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Abstract: Multifocal glasses are a new type of lens that can fit both nearsighted and farsighted vision
on the same lens. This property allows the glass to have various curvatures in distinct regions within
the glass during the grinding process. However, when the curvature varies irregularly, the glass is
prone to optical deformation during imaging. Most of the previous studies on imaging deformation
focus on the deformation correction of optical lenses. Consequently, this research uses an automatic
deformation defect detection system for multifocal glasses to replace professional assessors. To
quantify the grade of deformation of curved multifocal glasses, we first digitally imaged a pattern
of concentric circles through a test glass to generate an imaged image of the glass. Second, we
preprocess the image to enhance the clarity of the concentric circles’ appearance. A centroid-radius
model is used to represent the form variation properties of every circle in the processed image.
Third, the deviation of the centroid radius for detecting deformation defects is found by a slight
deviation control scheme, and we gain a difference image indicating the detected deformed regions
after comparing it with the norm pattern. Fourth, based on the deformation measure and occurrence
location of multifocal glasses, we build fuzzy membership functions and inference regulations to
quantify the deformation’s severity. Finally, a mixed model incorporating a network-based fuzzy
inference and a genetic algorithm is applied to determine a quality grade for the deformation severity
of detected defects. Testing outcomes show that the proposed methods attain a 94% accuracy rate
of the quality levels for deformation severity, an 81% recall rate of deformation defects, and an 11%
false positive rate for multifocal glass detection. This research contributes solutions to the problems
of imaging deformation inspection and provides computer-aided systems for determining quality
levels that meet the demands of inspection and quality control.

Keywords: multifocal glasses; deformation inspection; quality level determination; slight deviation
control scheme; fuzzy theory; genetic algorithm

1. Introduction

Curved components can often meet a wide range of structural requirements because
they allow greater geometric freedom in design. They can establish the general look and feel
of the design [1]. Components with curved surfaces are popular in engineering practices
such as automotive, aerospace, optics, etc. A glass is a piece of a lens, plastic, or other
transparent material that is curved on one or both sides; these curves bend the light passing
through the lens. Such optical devices tend to converge and diverge light beams through
refraction to produce optical images. However, components with curved surfaces often
need to be inspected, which can lead to complications that reduce the sensitivity of defect
detection and increase the chance of false alarms [2,3].

Multifocal glasses are a new type of lens that can fit both nearsighted and farsighted
vision on the same lens. This property allows the glass to have various curvatures in
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distinct regions within the glass during the grinding process. However, the disadvantage
of multifocal glasses is that when the curvature changes abnormally, the glasses are prone
to optical deformation during imaging. Because the glasses are utilized to directly envelop
the eyes of the user, the deformation of the glass will cause imaging errors, which will
bring trouble or even danger to the daily activities of the user. For example, dizziness may
occur when going downstairs, or the inability to correctly decide the location between
steps may be hazardous for the person. Figure 1 shows diagrammatic sketches of the
imaging deformations of the stairs at close range using defective and normal multifocal
glasses, respectively.
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of wearing progressive multifocal glasses is that when you need to see farther places (scen-

ery, buildings, etc.), you can use the area of the top half of the lens; when you need to see 

a closer place (mobile phone, book, etc.), you can use the bottom half area of the lens; the 

middle region is the progressive area for adjustment. The disadvantage of this lens is that 

there will be blind spots in the lower right and lower left. Frequent deformations in the 

blind areas also need attention since these deformations will explicitly influence the im-

aging quality of objects viewed by users. 

 

Figure 2. Functional block diagram of a progressive multifocal glass. 

Although the blind spot location is usually not larger than in the other areas, the use 

of this area is very important and requires special inspection. At present, the degree of 

deformation of the blind area is inspected by inspectors operating manual instruments. 

Figure 1. Diagrammatic sketches of the imaging deformation of the stairs at close range using
multifocal glasses: (a) defective glasses, (b) normal glasses. (The range of the white frame is the field
of view of the eyes wearing glasses, and the range of the red circle is the place where the imaging
area is deformed).

Progressive multifocal glasses allow people with myopia and presbyopia to easily
and effectively improve their vision [4,5]. The progressive multifocal glass has areas of
nearsighted, farsighted, progressive, and blindness, as shown in Figure 2. The advantage of
wearing progressive multifocal glasses is that when you need to see farther places (scenery,
buildings, etc.), you can use the area of the top half of the lens; when you need to see a
closer place (mobile phone, book, etc.), you can use the bottom half area of the lens; the
middle region is the progressive area for adjustment. The disadvantage of this lens is
that there will be blind spots in the lower right and lower left. Frequent deformations in
the blind areas also need attention since these deformations will explicitly influence the
imaging quality of objects viewed by users.
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Figure 2. Functional block diagram of a progressive multifocal glass.

Although the blind spot location is usually not larger than in the other areas, the use
of this area is very important and requires special inspection. At present, the degree of
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deformation of the blind area is inspected by inspectors operating manual instruments.
Since imaging deformation has no regular form and clear borders, it is frequently difficult
to identify and quantify, particularly on curved multifocal glasses. Furthermore, outwardly
curved glasses tend to hinder the identification of deformation defects in multifocal glasses
due to their high transmittance and reflectivity. This study develops an optical inspection
system to quickly inspect and classify deformation defects in multifocal glasses to replace
professional assessors.

