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Abstract: This research addresses the intersection of low-power microcontroller technology and
binary classification of events in the context of carbon-emission reduction. The study introduces an
innovative approach leveraging microcontrollers for real-time event detection in a homogeneous
hardware/firmware manner and faced with limited resources. This showcases their efficiency in
processing sensor data and reducing power consumption without the need for extensive training sets.
Two case studies focusing on landfill CO2 emissions and home energy usage demonstrate the feasibil-
ity and effectiveness of this approach. The findings highlight significant power savings achieved by
minimizing data transmission during non-event periods (94.8–99.8%), in addition to presenting a
sustainable alternative to traditional resource-intensive AI/ML platforms that comparatively draw
and produce 20,000 times the amount of power and carbon emissions, respectively.
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1. Introduction

Climate change stands as one of the most pressing challenges confronting contempo-
rary society. International bodies such as the United Nations Framework Convention on
Climate Change (UNFCCC), the Intergovernmental Panel on Climate Change (IPCC), and
national/regional Environmental Protection Agencies (EPAs) have meticulously identified
the primary sources of carbon emissions. These emissions predominantly emanate from
sectors such as electricity and heat, transport, manufacturing and construction, agriculture,
and waste disposal [1–3]. The imperative to accurately monitor and quantify carbon emis-
sions on a continuous basis for informing mitigation efforts has spurred the deployment of
sensor networks. This focus has garnered considerable attention from governing bodies,
industries, and academic institutions over an extended period [4–7].

In the domain of wireless sensor networks (WSNs), a noticeable trend is the integration
of artificial intelligence (AI) and machine-learning (ML) models for processing and inter-
preting the steady influx of time-series data [8–11]. The development and application of
these models often necessitate a significant volume of data points, ranging from thousands
[12] to hundreds of thousands [13]. It is worth noting that non-eventful data holds almost
equal importance to eventful data for the training and validation of these models. As more
advanced approaches gain ground over traditional ML algorithms in WSNs such as deep
learning [14,15], the demand for data generation on sensor nodes has surged, sometimes
reaching into the millions [16]. However, the drawback of this approach, particularly
concerning the tracking of carbon emissions, lies in the energy-intensive systems required
to power standard and specialized server farms [17]. These systems can paradoxically
exacerbate the very carbon emissions that sensor networks aim to alleviate. Studies have

Sensors 2024, 24, 162. https://doi.org/10.3390/s24010162 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010162
https://doi.org/10.3390/s24010162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9104-5527
https://orcid.org/0000-0003-2944-4839
https://doi.org/10.3390/s24010162
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010162?type=check_update&version=2


Sensors 2024, 24, 162 2 of 23

estimated that data centers alone contribute significantly to climate change, with emissions
as high as 100 megatons of CO2 per year [18–20]. For instance, Strubell et al. [21] estimated
the financial and environmental costs associated with training/tuning neural network
models; they concluded that the carbon footprint increases proportionally with model size.
Other works have focused on the environmental impacts of AI [22] and offer insights into
calculating the carbon footprint of machine learning [23–25].

Although the application of ML systems for event classification in time-series data
has yielded considerable benefits [26,27], the prevailing design philosophy for sensors
has shifted towards configuring sensor nodes as basic devices primarily, if not entirely,
responsible for data sampling and transmission. This approach offers several advantages,
including efficient and standardized WSN design and the integration of advanced clas-
sification algorithms using growing libraries of big data analytics. However, a notable
consequence of this approach is the increased demand for sensor node resources for data
generation and transmission. Coupled with the need for higher sampling frequencies to
train ML models for event detection, this approach significantly raises power consumption
and, consequently, reduces the operational lifespan of these devices.

Concurrently, advances in computing hardware, such as edge computing, have
spurred progress in microcontroller unit (MCU) technology [28,29]. These advancements
have expanded the processing capabilities of microcontrollers while maintaining their
energy-efficiency attributes [30]. This transformation can be partly attributed to the on-
going development of personal devices, such as wearables, smartphones, tablets, and
more. Such devices have witnessed substantial enhancements in processing power and
extended lifespans. Regrettably, these achievements have somewhat overshadowed the
potential of microcontrollers in favor of the migration toward ML-based solutions. This
shift raises a second paradox: prioritizing the computational demands of data transmission
inadvertently shortens the operational lifespan of sensors.

