M.S.  %MMA 
SuperPoint  45.80 31.23 39.82 
D2-Net  47.86 23.58 43.00 
This method 72.33 42.58 68.31 

On the HPatches dataset, this method conducted a partial descriptor matching 
experiment, using three evaluation indicators to measure the performance of image 
matching: (1) Key point repeatability (%Rep.): the ratio of possible matches in the 
shared view (2) Match score (%MS): the ratio of correct matches and the minimum 
number of key points in the shared view; (3) Average matching accuracy (%MMA): 
the ratio of correct matches to possible matches . A matching pair can be defined as the 
matching pair being the nearest neighbors after searching, and the distance between the 

Figure 11. Schematic diagram of matching relationships in different scenes.
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points is less than the error threshold. For the above indicators, Table 4.2 lists the 
average scores of all image pairs in the dataset. 

Figure 4.13 shows the multi-step matching results of feature points calculated using 
SIFT features in the chess scene of the 7Scenes dataset. The number of steps represents 
the index difference between frames. You can see the key points calculated using SIFT 
and the corresponding matching comparison. The number of key point matching 
decreases as the difference between frames increases. Using the result of multi-step 
depth matching can keep the number of matching pairs constant within a given range. 
For example, the experimentally given matching pairs are randomly selected 128 pairs, 
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Figure 12. Schematic diagram illustrating the use of SIFT features for matching.

Table 3. The process, advantages, and disadvantages of common sparse-matching methods and
dense-matching methods.

Sparse Matching Dense Matching

Detect-then-Describe Detect-and-Describe Detect

Process

Detect the keypoints of
the image; extract the de-
scriptors from the image
patches around the key-
point; output the com-
pact representation of
the image patch

Extract descriptors and
keypoints on the feature
map; detect the high-
dimensional keypoints
with locally unique de-
scriptors.

Perform the description
stage densely on the en-
tire image.

Advantages

High matching and
storage efficiency, key-
points are sensitive
to low-dimensional
information, and high
positioning accuracy.

Robust to challenging
environments, efficient
storage and matching.

Robust dense descrip-
tors for environmental
changes.

Disadvantages

Poor performance in
challenging environ-
ments (weak textures,
etc.), poor repeatability
in keypoint detection.

Dense descriptors
lead to low compu-
tational efficiency,
and the accuracy of
key points obtained
by detectors based
on high-dimensional
information is not high.

High matching time con-
sumption and memory.

5.4. Pose Estimation Experiment on 7Scenes Dataset

In order to verify the performance of our proposed network on the pose estimation task,
we conducted experiments and compared the results with several competing methods that
use multiple images or videos as input on the 7Scenes dataset. VidLoc [54], MapNet [12],
and LSG [55] were selected for comparing the translation (in m) and rotation (in ◦) errors.
As shown in Table 4, our method achieves better performance with smaller pose errors
compared to other related methods, which confirms the effectiveness of the proposed loss
function and pixel constraints.

Furthermore, Table 5 presents a comparison of different methods that use multiple
images or video as input in terms of robustness, type of graphics card, input image pixel
values, processing time per image in milliseconds, and network model size. Our proposed
method shows competitive performance in terms of time consumption, with smooth time
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and local features, and demonstrates robustness in motion blur (correspondences from
image pairs could justify moving objects) and without drift (relative pose could query
geometric constraints of image pairs and reduce drift). Without pre-training, the size of our
network model is 60 Mb. Compared to VidLoc, the time consumption of our method for
testing each image is significantly lower at 10.2 milliseconds.

To evaluate the effectiveness of each module used in the network, and to quickly
conduct the experiment, we select the heads scene of the 7Scenes dataset, which has the
smallest number of images, and the results from the heads scene could represent the
performance of the 7Scenes dataset. The ablation study experiment was conducted for
100 iterations with a learning rate of 1× 10−6. Since the local loss module could only be used
with the output of the multi-level deformable network, we compared the pose estimation
results with ResNet and multi-level deformable networks, as well as different weightings
of the global loss and local loss modules. Table 6 shows that the multi-level deformable
network and the combination of global loss and local loss could obtain smaller pose errors.
Increasing the weight of the local loss could slightly improve the pose estimation results.

Table 4. Localization errors of the fusion of local and global features and other methods in the 7Scenes
dataset.

Methods Chess Fire Heads Office Pumpkin Kitchen Stairs

PoseNet [11] 0.32 m, 8.12◦ 0.47 m, 14.4◦ 0.29 m, 12.0◦ 0.48 m, 7.68◦ 0.47 m, 8.42◦ 0.59 m, 8.64◦ 0.47 m, 13.8◦

Dense PoseNet [11] 0.32 m, 6.60◦ 0.47 m, 14.0◦ 0.30 m, 12.2◦ 0.48 m, 7.24◦ 0.49 m, 8.12◦ 0.58 m, 8.34◦ 0.48 m, 13.1◦

Bayesian PoseNet [36] 0.37 m, 7.24◦ 0.43 m, 13.7◦ 0.31 m, 12.0◦ 0.48 m, 8.04◦ 0.61 m, 7.08◦ 0.58 m, 7.54◦ 0.48 m, 13.1◦

LSTM PoseNet [56] 0.24 m, 5.77◦ 0.34 m, 11.9 ◦ 0.21 m, 13.7◦ 0.30 m, 8.08◦ 0.33 m, 7.00◦ 0.37 m, 8.83◦ 0.40 m, 13.7 ◦

Hourglass PoseNet [56] 0.15 m, 6.17◦ 0.27 m, 10.84◦ 0.19 m, 11.63◦ 0.21 m, 8.48◦ 0.25 m, 7.01◦ 0.27 m, 10.15◦ 0.29 m, 12.46◦