The rest of the article is composed as follows. First, we review the articles on the
current techniques used by visual inspection systems for transparent products. Second,
we describe the proposed image procedures to detect imaging deformation defects and
determine the quality level of multifocal glasses. Third, we conduct tests and assess the
performance of the suggested approach and traditional techniques. Finally, we conclude
the contributions and indicate further directions.

2. Literature Review

Automated visual inspection (AVI) is a crucial step in quality assessment for produc-
tion processes as it assures high quality and enhances productivity by rigorously examining
and evaluating all products in an industrial process [6,7]. The AVI system integrates com-
puter vision and machine learning techniques and has been widely applied in various
industries [8]. To improve the quality of glass products, many researchers have developed
automated optical inspection devices using advanced image processing methods to de-
tect the shape and surface of glass products and analyze their optical properties. These
studies focus on detecting surface defects in industrial precision glass-related products,
such as: applying precise band Gaussian filtering based on discrete cosine space to detect
the appearance flaws of capacitive touch screens with directional textures [9], proposing
an optical detection method for aspheric glasses in semiconductor sensor modules [10],
combining Hilbert–Huang transform with random forest model to locate the flaw positions
on the front or back side of the screens [11], and using convex hull algorithm after Fourier
filtering to implement car mirror detection structure [12]. These vision inspection systems
mainly target surface defects of glass-related industrial products.

Image deformation caused by perspective requires image correction before further im-
age processing [13]. In previous studies on deformation detection and correction methods,
Mantel et al. [14] proposed a technique for identifying perspective deformation in photolu-
minescence images of photovoltaic screens, and Cutolo et al. [15] presented fast methods
for calibrating see-through head-mounted displays using calibration camera. Apparently,
most studies on perspective-related deformations have focused on deformation correction
for optical glass [16,17].

Transmission deformation refers to the image quality degradation of an observed ob-
ject due to refractive media. Previous studies on deformation detection via the transmission
of industrial components include Dixon [18] who designed a system to measure optical
deformation in aircraft transparencies using digital imaging and a decision tree-based
classifier. Youngquist et al. [19] introduced a new method of interpreting transmitted defor-
mations and enabled the use of phase-shifting interferometers to estimate deformations
in large optical windows. Chiu et al. [20] constructed an optical system based on small
drift control charts to identify deformation defects in curved car mirrors. Gerton et al. [21]
analytically investigated the deformation patterns of Ronchi meshes to assess the impact of
deformation on eyewear products. Lin et al. [22] employed the Hough transform voting
scheme to inspect deformation defects for see-through glass products.

Glasses are wearable products that are closely related to human daily activities and
require strict testing and verification. If the eyeglass lenses have excessive defects, the
user’s safety will be compromised. Wang et al. [23] performed a symmetric energy anal-
ysis on different color spaces to evaluate the coating quality of glass. Yao et al. [24]
employed low-angle LED (light-emitting diode) illumination and image normalization
techniques for computer vision and lens categorization to identify glass surface defects.
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Karangwa et al. [25] developed a visual inspection platform integrating deep learning mod-
els and semantic segmentation to detect and classify the visual defects of optical glass.
Lin et al. [26] designed an optical inspection system based on computer vision for various
optical components, such as camera lenses, glasses, and other optical devices. Lin [27]
proposed a method based on adaptive vision, combining wavelet feature extraction and
support vector machine classification to classify lens images and determine the grade
of eyeglasses.

Currently, most optical inspection systems for transparent glass products mainly detect
surface defects and do not identify imaging deformation defects. The imaging deformation
defects in curved glass surfaces are highly transmissive and reflective and are difficult to
accurately detect [20]. Most of the related studies on perspective deformation focus on
the deformation correction of optical glasses. At present, few works have applied optical
inspection systems to detect imaging deformation defects in eyeglasses. Therefore, we
propose an optical inspection system based on a slight deviation control scheme to detect
imaging deformation defects in multifocal glasses. With proper parameter settings and
robustness analysis, the method can recognize not only severe deformation defects but also
slight deformation defects.

3. Research Method

This study presents an optical inspection system with familiar norm patterns of image
capture and employs a slight deviation control scheme to check for deformation defects,
and a mixed intelligent model incorporating a genetic algorithm and a network-based
fuzzy inference system to decide the grade of deformation severity of the multifocal glasses.
To measure the grade of deformation of a multifocal glass, we first digitally imaged a
pattern of concentric circles through a test glass to generate an imaged image of the glass
deformation. This deformation image is examined to investigate the deformation’s presence
and the defects’ location. Secondly, the imaged image is preprocessed to enhance the clarity
of the concentric circles’ appearance. A centroid-radius model is adopted to represent
the form variation properties of every concentric circle in the processed image. Thirdly,
by looking for small changes in characteristic distance deviations to detect deformation
defects through a slight deviation control scheme, a difference image showing the detected
deformation defects can be obtained. Fourthly, according to the deformation measurements
and locations that occurred during the training phase, the deformation’s fuzzy membership
functions and inference rule sets are established. Finally, a mixed model incorporating
a genetic algorithm and a fuzzy inference model is adopted to judge the grade in the
deformation severity of the detected deformation defects. Figure 3 shows the workflow of
the stages of the proposed approach.
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3.1. Image Capture and Image Preprocessing