The overarching challenges associated with the current/traditional server/desktop-
based computers approach for machine learning have been well recognized, primarily
in terms of their energy consumption, carbon footprint, and operational costs, which
has consequently given rise to a young but growing paradigm shift (deemed TinyML)
involving utilizing microcontrollers for data analysis as an alternative/solution [31–35].
Some examples where AI/ML can complement the efficiency of microcontrollers without
compromising environmental sustainability include life prediction of turbofan engines [36],
gas leakage detection [37], driver drowsiness detector [38], water leak detection [35], or
fruit variety classification [39].

Microcontrollers play a crucial role in Internet of Things (IoT) applications [40].
Their compact size, low power consumption, and ability to integrate seamlessly with
sensors make them fundamental components in IoT ecosystems [41–44]. With their em-
bedded processing capabilities, microcontrollers enable real-time data acquisition and
local decision-making, reducing the need for continuous communication with centralized
servers [28,33,45–47]. This not only enhances system responsiveness but also contributes to
energy efficiency, a critical factor in the design of sustainable IoT solutions [48,49]. Moreover,
the cost-effectiveness and accessibility of microcontrollers have spurred innovation across
industries, from smart homes and healthcare to industrial automation [50–59]. Understand-
ing the pivotal role of microcontrollers in IoT is essential for harnessing their full potential
in addressing contemporary challenges and advancing the capabilities of connected de-
vices. In the context of carbon-emission monitoring, microcontrollers play a vital role in
monitoring solutions. For instance, Brown et al. present a low-cost, microcontroller-based
CO2 concentration data logger that can be used for field deployment [60]. Devan et al. [61]
used a microcontroller to monitor carbon emissions in air pollutants. Afroz et al. used an
ESP32 to measure CO2 emissions in urban areas [62]. Additionally, Vargas-Sansalvador [63]
reported an interesting approach to CO2 sensing using an LED as the light detector with a
colorimetric indicator. Although there are many examples in the literature [64], it is clear
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that microcontrollers have been used extensively for carbon-emission sensing, showcasing
the importance of their use in monitoring systems.

An optimally designed WSN should, at least partially, offload low-level event detec-
tion tasks to sensor nodes. This approach capitalizes on the evolving processing capabilities
of sensor technology, alleviating the necessity of expending energy reserves on data trans-
mission and, therefore, server/cloud carbon emissions, specifically when no events occur.
This is a more efficient utilization model of power resources, particularly for sensors ex-
pected to operate for extended periods of time, if not indefinitely, and for sensors that have
already been deployed for several years. Additionally, it is crucial to recognize that the
interpretation of data is often context-specific. Consequently, it raises a compelling question
regarding what operations of event detection can be feasibly implemented on low-powered
devices that are suitable for application across diverse domains.

Although the application of microcontroller-based data processing offers significant
advantages, it also faces several challenges, including hardware heterogeneity, MCU archi-
tectures, resource constraints, limited memory management, and software interoperability
between devices. When such an overarching challenge is presented, it is often valuable
to examine fundamental elements and explore solutions capable of producing workable
models in compliance with such constraints. In this study, we explore the potential for
implementing a heterogeneous event detection approach based on binary classification,
which can be adapted to different data sources within the realm of monitoring carbon
emissions. Our investigation revolves around two distinct case studies closely tied to
emission sectors. The first is a complex dataset of domestic energy monitoring, repre-
senting the electricity and heating sector. The second is less complex data comprised of
environmental chemical sensing, focused on monitoring CO2 emissions within the waste
disposal sector. Leveraging algorithms that can be efficiently implemented on standard
microcontrollers, our objective is to detect specific events of interest in these crucial sectors
to best demonstrate a heterogeneous approach across vastly differing data sets across two
distinct domains from a sensory viewpoint.