BranchNet [57] 0.18 m, 5.17◦ 0.34 m, 8.99◦ 0.20 m, 14.15◦ 0.30 m, 7.05◦ 0.27 m, 5.10◦ 0.33 m, 7.40◦ 0.38 m, 10.26◦

Geo.PoseNet [40] 0.14 m, 4.50◦ 0.27 m, 11.8◦ 0.18 m, 12.1◦ 0.20 m, 5.77◦ 0.25 m, 4.82◦ 0.24 m, 5.52◦ 0.37 m, 10.6◦

AdPR [58] 0.12 m, 4.8◦ 0.27 m, 11.6◦ 0.16 m, 12.4◦ 0.19 m, 6.8◦ 0.21 m, 5.2◦ 0.25 m, 6.0◦ 0.28 m, 8.4◦

APANet [41] N/A,N/A 0.21 m, 9.72◦ 0.15 m, 9.35◦ 0.15 m, 6.69◦ 0.19 m, 5.87◦ 0.16 m, 5.13◦ 0.16 m, 11.77◦

Geo.PoseNet
(reprojection) [40]

0.13 m, 4.48◦ 0.27 m, 11.3◦ 0.17 m, 13.0◦ 0.19 m, 5.55◦ 0.26 m, 4.75◦ 0.23 m, 5.35◦ 0.35 m, 12.4◦

GPoseNet [59] 0.20 m, 7.11◦ 0.38 m, 12.3◦ 0.21 m, 13.8◦ 0.28 m, 8.83◦ 0.37 m, 6.94◦ 0.35 m, 8.15◦ 0.37 m, 12.5◦

MapNet [12] 0.08 m, 3.25◦ 0.27 m, 11.7◦ 0.18 m, 13.3◦ 0.17 m, 5.15◦ 0.22 m, 4.02◦ 0.23 m, 4.93◦ 0.30 m, 12.1◦

LSG [55] 0.09 m, 3.28◦ 0.26 m, 10.92◦ 0.17 m, 12.70◦ 0.18 m, 5.45◦ 0.20 m, 3.69◦ 0.23 m, 4.92◦ 0.23 m, 11.3◦

VidLoc [54] 0.18 m, N/A 0.26 m, N/A 0.14 m, N/A 0.26 m, N/A 0.36 m, N/A 0.31 m, N/A 0.26 m, N/A
This method 0.08 m, 3.19◦ 0.25 m, 10.89◦ 0.14 m, 12.5◦ 0.16 m, 5.15◦ 0.20 m, 4.01◦ 0.21 m, 4.91◦ 0.25 m, 11.2◦

Table 5. Comparison of experimental qualitative results between the method of fusing local and
global features and other methods.

Methods Input Robustness Graphics Card Pixel Values Time (ms)

VidLoc [54] Video Temporal
smooth Titan X 256× 256 18∼43

MapNet [12] Image pair, video Locally smooth
drift-free / 256× 256 9.4

LSG [55] Image pair
Posture uncertainty

caused by
content enhancement

Nvidia 1080Ti 256× 256 unknown

This method Image pair, depth image
Time smooth,
motion blur,

no drift
Nvidia Titan X GPU 256× 256 10.2
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Table 6. Positioning errors in the Heads scenario of the 7Scenes dataset using different networks
and loss functions. (Here X means that this network module and loss function(s) are used in the
framework.)

Networks Modules 7Scenes Dataset

ResNet34
Multi-Level
Deformation

Network
Global

Loss
Local
Loss

Local
Loss

Weight
Heads Scenes

X X 0.25 m, 17.5◦
X X 0.24 m, 16.2◦
X X X 1.0 0.15 m, 12.6◦
X X X 2.0 0.14 m, 12.5◦

6. Conclusions

In this paper, we propose a regression-based camera pose estimation framework that
consists of a multi-level deformable network for feature extraction and a loss function
that fuses multi-view features with both local rotation invariance and global rotation
consistency. To address challenges such as changing environments and motion blur in
datasets, we design the feature extraction network and multi-level network to be robust
and accurate. Our experiments on the 7Scenes and HPatches datasets show that our
proposed network outperforms competing methods in accuracy and robustness. We
demonstrate that correspondences produced by camera sensors, including RGB and depth
cameras, can outperform local detection and description optimization integrated with
global feature supervision, which leverages the rotation consistency of global features
and the rotation invariance of local features. Moreover, the features captured within
global and local supervision are also suitable for image matching. In future work, we
will apply the learnable balancing factor to the loss to improve the model scalability and
portability, and will try to add other common sensors, e.g., IMUs, to improve indoor
localization performance and apply these methods to robot navigation and planning to
enable smarter living.
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Abbreviations
The following abbreviations are used in this manuscript:

I image
h height of the image
w width of the image
i index value of the image height
j index value of the image width
Pw the point coordinates (xw, yw, zw) in the world coordinate system
Pc the point coordinates (xc, yc, zc) in the camera coordinate system

https://www.microsoft.com
https://www.microsoft.com
https://github.com/hpatches/hpatches-dataset
https://github.com/hpatches/hpatches-dataset
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Pxy the point coordinates (x, y) in the image coordinate system
Puv the point coordinates (u, v) in the pixel coordinate system
f the focal length in the pinhole model
T camera external parameter matrix
K camera internal parameter matrix
x feature map
R regular grid
pk the enumeration of the location in R
∆pk the learnable offset
∆mk the module scale factor of the k− th position
wi the weight factor in different convolutional layers
N(i, j) the expansion rate of searching for neighboring pixels
F the tensor obtained through the multi-level deformable convolutional network
n number of channels
d descriptor vector
N negative sample points in the image I
D two-dimensional response
ρ resolution
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