The adopted test samples are 6.0 mm thick and 48.4 mm in diameter and are arbitrarily
drawn from the production line of a multifocal glass producer. In order to capture digital
imaging images of norm patterns by testing samples to create imaging deformation maps
of samples, this work suggests an imaging acquisition device using a concentric circular
pattern for imaging image extraction. Figure 4 illustrates the arrangement of the image
acquisition apparatus to capture the test images of multifocal glasses. The test sample is
inserted horizontally into the custom-made fixture in front of the norm pattern. A norm
pattern of essentially concentric circles is placed on the foundation of the stand. A camera
with a mount is applied to capture images from the sight transferred through the test
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glass on a pattern of concentric circles. To capture a digital image of a norm pattern with
appropriate brightness, the light source control of the surroundings in which the image is
acquired is also important.
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Figure 4. The proposed image acquisition system using the concentric circular pattern for image
capture.

Figure 5a,b shows two images captured from transmission imaging of the concentric
circular pattern through a normal multifocal glass and a defective glass, respectively. The
flawed image has noticeable deformation in the upper right area. The acquired images are
preprocessed in a number of stages to enhance the clarity of the appearance of objects on
light-transmitting glasses. In order to quantify the degree of deformation of the acquired
pattern images, Figure 5c depicts the binarized and thinned images of defect samples by
applying the Otsu method [28] and thinning algorithm [29] to perform segmentation and
thinning operations sequentially when using a concentric circular pattern. With these two
methods, most concentric circles are separated from the background and thinned to become
binary and 1-pixel width images. The results show that moderately deformed defects on
transparent glass surfaces are correctly segmented in binary images, regardless of small
differences in deformation.
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Figure 5. Two images captured from transmission imaging of the concentric circular pattern by a
multifocal glass: (a) normal sample; (b) defective sample; (c) binarized and thinned image of the
defective sample.

3.2. Feature Representation

When using coordinates for image feature processing, some problems arise. When
the image is translated, zoomed, or rotated, the judgment result will be erroneous due to
the coordinate changes. Hence, it should be depicted by geometric properties. We use the
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centroid-radius model [30] to represent the geometrical properties of every circle in the
image by calculating the distances from the edge points to the centroid. The coordinates
of the edge points are transformed into vectors of distance properties by the Euclidean
metric. The reason for using Euclidean distance is that it is invariant to translation, scaling,
and rotation.

We use the commonly used concentric circular pattern, which consists of eight concen-
tric circles. The centroid radius ru

s is the Euclidean distance calculated from the centroid
O(x0, y0) and the s-th boundary point (xs,u, ys,u). The distances to the u-th circle in the
concentric circular pattern are:

ru
s =

√
(xs,u − x0)

2 + (ys,u − y0)
2, s = 1, 2, 3, . . . (1)

For this pattern of concentric circles, many centroid radii of the u-th concentric circle
can yield a distance vector Ru, expressed as follows:

Ru = {ru
1 , ru

2 , ru
3 , . . . ru

s , . . .}, u = 1, 2, 3, . . . , 8 (2)

Due to scale and rotation invariance, we normalize the distance vector Ru to 0 and 1
by dividing each value by the maximum value of the distance vector to obtain a normalized
distance vector Qu:

Qu = {qu
1 , qu

2 , qu
3 , . . . , qu

s , . . .}, where qu
s = ru

s /max(ru
s ) (3)

When calculating the distances of centroid radii from the u-th circle to the circle’s
centroid and normalizing it to a vector Qu, all points and Euclidean distances from the
feature vector can be plotted, as shown in Figure 6a. Figure 6b indicates that the more
the normalized distance values are, the farther they are from the center position, and the
potential deformation in these concentric circle regions is more obvious.
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3.3. Deformation Detection by a Slight Deviation Control Scheme

The distance feature vectors of all complete concentric circles in a test image are
contrasted with those of the defect-free image, and the distance deviations of the respective
edge points are measured to locate potential deformations in the test image. To detect
slight deviations in distance variations, we propose a slight deviation control scheme, the
exponentially weighted moving average (EWMA) scheme, which is usually applied in
statistical process control [31,32]. We apply the EWMA scheme to find slight changes in
distance deviations to detect deformation defects.
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The EWMA scheme is also a good option to detect slight drifts [33,34]. The exponen-
tially weighted moving average Zs with the s-th sample point is defined as:

Zs = λ qs + (1− λ) Zs−1 (4)

where the initial value of Zs is the target value Z0 = µ0 and the λ is the named constant
weight located in the space 0 < λ
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1. The value of parameter λ in the space 0.05~0.25 is
suitable for the detection of slight deviations in practical application. A recommended rule
is to adopt smaller λ values to detect slight variations. The control limit of the upper bound
(UCL) and the control limit of lower bound (LCL) for the EWMA scheme are expressed
as [33]:

UCLs = µ0 + Lσ

√
λ

2− λ

[
1− (1− λ)2s

]
(5)

LCLs = µ0 − Lσ

√
λ

2− λ

[
1− (1− λ)2s

]
(6)

The parameter designs of the chart are the multiple of the standard deviation σ applied
in the control limits (L) and the value of constant weight (λ). The capability of the EWMA
scheme is roughly comparable to that of the CUSUM scheme, and in some respects, it is
simpler to establish the model and manipulate the schema [35,36]. Figure 7a is the output
of the fifth circle in the concentric circular pattern of a test image performed by the EWMA
scheme. Figure 7b shows when EWMA is used to detect the deformation defect regions;
the boundary point range of the defect position will thus be clearer.
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3.4. Quality Level Determination of Deformation Severity by the Fuzzy Inference System

This research applies a fuzzy-related model to automatically detect changes in defor-
mation severity [37]. The genetic algorithm-based adaptive neuro-fuzzy inference system
(GA-based ANFIS) model combines genetic algorithms and adaptive-network-based fuzzy
inference theory, consisting of FIS and back-propagation network (BPN). In this study, a
GA-based ANFIS model is used to judge the quality grade of deformation in multifocal
glasses. When the merits of these techniques are combined, the judgment accuracy of the
detection system will be notably enhanced.

By contrasting the detected deformation defect image with the concentric circular
pattern image, Figure 8a shows that the regions labeled by red lines are the deformation
defects, and the regions labeled by white lines are the norm pattern. In addition, the points
on the found defects are contrasted to the corresponding points in the concentric circular
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pattern, respectively. The Manhattan metric vector U denoting the measurement of the
deformation amount is defined as follows:

us = |xm,s − xn,s|+ |ym,s − yn,s| (7)

U = {u1, u2, u3, . . . , us, . . .}, s = 1, 2, 3, . . . (8)

where xm,s and ym,s are the (x, y) coordinates of the s-th edge point in a test image, xn,s and
yn,s are the corresponding (x, y) coordinates of the s-th edge point in the concentric circular
pattern image.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 19 
 

 

𝑢𝑠 = |𝑥𝑚,𝑠 − 𝑥𝑛,𝑠| + |𝑦𝑚,𝑠 − 𝑦𝑛,𝑠| (7) 

𝑈 = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑠, … }, s = 1, 2, 3, … (8) 

where 𝑥𝑚,𝑠 and 𝑦𝑚,𝑠 are the (x, y) coordinates of the s-th edge point in a test image, 𝑥𝑛,𝑠 

and 𝑦𝑛,𝑠 are the corresponding (x, y) coordinates of the s-th edge point in the concentric 

circular pattern image. 

 
(a) (b) 

Figure 8. Two resulting deformation images: (a) a difference image labeled by detected deformations 

in red, and (b) a difference image labeled according to three distinct deformation severities (severe 

level in red, average level in blue, and slight level in green).  

Figure 8b shows a difference image labeled according to three different deformation 

severities. The image is distinguished as three regions according to three distinct degrees 

of deformation: the red-line portion is the low allowance area, which comprises the first 

and second circles, named zone A; the blue-line portion is the medium allowance area, 

which consists of the third, fourth, and fifth circles, named zone B; the green-line portion 

is the high allowance area, composed of the rest circles, named zone C. The measurements 

of the individual deformations of the three zones are fed into the model for fuzzy inference 

and grade judgment. 

3.4.1. Fuzzy Inference System of Deformation Levels 

The main purpose of the FIS model is not only to transform the measured values into 

fuzzy membership functions but also to set up fuzzy inference regulations and modes 

[38,39]. Its merit is that, while the input is fuzzy details, an appropriate corresponding 

value can be output through the process of establishing inference rules and defuzzification 

algorithms. In this work, the measures of deformation in zones A, B, and C are employed 

as the input items to categorize the severities of glass deformation. When performing 

fuzzy inference, it is first necessary to transform the feature values of the distortion varia-

bles into membership functions. We use Gaussian membership functions to set the range 

of feature values as follows: 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢; 𝜎, 𝑐) = 𝑒−
1
2

(
𝑢−𝑐

𝜎
)2

 (9) 

where σ is the standard deviation and c is the center point of the Gaussian membership 

function. 

Table 1 summarizes three features as the input items of the FIS model, which are the 

deformation degrees of the three zones, A, B, and C, respectively, and the output item is 

the quality grade of deformation. In the boundary settings of the fuzzy sets of the three 

input measures, while the input is the deformation of zone A, due to the low allowance, 

it is set to two levels, and the other inputs and outputs are three levels. The membership 

functions and fuzzy set definitions of the input items are shown in Table 2. 

  

Figure 8. Two resulting deformation images: (a) a difference image labeled by detected deformations
in red, and (b) a difference image labeled according to three distinct deformation severities (severe
level in red, average level in blue, and slight level in green).

Figure 8b shows a difference image labeled according to three different deformation
severities. The image is distinguished as three regions according to three distinct degrees of
deformation: the red-line portion is the low allowance area, which comprises the first and
second circles, named zone A; the blue-line portion is the medium allowance area, which
consists of the third, fourth, and fifth circles, named zone B; the green-line portion is the
high allowance area, composed of the rest circles, named zone C. The measurements of the
individual deformations of the three zones are fed into the model for fuzzy inference and
grade judgment.