2. Materials and Methods
2.1. Sensing Architecture

The sensing model employed during this study is illustrated in Figure 1, which illus-
trates our network setup following an Extended Start Topology arrangement—a spoke–hub
distribution paradigm. It can be seen from the figure that although the applications differ
significantly, a similar framework can be adopted for these distinctly different sensing
applications. Although the actual sensors were completely different (IR absorbance and
electrical induction for the environmental and home energy sensors, respectively), both
sensing units were equipped with wireless communications capability to stream data to a
local base station. For the environmental data, the device communicated via the Global
System for Mobile (GSM) communications network. This was ideally suited for environ-
mental systems as, in most cases, such devices are deployed in remote locations without
access to local hot spots (e.g., WiFi or locally placed base stations). Furthermore, the in-
frastructure allowed for many sensing nodes (i.e., scope), and the data were sent via SMS,
which required a quick energy burst for reduction of energy; see [65] for more details. For
the home energy monitoring, the data were transmitted via Zigbee-based protocol to a
local receiver (base station), and the household’s Internet connection was used for data
delivery. The advantages of using Zigbee were based on its low power consumption, suited
our data throughput, and allowed scope for several network topologies. In both cases, the
data were stored on a high-end remote server and were readily available via the Internet,
either directly to authorized users in RAW format or the form of an easy-to-use portal page
(Figure 1). For visualization, simple color coding was used—if an event occurred, the data
point was colored red; if not, it was green. This was helpful in visualizing event patterns to
explore whether predictive models might be feasible.
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Figure 1. Sensing architecture showing the stages involved in harvesting data from the environmental
CO2 sensor (top) and the home energy sensor (bottom). In each case, data were transferred wirelessly
to a cloud-based central database repository via the Internet.

2.2. Case Study I: Environmental Chemical Sensing

Our studies in the area of gas sensing have resulted in several in-house designed,
developed, and deployed gas sensing systems capable of autonomously performing mea-
surements and reporting data wirelessly to online repositories [65–68]. For this study, we
considered a platform equipped with an infrared (IR)-based carbon dioxide (CO2) gas sen-
sor (Dynament, Process Sensing Technologies, Cambridgeshire, UK, processsensing.com
(accessed on 21 November 2023)), which had a dynamic sensing range of 0–20% v/v.
The platform was calibrated by varying CO2/air proportions via mass flow controllers
(Cole Parmer, Cambridgeshire, UK, coleparmer.com accessed on 21 November 2023), using
a certified CO2 supply (Scott Specialty Gases, Breda, Netherlands) and ambient air via
an air compressor (Werther International, Reggio Emilia, Italy). A reference instrument
(GA 2000 Plus, Geotech, Keison, Chelmsford, UK) was used to validate the sample gas
composition in-line for validation purposes. Using this approach, a calibration plot was
achieved from which the system’s response to various CO2 samples could be obtained and
unknowns estimated.

An ultra-low-power microcontroller (MSP430, F449, Texas Instruments, Austin, TX,
USA) was employed for autonomous operational purposes. The platform was deployed for
12 months, during which time it reported CO2 emission levels from a perimeter borehole
well on a waste landfill site to an online database every 6 h via GSM. The sampling
frequency set by legislation is 4 measurements per year [69] In terms of capturing events,

processsensing.com
coleparmer.com
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we increased this to 4 measurements per day to investigate whether events were being
missed either daily or outside the governing monitoring frequency of once per quarter.
This allows us to investigate the occurrence of events daily while extending the lifetime
of the system for the 1-year deployment. A complete description of the platform and
accompanying online services is available through [65]. Please note that for December 2010
and January 2011 (surrounding day 300), the low atmospheric temperature depleted the
battery faster than expected, and coupled with site closure, this resulted in a loss of data.

2.3. Case Study II: Energy Monitoring

In parallel with the environmental deployment, a single-phase electricity monitor
(ZEM-30, Episensor Ltd., Limerick, Ireland) was deployed/clamped at the mains input line
of the household’s electricity supply and reported the integrated household energy usage
for the same duration as for the environmental deployment. This was operated using a
system-on-chip (SoC) microcontroller (Ember, EM250, Westlake Village, CA, USA). The
principle behind this measurement was to monitor the current drawn by the household by
means of an induction sensor. Data were transmitted via the sensor’s integrated Zigbee
radio transceiver at a sampling period of 1.5 s to a local base station, from which it was
uploaded to a central data repository every hour by means of a custom software application.
Based on early examination of the data, e.g., the training set in Figure 4 (discussed later),
it was found that the appliance signature of interest operated between 6 and 33 min. A
sampling period of 1.5 min was set to safely allow for event detection and comply with the
Shannon–Hartley theorem.

