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Abstract: A grounded coplanar waveguide (GCPW), as a millimeter wave special transmission
line, can be used to calibrate broadband oscilloscope probes. A method to change the through-hole
structure to widen the GCPW is investigated in this paper. The effect of the through-hole array on
the band-width of the GCPW is investigated and verified using COMSOL Multiphysics simulation
software. Finally, the S-parameters of the fabricated GCPWs are measured by a vector network
analyzer, and the results show that they have an insertion loss > −3 dB and return loss < −10 dB in
the frequency range of DC to 60 GHz, which satisfies the design requirements.

Keywords: broadband grounded coplanar waveguide; COMSOL Multiphysics; through-hole array;
S-parameters

1. Introduction

A grounded coplanar waveguide (GCPW), as a microwave and above-band microstrip
line, has a wide range of applications and is an indispensable component for calibrating
oscilloscope probes. Because of the wide bandwidth of the current probe, GCPW can be
regarded as a subsystem of the calibration probe. According to the time domain measure-
ment theory, the bandwidth of GCPW must be over 2 to 3 times greater than the bandwidth
of the probe [1] so that the GCPW transmission line does not affect the calibration accuracy
of the probe. This paper focuses on adjusting the through-hole structure of the GCPW to
enhance the bandwidth thereof.

The study of using GCPWs with through-hole arrays as test plates to calibrate probes
has received increasing attention, and published studies have reported that the bandwidth
of GCPWs typically reaches 50 GHz [2] or 40 GHz [3,4]. The wider the bandwidth, the
more stringent the size and structure requirements of the GCPW. Umar changed the signal
of a GCPW from a single-ended to a differential input to increase the bandwidth to 60 GHz,
which resulted in a complex structure that was not conducive to practical applications [5].
Hui Huang suppressed higher order modes by adding a through-hole structure to the
GCPW to achieve bandwidths of up to 50 GHz [6], demonstrating that adding through-
holes to the GCPW is another effective way to extend its bandwidth.

Advances in microwave technology have contributed to the development of mi-
crowave sensors and the improvement of sensor performance. For example, microwave
sensors are microwave dielectric spectroscopy and near-infrared spectroscopy techniques
combined to obtain more electromagnetic spectrum data, so the use of microwave sensors
can be more effective in identifying different substances without the use of a large number
of samples for training [7]. The new sensor combines fluorescence and microwave dielectric
spectroscopy techniques into the same physical structure, and the accuracy of honey adul-
teration identification can be improved by using the combination of two different spectral
data. Therefore, this paper is of great interest to investigate the extension of microwave
transmission line bandwidth [8].
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In this paper, the effects of the distance between the through-hole array and the slot
line, the through-hole to through-hole distance, the distance between the GCPW ends
and the edge of the through-hole array, different numbers of through-hole arrays, and the
distance between through-hole arrays on the GCPW bandwidth are studied in detail. To
make the GCPW more stable and accurate in measurement and reduce the risk of plate
bending and deformation, a support layer structure is added to increase the GCPW plate
thickness. A GCPW model is constructed using COMSOL simulation software based on the
analysis of electromagnetic field theory, and the parameters of the through-hole array are
adjusted to improve the bandwidth. Next, a GCPW is fabricated based on the simulation
data, and its S-parameters are measured using a vector network analyzer. The measurement
results show that the bandwidth of the GCPW developed in this paper is DC to 60 GHz,
the insertion loss (S21) > −3 dB, and the return loss (S11) < −10 dB.

2. Mechanism of How GCPW’s Through-Hole Structure Spreads Its Bandwidth

Figure 1 shows the structure of GCPW without a through-hole, which causes the
excitation of higher-order modes. The loss of higher-order modes and radiation loss causes
the GCPW to experience energy leakage [9–12]. The higher the frequency (greater than
or equal to several tens of GHz), the more serious the leakage, thus making it difficult to
widen the bandwidth. The introduction of a through-hole array structure in the GCPW can
reduce the higher-order modes [11], which makes the resonant frequency move to higher
frequencies, reduce energy leakage, and facilitate impedance matching, thus spreading the
bandwidth. In this paper, the parameters of the through-hole array [11,13] are changed
along the central conductor of the GCPW to suppress the higher-order modes and radiation,
reduce the energy leakage, and thus widen the GCPW bandwidth.
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Figure 1. A grounded coplanar waveguide (GCPW) without through-hole. (a) Top view. (b) Side view.