3.4.1. Fuzzy Inference System of Deformation Levels

The main purpose of the FIS model is not only to transform the measured values
into fuzzy membership functions but also to set up fuzzy inference regulations and
modes [38,39]. Its merit is that, while the input is fuzzy details, an appropriate corre-
sponding value can be output through the process of establishing inference rules and
defuzzification algorithms. In this work, the measures of deformation in zones A, B, and C
are employed as the input items to categorize the severities of glass deformation. When
performing fuzzy inference, it is first necessary to transform the feature values of the
distortion variables into membership functions. We use Gaussian membership functions to
set the range of feature values as follows:

Gaussian(u; σ, c) = e−
1
2 (

u−c
σ )

2
(9)

where σ is the standard deviation and c is the center point of the Gaussian member-
ship function.

Table 1 summarizes three features as the input items of the FIS model, which are the
deformation degrees of the three zones, A, B, and C, respectively, and the output item is
the quality grade of deformation. In the boundary settings of the fuzzy sets of the three
input measures, while the input is the deformation of zone A, due to the low allowance,
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it is set to two levels, and the other inputs and outputs are three levels. The membership
functions and fuzzy set definitions of the input items are shown in Table 2.

Table 1. The input and output items of the suggested FIS model.

Inputs Outputs

Features U1: Deformation
measure in zone A

U2: Deformation
measure in zone B

U3: Deformation
measure in zone C Y: Distortion levels

Degrees A1: Small
A2: Large

B1: Small
B2: Medium

B3: Large

C1: Small
C2: Medium

C3: Large

Y1: Slight
Y2: Average
Y3: Severe

Table 2. The corresponding membership functions, fuzzy sets, and ranges of the input measures.

Input Items Membership Functions of Measures Fuzzy Sets and Ranges of Measures

Deformation measure U1
in zone A
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the model combines the application of fuzzy regulations using the IF-THEN format. The 

result of each regulation is a linear combination of the input factors and the constant term. 

The final result is a weighted average of the results of each rule. It mostly employs fuzzy 

µA1 (u1; 8.3, 4.8)
µA2 (u1; 1084, 765)

Deformation measure U2
in zone B
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When the fuzzy membership functions have been set up, the fuzzy regulation base
could be created based on the allowance of the deformation level of the multifocal glass.
The closer the deformation defect occurs to the middle of the glass, the smaller the allowed
allowance is, and the degree of deformation is severe. The closer the deformation flaw
region is to the glass boundary, the higher the tolerance is allowed and is then categorized
as slight on the deformation level. The fuzzy regulations are created according to the
empirical regulations of experts. Three inputs, U1, U2, and U3, are the deformation levels
of the zones A, B, and C, respectively, and the outputs are deformation levels. For example,
while the deformation measure U1 of zone A is small (A1) and the deformation measure U2
of zone B is small (B1) and the deformation measure U3 of zone C is small (C1), the severity
of the output Y is a slight distortion (Y1). A fuzzy regulation base containing eighteen
regulations is created in this experiment.
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We use the TSK (Takagi–Sugeno–Kang) fuzzy model [39] as an inference engine, and
the model combines the application of fuzzy regulations using the IF-THEN format. The
result of each regulation is a linear combination of the input factors and the constant
term. The final result is a weighted average of the results of each rule. It mostly employs
fuzzy regulations to describe a non-linear system. The merits of this approach are rapid
computational efficiency, good cooperation with adaptive optimization techniques, and
continual output values, which are very suitable for arithmetical analysis. While the
deformation degrees of the three zones are input into the FIS and deduced by all the
regulations, the accurate output values can be produced by means of the defuzzification
procedure via applying the weighted average scheme. After the outcomes of all regulations
are calculated, the last output could be determined.

3.4.2. Adaptive Neuro-Fuzzy Inference System for Determining Quality Level of Deformations

ANFIS model is mostly a network-based fuzzy inference model set up by merging the
concepts of fuzzy theory and neural networks [40,41]. It is assessed by repeatedly varying
the values of parameters and minimizing the error functions. This work establishes a five-
layer architecture diagram of the ANFIS model by means of the deformation measurements
of the three zones of the five layers—input layer, regulation layer, normalization layer,
inference layer, and output layer—as indicated in Figure 9. By means of the learning
process of the method, the training can be performed iteratively, and the parameters will be
repeatedly corrected by calculating the error values of the parameters during each training.
While the training errors converge to the least values or to the number of training times
and achieves the preset largest number of times, the training procedure is terminated to
obtain a finer trained network-based FIS than the initial parameter setting.
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Figure 9. The structure diagram of the proposed ANFIS for determining deformation levels.

3.4.3. Genetic Algorithm (GA)-Based Adaptive Neuro-Fuzzy Inference System for
Determining Quality Level of Deformations

Genetic algorithm mostly uses the procedure of reproduction and inheritance of
organisms by means of mutation and crossover of chromosomes. Firstly, the original
population of the GA is established by using the membership function parameters of
the deformation measures, and the fitness values of each parameter combination are
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evaluated. The parameters of every parameter combination are then uniformly crossed
and mutated, resulting in more diverse parameter values. The merit of this arithmetic is
that it could be upgraded from a local optimal answer to a globally optimal solution by a
mutation function.