Using the differential approach, the times at which threshold crossing was detected
(shower on), coupled with the corresponding negative crossing (shower off), were first
compiled and recorded. After this, the RMS current during these periods was taken to
represent shower events and statistics were similarly compiled.

2.4. Binary Classification Algorithm

The implemented C code, provided in Listing A1 in Appendix A.1, outlines a robust
algorithm for event detection using microcontrollers. The code defines key data structures
such as DataPoint, GlobalStats, Event, and EventStats to organize and store relevant
information. Functions like updateGlobalStats, updateEvent, and updateGlobalEventStats
facilitate the dynamic updating of global and event-specific statistics as new data points
are processed. The main program operates in a continuous loop on the main thread for
real-time data acquisition. It retrieves data points, identifies events based on a specified
binary classification, and updates statistics accordingly. The resulting metrics, including
measurements, percentage above threshold, summation, maximum, minimum, and average
values, as well as event-related statistics like the total number of events, average events
per day, week, and month, maximum and minimum event values, and average event
duration, are print to screen in this iteration (for clarity). This well-structured and efficient
implementation serves as a foundation for autonomous event detection, showcasing the
capabilities of microcontrollers in real-time monitoring scenarios.

3. Results
3.1. Case Study I: Environmental CO2 Emissions
3.1.1. Calibration

Figure 2 presents the results of the calibration routine described previously. The
left part of the figure shows the time-series captured by the system in response to the
changing exposure to CO2 concentration gas. The sections in which the response was
observed were extracted and appear in the figure’s inset. The time at which a steady
state was observed was selected (1 to 2.5 min) to represent the response of the sensor.
This informed the programming of the system with a 60-second warm-up period before
sampling to ensure a steady-state response. The average and standard deviation of the
steady-state response were calculated and plotted against reported CO2 concentrations
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by the reference instrument; see Figure 2 (Right). Here, the trend appeared to be linear,
which was confirmed by an excellent linear model (R2 = 0.998) and allowed for future ADC
readings to be converted to CO2 concentrations.

Figure 2. (Left): Response of the CO2 sensor during the calibration routine. Inset—extracted sections
when the sensor was exposed to changing CO2 concentrations. (Right): Calibration model of the
CO2 sensor. Black squares represent the average of the steady-state responses, error bars represent
the standard deviation, and the red line is an excellent model applied to the data points (R2 = 0.998,
n = 6); y = 139.275x + 567.197. Notably, there is a mismatch between the actual sensor responses
(left) and the calibration model (Right). The steady-state response of the sensor response ((left) is
calculated to represent the CO2 concentration and used to establish the conversion model (Right)
from the microcontroller’s ADC value and the actual CO2 concentration measured using the reference
instrument (GA2000 Plus).

3.1.2. Trial Data

The data collected during the 1-year deployment period for environmental CO2
emissions is presented in Figure 3. Upon initial visual inspection, one can readily observe
a significant number of spikes in the dataset that exceed the legal emission threshold,
indicated by the dashed red line. These spikes, often associated with increased CO2
concentrations, are considered events and are of particular interest to regulatory bodies,
such as the EPA.

However, it is essential to acknowledge that during December and January (centered
around day 300), the sensor system faced operational challenges due to the exceptionally
low atmospheric temperatures. These harsh environmental conditions led to a faster
depletion of the battery than initially anticipated, and in conjunction with the temporary
site closure during this period, it resulted in the loss of some data.