Figure 2 shows a schematic diagram of the GCPW with a through-hole array. The
parameter S indicates the width of the central signal conductor, G indicates the width of the
slot line, h indicates the thickness of the dielectric, t is the thickness of the copper foil, the
parameter VR indicates the radius of the through-hole, and VD indicates the through-hole
to through-hole distance. The parameter VL is the distance from the slotted line to the
through-hole array. The through-hole array consists of a row of through-holes located on a
specific side ground plane. The parameters VE1 and VE2 indicate the distances between
the edges of the GCPW ends to their nearest through-holes.
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Figure 2. GCPW with the through-hole array. (a) Top view. (b) Side view.

According to the electromagnetic wave propagation theory, the wavelength of electro-
magnetic wave propagation in the medium is solved by

λM =
vM

f
≈ c√

εr f
(1)

where λM is the wavelength of electromagnetic waves propagating in the medium; vM is
the speed of propagation of electromagnetic waves in the medium; f is the frequency of
electromagnetic waves; c is the speed of light; and εr is the substrate dielectric constant.

In this paper, the design simulation bandwidth is 67 GHz GCPW, and the 67-GHz
electromagnetic wave in the medium has a propagation wavelength of about 2.4 mm, as
seen in Equation (1). Considering that the length of the patch antenna is generally a half
wavelength or an integer times the wavelength when the radiation is at its maximum [14],
to determine the length of GCPW, we can consider the integer multiple of the wavelength
first followed by the actual demand to suppress radiation. For an electromagnetic wave
of 67 GHz, the wavelength propagated in the medium is about 2.4 mm, so 24 mm can be
selected as the length of the GCPW when choosing the integer multiple of the wavelength.

Based on [2], the dielectric material of GCPW is determined to be RO4003C, the
dielectric constant (εr) of RO4003C substrate is 3.38, the thickness of the substrate (h) is
8 mil, the width of the center conductor (S) is 0.35 mm, the width of slot line (G) is 0.2 mm,
the width (W) is 500 mil, and the length (L) is 24 mm. Figure 3 shows the simulated S21 and
S11 curves for the GCPW without the through-hole. The bandwidth of the GCPW without
through-holes is 12.25 GHz, which is far from the design target. The GCPW simulation
bandwidth index is the highest when S21 > −3 dB and S11 < −20 dB.
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3. Research and Design of the Through-Hole Structure to Widen the
GCPW Bandwidth

In order to improve the signal transmission efficiency and extend the bandwidth, it
is necessary to determine the dielectric substrate material, reduce the conductor loss and
dielectric loss, as well as ensure the impedance matching of the characteristic impedance
of the through-hole-free GCPW. However, the through-hole-free GCPW structure causes
excitation of higher-order modes and energy leakage, making it difficult to extend the band-
width no matter how the dielectric material and basic structure parameters are changed. To
solve this problem, a through-hole array structure can be introduced to form a GCPW with
a through-hole structure, so that the equivalent circuit parameters of the GCPW can be
changed and the characteristic impedance can be adjusted, thus spreading the bandwidth
of the GCPW [15]. The presence of vias can change the equivalent circuit parameters of the
GCPW by adding inductance and capacitance, thus changing the characteristic impedance
and electromagnetic field distribution of the GCPW. By adding a single-row through-hole
array, the resonant frequency can be shifted backward, and impedance matching can be
achieved by adjusting the number and position of through-holes. Therefore, the introduc-
tion of the through-hole array structure on the non-through-hole GCPW is an effective
method to solve the problems of high-order mode excitation and energy leakage and to
widen the bandwidth.

The empirical formula for the maximum distance VDmax between two through-holes
is as follows

VDmax =
c0

2 fmax
√

εr
(2)

where c is the speed of light; fmax is the maximum frequency; and εr is the dielectric
constant of the substrate material. The bandwidth of the GCPW studied in the simulation
of this paper is 67 GHz, and the maximum spacing between through-holes (VDmax) is
calculated to be 1.2 mm using Equation (2). Based on the above discussion, the simulation
is chosen in the range of VD ≤ 1 mm.