When a fuzzy inference system is created, it consists of membership functions of
the three zones of deformations, the regulation set, and the inference module. The GA-
based ANFIS method primarily optimizes the arithmetic in two stages [42,43]. The first
stage in optimization is to apply ANFIS to calculate the deviations between forecasted
values and true solutions, and optimize the answers by the gradient descent scheme.
However, applying the gradient descent scheme could only search for a local optimum
answer. The other stage of optimization is to apply GA to assess the fitness values of
parameter combinations and choose finer parameters from crossover to share information,
and eventually to mutate to widen the ranges of practicable parameters. Upgrading the
previously obtained local optimum answer to the global optimum answer is the goal of the
second stage.

4. Experiments and Results

To confirm the capabilities of the proposed approach using concentric circular patterns,
the performances of these recommended techniques are assessed on 550 sample images
(350 training images and 200 test images) with different degrees of deformation. Each
captured image has a size of 256 × 256 pixels, and each pixel contains 8 bits of gray scale.
The algorithm of the realized deformation defect detection system is edited on the MATLAB
application software platform, and implemented on the MATLAB R2013 version on the
desktop (INTEL CORE i5-8250U 1.60 GHz, 32 GB RAM). Figure 10 shows the user interface
design of the developed deformation defect detection system, showing all the processing
steps using the concentric circular pattern in the multifocal glass.
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Figure 10. The implemented system with user interface design shows all the processes of the proposed
method using the concentric circular pattern.

In this study, experimentally detected images are compared for correctness with
manually labeled images. In terms of checking deformation defects, recall, precision,
and accuracy are adopted as performance evaluation metrics for the proposed models.
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When the above performance indices are higher, the inspection performance is better. The
recall rate is the regions of correctly identified true defects (True Positives, TP) divided
by the regions of correctly identified true defects (TP) plus the regions of true defects
incorrectly labeled as non-defects (False Negatives, FN). It can be thought of as the fraction
of true defects that are correctly identified in the set of all real defects. The precision rate
is the regions of exactly identified true defects (TP) divided by the regions of correctly
identified true defects (TP) plus the regions of non-defects incorrectly labeled as defects
(False Positives, FP). It can be thought of as the fraction of these detected defects that are
real defects. The accuracy rate is the regions of exactly identified true defects (TP) and the
regions of correctly labeled true non-defects (TN) divided by the total regions of a testing
instance (TP + TN + FP + FN). It represents the rate of correctly identified defects and
non-defects over the total region of a testing image. If the dataset is imbalanced (both defect
and non-defect classes have significantly different regions of testing images), the accuracy
rate is not a good metric [44,45].

In terms of determining the deformation quality level, the accuracy rate is modified
from individual deformation defects to a performance evaluation index with individual
images as the basic unit. The detected deformations in an image are judged combinedly
into three categories (slight, average, and severe) by the GA-based ANFIS model and they
are checked that each class is correctly classified. The accuracy rate is the number of test
images categorized into the exact level class divided by the total number of test images.

4.1. Performance Assessment of Various Line Thicknesses in the Concentric Circle Patterns

The size in pixel units of the line thickness of each circle on the concentric standard
patterns influences the detection efficiency of the suggested approach for deformation
defects. Smaller deformation defects will be more completely identified if an appropriate
line thickness pixel size is chosen in the concentric standard pattern. We use a computer
program to generate standard concentric patterns with different line thicknesses and then
use these standard patterns with different line widths together with test samples to capture
test images. We examine concentric circular patterns with line widths from 1 to 6 pixels
in concentric circles by the suggested approach. Figure 11 shows the images acquired by
the suggested method, employing patterns of concentric circles with line widths of five
kinds of pixel sizes and the results of a defect sample. We find that concentric circles with a
thickness of one pixel are less sensitive to the detection of deformation defects, resulting in
the lowest recall rate. On the other hand, concentric circles with a greater pixel thickness
are more sensitized to the detection of deformation defects and lead to more false positive
alarms. Table 3 denotes that the detection outcomes of the concentric circular patterns with
line widths of 2 pixels and 3 pixels are more appropriate, with a higher recall rate and a
lower false positive rate and a better deformation detection performance.

4.2. Performance Assessment of Applying EWMA Slight Deviation Control Scheme

In order to evaluate the inspection performance of multifocal glass deformation defects,
Table 4 summarizes the detection and quality level judgment outcomes of the approach sug-
gested in this work. The EWMA slight deviation control scheme of the proposed method is
evaluated based on the outcomes by expertise assessors. The average recall rate of defor-
mation inspection across all tests performed by the EWMA scheme is 81.09%. However, the
precision rate of the EWMA scheme is significantly higher at 89.06%. The proposed EWMA
scheme has a high deformation recall rate and a low false positive rate. Figure 12 shows
some outcomes of concentric imaging deformation inspection of the suggested method
employing the EWMA slight deviation control scheme. The mean execution time for a test
image with a size of 256 × 256 pixels is 0.2847 s by the EWMA scheme. Thus, the proposed
EWMA scheme overcomes the difficulty of detecting deformation defects in multifocal
glasses and goes beyond its capability to correctly distinguish slight deformation defects
from normal areas.
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Figure 11. The images captured by the suggested method employing patterns of concentric circles
with line widths of five kinds of pixel sizes and the results of a defect sample.