Although it remains possible for an analyst to manually classify these events, partic-
ularly with a frequency of approximately four events per day, there is a clear advantage
in automating this process. Automatic event classification not only enhances efficiency
but also ensures that event identification is not reliant on the availability of human re-
sources. The capabilities of the microcontroller utilized in this study offer a viable solution
for such automatic analysis, providing an efficient means to detect and classify these
events. This represents a practical application of microcontrollers in enhancing data pro-
cessing capabilities within sensor networks, further reinforcing their potential utility in
environmental monitoring.
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Figure 3. Measured CO2 concentration data for the 1-year (365-day) deployment. The Red dashed
line represents the legal emission threshold.

3.2. Case Study II: Energy Monitoring
3.2.1. Labelled Data Set

Figure 4 presents the training dataset of the home energy monitor during a typical
day over a period of 12 h, i.e., from 6 a.m. to 6 p.m. in which all significant appliances
were in use. Both the harvested RMS current datasets are present along with the first
differential profile. It can be seen that as an appliance is powered on/off, coincidental
positive and negative spikes in the differential data occur. For the shower, these spikes
are particularly large, in contrast to the cumulative effect of several appliances being
turned on simultaneously. For example, the relatively large RMS current recorded for the
simultaneous use of the oven and kettle (far right, Figure 4 top) can be easily seen to relate
to two appliances from the differential plot. Hence, the combined use of the RMS current
and the differential plot can significantly reduce the occurrences of false positives and yield
a much more accurate dataset for event detection.

For this study, the training set has focused on devices that have featured two criteria:
(1) they draw a recognizable current for processing, and (2) they remain a static household
device during the monitoring time period. The training set was therefore modeled on all
constant devices, yet does not take into account devices more dynamic in nature, such as
phone chargers, which have relatively insignificant power signatures and a much lower
probability for misclassification of a single ‘heavy’ appliance. From Figure 4, it is clear
that the most significant ‘event’ or largest power drawing appliance corresponded to the
electric shower, then the electric kettle, and so forth. However, for simplicity, this study
only considers the electric shower as a model for event detection, although the approach
can be successfully employed to identify other appliances. Consequently, the detection of
the most prominent power-demanding appliance (shower) is considered for our binary
classification event detection. A threshold of 25 A is chosen on the differential dataset as it
sufficiently classifies the shower use and is equally distant in value from other appliances,
even when two power-demanding appliances (oven and kettle) are powered together.
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Figure 4. A 12-h appliance training set showing the global RMS current usage of the household and
labels showing when each significant appliance was powered on. Labels X + Y indicate times when
two appliances were powered on at the same time. Top plot shows the RMS current signal with red
shaded regions when the shower was on. Bottom plot represents the differential data. The dashed
red line shows the chosen threshold for detection of an event (shower switched on: 25 A, shower
switched off −25 A). The background appliances, such as refrigerators and freezers, appear as smaller
features on the baseline.

3.2.2. Trial Data

Figure 5 displays the complete 1-year data series for home energy consumption. A
visual examination of this extensive dataset proves to be a challenging task due to the
sheer density of data points. To glean meaningful insights, it becomes evident that a daily
temporal resolution, as depicted in Figure 4, offers a more manageable approach. What
stands out prominently are the numerous spikes in the dataset throughout the year, which
are likely attributable to high-power consumption appliances.

The training data drawn from this dataset often prioritizes the identification of these
prominent power-draining events before delving into the subtler nuances of energy con-
sumption. Additionally, it is worth noting that the time surrounding days 300 to 315
corresponds to a period when the household was on holiday during December. This
observation raises an intriguing possibility: the dataset could serve as a foundation for
intrusion detection. Identifying unusual energy consumption patterns during times of
expected inactivity could enhance security systems.
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Moreover, it is worth highlighting the potential security implications associated with
such detailed data. As recent incidents have shown, centrally stored data are susceptible to
hacking and misuse (cybersecurity concerns). The ability to determine when a household is
vacant based on energy consumption patterns could make it a target for nefarious activities,
including home burglaries. This further underscores the importance of considering the
security and privacy aspects when dealing with highly granular energy consumption data.