3.1. Effect of Distance between Through-Hole and Slot Line

GCPW can be made to suppress higher-order modes and radiation by adding through-
holes placed along the center conductor and varying the distance from the through-holes
to the slot line to spread the bandwidth [16].

When multiple through-holes are placed along the center conductor, an electrical wall
and a rectangular waveguide are formed at the GCPW. The cutoff frequency of the main
rectangular waveguide is shown in Equation (3) [16,17]:

fc =
c

2
√

εr(dx − d)
(3)

where fc is the cutoff frequency of the dominant mode; dx is the distance between the two
through-holes located opposite the central conductor; d is the through-hole diameter; c
is the speed of light; and εr is the relative permittivity of the substrate. From [16], it is
known that the higher the frequency, the greater the corresponding higher-order mode
and radiation at the same cutoff frequency. Therefore, the higher cutoff frequency of the
rectangular waveguide suppresses the radiation loss and the propagation of higher-order
modes. The bandwidth can be spread by reducing the distance from the through-hole to
the slot line.

The VL in this section varies from 5.2 mm to 0.2 mm, where VD = 1 mm, VE1 = VE2 =
2.1 mm, and VR = 0.3 mm. Figure 4 shows S21 and S11 of the GCPW for different VL values
and the GCPW bandwidth corresponding to different VL values. The smaller the VL, the
higher the GCPW bandwidth. However, due to the actual machining process, VL cannot be
infinitely small, so in this paper, after simulating different values of VL, the optimal value
of VL is determined to be 0.2 mm.
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diagram. (b) S11 simulation diagram.

3.2. Effect of Through-Hole-to-Through-Hole Distance

The through-hole array connects the upper and lower ground plane because the
current generates a magnetic field, and there is a parasitic inductance that causes a potential
difference that leads to radiation; the potential difference between the upper and lower
ground plane causes the propagation of higher-order modes due to the parasitic inductance
of the through-hole [16]. The number of through-holes [13] can balance the potential
difference between the upper and lower ground plane, reduce the propagation of higher-
order modes, change the resonant frequency, and reduce energy leakage. Given that a
dense through-hole along the center conductor can reduce radiation loss and achieve a
sufficiently good grounding [18], it is beneficial to widen the bandwidth by increasing the
number of through-holes and reducing VD.

In this section, VD is varied from 1 mm to 0.46 mm, keeping VL = 0.2 mm, VE1 = VE2 =
2.1 mm, and VR = 0.3 mm. Figure 5 shows S21 and S11 of GCPW with different VD values
and the bandwidth of GCPW corresponding to different VD values. The bandwidth of
GCPW increases when VD decreases. However, a very small VD causes a large impedance
mismatch and leads to a reduced bandwidth. In this section, by simulating different VD
values, the best value of VD is confirmed to be 0.6 mm.
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3.3. Effect of the Distance (VE) between the Ends of the GCPW and the Edge of the
Through-Hole Array

In this section, VE1 varies from 2.1 mm to 0.208 mm and VE2 varies from 2.1 mm to
0.692 mm. Figure 6 shows the electric field intensity distribution for VE1 = VE2 = 2.1 mm and
VE1 = 0.208 mm and VE2 = 0.692 mm. Significant energy leakage occurs at VE1 = 2.1 mm, so
the performance of the GCPW worsens. Therefore, the GCPW bandwidth can be enhanced
by decreasing VE.
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Figure 7 shows the GCPW S21 and S11 plots for different VE1 and VE2 values, demon-
strating that it is possible to spread the GCPW bandwidth by changing the values of VE1
and VE2.
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From the above theoretical analysis and simulation results, this paper finally adopts
the parameters of VL = 0.2 mm, VD = 0.6 mm, VE1 = 0.208 mm, and VE2 = 0.692 mm
to process and fabricate the single-row through-hole array of the GCPW. The simulation
bandwidth of the GCPW reaches 67 GHz, as shown in Figure 8. Figure 9 shows the physical
diagram of the single-row GCPW. The simulation bandwidth of GCPW without through-
hole is 12.25 GHz, and the simulation bandwidth of GCPW with through-hole array is
67 GHz, so the widening ratio of array with through-hole is 446.93%.
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4. Improving the GCPW’s Performance by Increasing the Number of
Through-Hole Arrays