Table 3. Performance metrics for deformation defect detection on captured images by the suggested
method employing patterns of concentric circles with line widths of six pixel sizes.

Line Thicknesses 1 Pixel 2 Pixels 3 Pixels 4 Pixels 5 Pixels 6 Pixels

Recall (%) 54.36 80.72 80.12 75.90 79.15 77.49

Precision (%) 94.93 96.02 96.02 90.47 95.32 91.06

Table 4. Performance metrics for detecting deformed regions and determining the quality levels of
multifocal glasses by the proposed approach.

Deformation Detection Techniques EWMA Control Scheme

Recall (%) 81.09

Precision (%) 89.06

Processing time (s) 0.2847

Quality level determination models BPN ANFIS GA based ANFIS

Accuracy (%) 70.00 70.67 94.00
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To assess the performance of the classification of deformation defect severity in multi-
focal glasses, three classification models BPN [46], ANFIS, and GA-based ANIFS are further
evaluated based on the results of expertise assessors. It can be seen from Table 4 that no
matter what deformation level classification model is applied, the accuracy rate of the de-
formation grade of the GA-based ANFIS method is larger than those of the BPN and ANFIS
models. Based on the above analysis, we find that the suggested mixed method incorpo-
rating the EWMA scheme and the GA-based ANFIS method is a superior slight-deviation
detection and grade determination technique for multifocal lens imaging deformation
detection and severity judgment.

4.3. Performance Assessment of Using Distinct Norm Patterns in Deformation Detection by the
Suggested Method

Using the method based on the Hough transform [22], two conventional norm patterns,
a checkered pattern, and a dot pattern, were applied to detect deformations to differentiate
the results of deformation defect detection. Because we adopt the three norm patterns to
create consistent deformation defect images by choosing the same deformed locations and
deformation degrees, the deformation distinctions among the three norm patterns can be
contrasted more precisely. To show the impact of deformation detection on the consistent
deformation images, Figure 13 shows some detection results of the Hough transform-based
method, proposed method, and inspector for deformation defects using a checkered pattern,
a dot pattern, and a concentric circular pattern, respectively. The Hough transform-based
method with the checkered pattern makes many wrong identifications not only in missing
alarms but also in false positives, and the same method with the dot pattern also results
in some wrong identifications in missing alarms and false positives on the deformation
defect inspection of multifocal glasses. The suggested approach with the concentric circular
pattern can check most of the deformation defects and make less false identifications. Table 5
sums up the results of the imaging deformation inspection by the Hough transform-based
methods and the suggested approach using the three standard modes. This demonstrates
that the suggested approach with the concentric circular pattern outperforms the current
techniques using the checker pattern and dot pattern in the deformation defect detection of
multifocal glass images.
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Figure 13. Some results of the proposed method and inspector for imaging deformation inspection
employing three conventional norm patterns.
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Table 5. Performance metrics of imaging deformation detection by the suggested approach employing
three conventional norm patterns.

Norm Patterns
Hough Transform-Based Methods [22] Concentric Circular

PatternCheckered Pattern Dot Pattern

Recall (%) 33.24 58.20 77.03

Precision (%) 37.64 81.22 76.86

Accuracy (%) 94.70 98.94 99.47

4.4. Robustness Tests on Changing the Brightness of the Image Illumination for Deformation
Detection Results by the Suggested Approach

This study uses different parameter settings of the capture-related devices to take
various test image sets and then select the test image set with the best defect detection
effect. The parameter settings of this selected test image set are used as the standard for
subsequent image acquisition. During the image acquisition process, the brightness of the
acquired image is easily affected by the intensity of ambient light, which in turn affects
the detection results. We investigate whether the detection results of the proposed method
are susceptible to certain changes in image brightness to test the robustness of the method.
In this study, the EWMA control scheme is applied to detect deformation defects, and the
GA-based ANFIS method is adopted to categorize the severity of deformation defects. The
performance evaluation results using different brightness variations are shown in Table 6,
and the PR (precision–recall) chart [47,48] showing the detection performance variation
trend is plotted in Figure 14. It can be seen that when the brightness of the image becomes
brighter or darker by more than one standard deviation, the detection recall rate decreases
significantly, and the imprecision rate also increases significantly. Figure 15 shows the local
deformation detection results of the proposed method to systematically vary the image
illumination brightness. Although some deformed regions are missing, most of them are
detected and the overall detection rate is still better when the original brightness is applied.
The proposed method is moderately sensitive to changes in light intensity. The results
show that deformation defects in most multifocal glass images are accurately identified in
the resulting images despite slight and moderate illumination changes.
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Figure 14. A PR chart of imaging deformation inspection by the proposed method under different
lighting conditions.
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Table 6. Performance metrics of imaging deformation inspection using the suggested approach for
changing the brightness of the image illumination.