Although the 1-year energy trial data presents significant challenges in terms of data
density and security, it also holds immense promise. Microcontrollers, with their low-power
processing capabilities, provide an efficient means of extracting valuable insights from
this dataset. Importantly, they may allow for focusing on the primary power-draining
appliances, which aligns with the common user priority of identifying and managing the
devices contributing most to their electricity bills and associated carbon emissions. This
suggests that complex central databases and energy-intensive AI/ML systems may not
always be necessary, particularly when addressing primary energy consumption concerns.
Furthermore, this discussion reinforces the argument for data decentralization, especially
when considering home user data and cybersecurity concerns. The distributed approach
not only enhances user privacy and security but also offers a more streamlined and efficient
means of managing energy consumption.

Figure 5. Plot showing the home energy consumption (RMS Current) for a 1-year deployment period.
The red dashed line represents the threshold of 25 A. The spikes appearing above the threshold are
likely representing the electrical shower in use.

4. Discussion
4.1. Global Analysis

The initial sweep involved gathering global summary information on the total number
of measurements, maximum/minimum/average sensed value, and percentage of mea-
surements above critical thresholds. These global statistics are presented in Table 1. For
the environmental CO2 emissions, the recorded concentration for the entire year was, on
average, 1.41% v/v, which is surprisingly very close to the 1.5% v/v legal emission limit
permitted by legislation [69]. This trigger level for CO2 emissions by the governing body
laid the basis of our binary classification event detection. Furthermore, it seems that for ca.
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28.5% of the total recorded measurements, the borehole well emission level was in excess
of the regulatory limit.

For the home energy data, the data reflects the RMS current measurement via the
reported data, i.e., not the differential dataset. The differential set was used to detect the
bottom statistic in the table. Based on the training set in Figure 4, it is evident why two
different thresholds were chosen for identifying shower use, i.e., due to the offset effect
of other appliances. The offset also accounts for differences in the calculated maximum
values. Curiously, the minimum was not 0 A, as one may expect; this is a good indication
that the background appliances (e.g., refrigerators/freezers) are constantly in operation.
The average RMS current of the household was 3.39 A over the entire year, and this can be
used to estimate average costs and contributions to carbon footprint.

One point to note for both deployment data is the capability of the microcontroller to
calculate the average value. First, both systems were capable of handling 4-byte floating point
numbers as part of the microcontroller’s arithmetic logic units (ALUs). This meant that values
from 1.2 × 10−38 to 3.4 × 1038 were possible, with calculations therein. This is clearly in range
for calculation of the average and demonstrated through the summation field in the table. It
is also worth noting that many microcontrollers are equipped with a carry flag, allowing for
larger arithmetic ranges where required. The capability of generating such information by the
microcontroller demonstrates its ability to provide meaningful information without the need
for cloud-based servers and heavy computational processing.

One point to note is that fading problems affect data transmission. For the environ-
mental data, Table 1 shows 1121 packets/measurements, yet an ideal packet count should
be 1460 at 6 h/day over the year with a packet loss of 23.2%. This can be accounted
for by battery depletion during the winter months, as discussed earlier. For the energy
monitoring, the gateway was placed in the adjacent room to the monitor to ensure data
reception. Ideally, at the set sampling frequency, 350,400 packets should be received over
the year, yet 344,922 were accounted for. This yields a 98.4% successful transmission and
a 1.6% packet loss, which could be due to attenuation by householder activity. Although
the household sensor was equipped with CRC checking per transmitted packet coupled
with 3 retries, the environmental sensor was not equipped with this capability due to the
larger amount of resources required to transmit data via SMS. To ensure data redundancy,
the system was equipped with flash memory where the data were stored for backup/later
recovery. Overall, it appears that there is value in performing transmissions only when
an event occurs (discussed later), yet one must enable robust checking/handshaking to
ensure delivery.

Table 1. Statistical summary of events generated during both deployments.

Description Environmental CO2 Energy Monitoring

Threshold 1.5% 25 A
Number of Measurements 1121 344,922

Summation 1591.59 1,168,664.6
Max Value 12.41% 48.64 A
Min Value 0.0% 0.69 A
Average 1.41% 3.39 A

% Measurements > Threshold 28.46 1.16

4.2. Event Detection

Table 2 presents summary statistics for the landfill and home energy event data sets.
It should be noted that the minimum sensed value and the minimum event duration are
dependent on the set threshold level for event identification and on the sampling frequency.