Due to the high through-hole density of the single-row through-hole array, the thermal
expansion coefficient of the PCB board may not match, causing the PCB board to be
deformed, lead to through-hole fracture, and adversely affect the mechanical properties of
the PCB board. To ensure that the transmission performance of the GCPW is unchanged
and easy to process, the multi-row through-hole array of GCPW is proposed [19]. Moreover,
the through-hole data of the multi-row through-hole array structure are not as dense as the
data of the single-row array structure, so the mechanical strength and processing conditions
are more favorable than those of the single-row through-hole array. Therefore, this paper
proposes a multi-row through-hole array to improve the mechanical properties of the PCB
while ensuring the GCPW is easy to process and refraining from degrading the performance
of the GCPW.

As shown in Figure 10, additional through-hole arrays are added to the existing
structure to improve the GCPW performance. The spacing (RD) of the through-hole arrays
can be varied. The first through-hole array is closest to the center signal line, while the
third through-hole array is furthest from the center signal line. The second through-hole
array is offset VX from the first through-hole array along the x-axis, and the VX value is
half of VD, with the distance between the through-holes being VD.
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4.1. Effect of Different Through-Hole Rows on the Bandwidth

Figure 11 shows that within a certain range, the greater the number of rows in the
through-hole array, the higher the bandwidth. However, when there are too many rows, the
effect of enhancing the bandwidth is not obvious, so it is necessary to find the appropriate
number of rows to enhance the bandwidth, so in this paper, two and three rows of through-
hole arrays of GCPWs are selected for processing.
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4.2. Effect of Distance (RD) between Through-Hole Arrays

From Figure 12, it is concluded that the smaller the distance between the through-hole
arrays within a certain range, the higher the GCPW bandwidth. However, note that if the
through-hole arrays are too close to each other, the problem of impedance mismatch occurs,
so the reflection increases and the bandwidth decreases. Therefore, when determining
the RD distance, care must be taken to balance both impedance matching and bandwidth
enhancement to make the bandwidth 67 GHz.
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4.3. Main Parameters of Double-Row and Triple-Row Through-Hole Array GCPWs with the
Bandwidth of 67 GHz

The basic parameters of the GCPWs with double-row and triple-row through-hole
arrays with the simulated bandwidth of 67 GHz proposed in this paper are the same as
those of the single-row GCPW. Other parameters are VE1 = VE2 = 0.3 mm, VD = 0.692 mm,
VL = 0.246 mm, VR = 10 mil, and RD = 0.854 mm. The process of determining other
parameters: first add a single-row through-hole array, determine the number of through-
holes and the radius of the single-row through-hole array according to the parameters of
the 50 GHz GCPW proposed by Jiangmiao Zhu [2], then extend the GCPW bandwidth
by adjusting the VL, VD and VE parameters, and then extend the bandwidth to 67 GHz
by increasing the number of through-hole arrays and adjusting the RD parameters. The
parameters of single-row through-hole array GCPW are denser than those of the double-
row and triple-row through-hole array GCPWs. Therefore, the double-row and triple-row
GCPWs are easier to process. Figure 13 shows the physical diagram of the machining of
the double-row and triple-row GCPWs.
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5. Improving the GCPW’s Performance by Adding Support Layers

A support layer is added to the GCPW to stabilize its structure and make it less
prone to deformation [19], thereby enabling it to make more accurate measurements. The
support layer consists of two parts of material, divided into two layers: the first part of the
material is FSD330N with thickness T and the second part of the material is RO4003C, a
high-frequency material with thickness H. Figure 14 presents the cross-sectional view of the
GCPW with the support layer added. However, because the signal is transmitted over the
GCPW, the propagation speed changes due to the change of the medium reflected by the
signal and the change of the equivalent dielectric constant, causing the GCPW bandwidth
to change.
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Therefore, several simulation experiments are conducted to prove the effect of the
thickness of the transforming material on the bandwidth. First, the original thickness of
the support layer is determined. Because the thickness of the GCPW medium is 8 mil, the
variables in the first simulation are set to T = H = 0.5 mm. Next, H is kept constant, and the
value of T is varied. As can be seen from Figure 15, when T is smaller, the bandwidth is
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higher, so it is desirable to reduce the value of T to 0.1 mm. Figure 16 shows that reducing
the thickness of H has little effect on the bandwidth, so after considering the cost and
processing conditions, the most desirable value of H is determined to be 0.2 mm. At this
time, the simulation bandwidth of the GCPW is 63.5 GHz. Although adding the support
layer decreases the bandwidth of the GCPW, it increases the stability of the GCPW, so
adding the support layer is necessary.
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6. S-Parameter Measurement of GCPW
6.1. Measurement Process of the Vector Network Analyzer