Lighting Intervals (µ − 3σ) (µ − 2σ) (µ − 1σ) µ (µ + 1σ) (µ + 2σ) (µ + 3σ)

Recall (%) 70.46 77.38 80.35 89.81 82.54 71.93 64.49

Precision (%) 71.92 78.91 81.97 90.58 83.66 72.23 65.57

Accuracy (%) 99.89 99.92 99.92 99.96 99.93 99.89 99.87

Sensors 2023, 23, x FOR PEER REVIEW 16 of 19 
 

 

 

Figure 14. A PR chart of imaging deformation inspection by the proposed method under different 

lighting conditions. 

  

Figure 15. Some detection outcomes of imaging deformation inspection performed by the suggested 

approach for systematic changes in image lighting (the images with red frames are processed from 

the selected test image set).  

5. Conclusions 

This research presents a mixed approach constructed using computer vision and 

fuzzy theory techniques to detect deformation defects and decide the deformation level 

of multifocal glasses. It investigates the detection of imaging deformation defects in mul-

tifocal glass images and the classification of deformation severity. In this study, a vision 

system using concentric circular patterns for imaging is first developed to obtain test im-

ages showing imaging deformed areas and binarize and refine the circle edges in the im-

age. If the boundary point-to-centroid distance value of the concentric circle goes beyond 

the upper or lower limit of the suggested EWMA scheme, it indicates that there is a defor-

mation defect in this boundary point area. Then, through comparing the discovered defect 

image, the norm pattern is used to measure the amount of deformation. By partitioning 

the probable locations of defects into three zones of slight, average, and severe defor-

mation, we summarize the individual deformation measures of the three zones. Finally, a 

GA-based ANFIS model is suggested to categorize the severity of multifocal glass defor-

mation. The suggested approach is effective and efficient in detecting deformation defects 

and classifying the severity of deformed regions on multifocal glass images. Testing out-

comes show that the proposed methods attain a 94% accuracy rate of deformation severity 

quality grades, an 81% recall rate of deformation defects, and an 11% false positive rate in 

multifocal glass deformation detection. Further studies can extend the proposed method 

to the problem of imaging deformation defect inspection of curved glass-related products, 

μ-3σ

μ-2σ

μ-1σ

μ

μ+1σ

μ+2σ

μ+3σ

60

65

70

75

80

85

90

95

60 65 70 75 80 85 90 95

P
recisio

n
(%

)

Recall (%)

μ (μ + 1σ) (μ + 2σ) (μ + 3σ) Ground truth(μ - 1σ)(μ - 2σ)(μ - 3σ)Testing images

Figure 15. Some detection outcomes of imaging deformation inspection performed by the suggested
approach for systematic changes in image lighting (the images with red frames are processed from
the selected test image set).

The proposed concentric circular pattern outperforms the other two norm patterns in
detecting slight to average deformations and small to medium area deformations. Therefore,
the use of concentric circular patterns is more suitable for detecting deformation defects
with less deformation in multifocal glasses. The main merit of this research method is to
use the centroid radius descriptor to understand the deformation state of each edge point
and use the EWMA control scheme to detect small deformations. In addition, using the
GA-based ANFIS classifier model, the parameters that only converge in the local domain
are extended to the global domain, which improves the classification effect.

Since the proposed method is mainly established on extracting features from geometric
properties for deformation detection, it is moderately sensitive to changes in illumination
intensity. If the brightness variation range is within (µ ± 1σ) as a whole, it will have
little effect on the detection results of this study. However, large changes in illumination
can significantly increase grayscale variation, which in turn can significantly affect defect
detection. To conquer the restrictions of the proposed method, it is suggested to update the
statistics (mean and standard deviation) of the intensity in the training samples when the
illumination changes significantly.

5. Conclusions

This research presents a mixed approach constructed using computer vision and
fuzzy theory techniques to detect deformation defects and decide the deformation level of
multifocal glasses. It investigates the detection of imaging deformation defects in multifocal
glass images and the classification of deformation severity. In this study, a vision system
using concentric circular patterns for imaging is first developed to obtain test images
showing imaging deformed areas and binarize and refine the circle edges in the image.
If the boundary point-to-centroid distance value of the concentric circle goes beyond the
upper or lower limit of the suggested EWMA scheme, it indicates that there is a deformation
defect in this boundary point area. Then, through comparing the discovered defect image,
the norm pattern is used to measure the amount of deformation. By partitioning the
probable locations of defects into three zones of slight, average, and severe deformation,
we summarize the individual deformation measures of the three zones. Finally, a GA-
based ANFIS model is suggested to categorize the severity of multifocal glass deformation.



Sensors 2023, 23, 4497 17 of 19

The suggested approach is effective and efficient in detecting deformation defects and
classifying the severity of deformed regions on multifocal glass images. Testing outcomes
show that the proposed methods attain a 94% accuracy rate of deformation severity quality
grades, an 81% recall rate of deformation defects, and an 11% false positive rate in multifocal
glass deformation detection. Further studies can extend the proposed method to the
problem of imaging deformation defect inspection of curved glass-related products, for
example, the distortion detection of automobile windshields and the deformation detection
of automobile rearview mirrors.
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