After processing a single-row GCPW without a support layer, the S21 and S11 of
GCPW are measured with a keysight E8361A vector network analyzer. The temperature
during the measurement was 24 degrees and the humidity was 45% at the metrology
institute. The vector network analyzer is first calibrated, and the measurement is carried
out after the calibration is finished. The measurement interval is set to 50 MHz, the starting
frequency is 50 MHz, and the cutoff frequency is 67 GHz. The connectors at both ends of
the GCPW are connected to the coaxial cable port for measurement, and the curves of S11
and S21 are obtained and stored. The measurement diagram of the vector network analyzer
is shown in Figure 17.
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6.2. Comparison of Measurement Results and Simulation Results

As can be seen from Figures 18–20, the actual measurements in the frequency range
from DC to 60 GHz are satisfied with S21 > −3 dB and S11 > −10 dB, indicating that
the GCPW measured in this paper has good performance in this frequency range with a
bandwidth of 60 GHz. By comparing the results in these three figures, it can be found that
a similar fluctuation change is observed at the frequency position after 30 GHz, indicating
that this variation may be due to only one reason, and therefore, it is inferred that this
variation may be caused by the performance problem of the connector.

In addition, the simulated bandwidth of the GCPWs is 67 GHz, which is different from
the measured bandwidth of the vector network at 60 GHz. This may be caused by the slight
difference between the connector performance, the manufactured and simulated values of
the processing, and the effect of the copper foil roughness on the signal transmission.

In the frequency range from 60 GHz to 67 GHz, the S21 of GCPW No.1, No.2 and
No.3 is less than −3 dB, but the maximum “bad point” is −3.83 dB, and only a very few
points of S11 is greater than −10 dB, so although there is a certain signal loss, but because
the loss is small, it is acceptable. Therefore, although there is a certain amount of signal
loss, but because the loss is small, it is acceptable, and these GCPW can still be used in
actual engineering.

From the frequency range of DC-67 GHz, the maximum “bad point” of S21 of the
three GCPWs is −3.83 dB, and because this loss is small, it does not affect the use in the
frequency range of DC-67 GHz. In the actual measurement, the calibration requirement
has been satisfied for the probe calibration experiment with the bandwidth below 20 GHz,
and the design of single-row, two-row and three-row unsupported layer GCPWs in this
paper is successful. The GCPWs, which have been measured in the frequency domain, can
be used to calibrate digital oscilloscope probes. Therefore, the GCPWs measured in this
paper can be used to calibrate the probes of digital oscilloscopes. Calibration of oscilloscope
probes can be accomplished by building a broadband GCPW-based measurement system,
obtaining data through experiments, and then obtaining the bandwidth of the probe
through data processing.
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7. Conclusions

In this paper, broadband GCPWs with different types of through-hole arrays were
designed and fabricated. Furthermore, the effect of changing the geometry of the through-
holes on the GCPW bandwidth was investigated through a theoretical analysis of electro-
magnetic fields and COMSOL simulation; the main parameters for spreading the GCPW
bandwidth were also analyzed in detail. In addition, when the main parameters of the
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wideband GCPW were too small to be fabricated due to the limitation of the fabrication
process, increasing the number of rows of through-hole arrays was proposed to widen the
frequency band. Three physical GCPWs were fabricated according to the simulation data,
which were measured with a vector network analyzer, and bandwidths ranging from DC to
60 GHz were obtained, all of which satisfied S21 > −3 dB and S11 > −10 dB, thus meeting
the design requirements.
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