With respect to the CO2 event statistics, it can be seen that the total number of events
is high at 70 (should ideally be 0 for full compliance) with an average of ca. 6 events per
month. Furthermore, the average CO2 concentration during the detected ‘events’ was 9%,
and in some cases, events lasted longer than 8 days.
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With respect to the home energy usage, the RMS current measurement results show the
frequency of shower events was, on average, 1.5 per day, with an average power draw of
ca. 32 A and an average duration of ca. 7 min. This is important for calculating how much
the shower alone is costing the household and if it is a high proportion of the electrical bill
(in one case, the shower was active for 33 min!—as seen in Figure 4).

Table 2. Event statistical summary generated for both deployments.

Event Description Environmental CO2 Energy Monitoring

Total Number of Events 70 539
Sampling Period 6 h 1.5 min

Avg. Events Per Day 0.192 1.47
Avg. Events Per Week 1.34 10.37

Avg. Events Per Month 5.75 44.92
Max Event Value 12.41% 48.64 A
Min Event Value 1.50% 28.03 A
Avg. Event Value 9.08% 32.90 A

Max Duration 8.25 days 33.17 min
Avg. Duration 1.05 days 7.25 min

4.3. Selectivity and Accuracy

Event classification in the Environmental dataset followed a relatively straightforward
path guided by legal emission limits. In contrast, the energy monitoring task proved to
be more complex, necessitating the use of a differential dataset. The differential approach
underscores the significance of algorithms in conferring “selectivity” to decision-making
processes based on signals from physical transducers. In essence, these algorithms serve
a role akin to binding sites in chemical sensing. Their function is to recognize and report
features in the electronic signal that align with predefined “event” patterns.

Similar to binding sites, algorithmic selectivity is not always absolute. A decision
must be made regarding whether the event originates from the primary target signal
or an interfering source. In both cases, practical compromises are necessary to address
analytical challenges. Perfectly selective binding sites that only report the binding of the
primary molecule under all conditions are a rarity, leading to inevitable occurrences of false
positives and false negatives. Likewise, in appliance detection, complex algorithms may
achieve near-perfect classification accuracy, but their implementation becomes impractical
in distributed sensor networks, where computational resources are limited.

To put it differently, a certain degree of uncertainty is inherent in all elements of
sensor networks. Our experience in both chemical sensing and data analytics has revealed
similarities in the functioning of the two networks presented in this paper. Environmental
IR sensors may encounter interferences from molecules with similar binding characteristics,
just as appliance recognition may yield false positives when multiple appliances drawing
power simultaneously create overlaps. The practical objective is to deliver data of sufficient
quality to meet the application’s requirements. In smart metering, this means initially
detecting activity versus inactivity and subsequently identifying appliances with acceptable
accuracy. Combining relatively simple algorithms can achieve this goal, at least for power-
hungry devices that generate distinct signature profiles in the root mean square (RMS)
current when operated.

Furthermore, the integration of AI and ML for event detection introduces a compelling
challenge. Overfitting, a common concern, can significantly impact the effectiveness of
event detection models. Overfitting occurs when a model becomes excessively specialized
in performing well on the training data but struggles to generalize its performance to new,
unseen data [70,71]. This challenge is particularly relevant when dealing with large datasets,
as previously mentioned. In the context of IoT event detection, striking a balance between
avoiding overfitting and achieving generalization is essential for a robust and effective
event detection system. The challenge lies in ensuring that the model performs well on



Sensors 2024, 24, 162 12 of 23

the training data without becoming overly specialized and, as a result, less adaptable to
different environments or domains.

Although the use of relatively simple algorithms for data processing on microcon-
trollers may exhibit limitations, they can demonstrate substantial value in green IoT event
detection. Similar to the imperfections encountered in chemical binding and AI/ML ap-
proaches, some degree of uncertainty may persist in the data produced. However, it is
crucial to recognize the potential value that sensor node-based data processing can bring,
especially in the context of reducing overall carbon emissions in terms of data processing.
It must be noted that the detection of the longest shower (33.17 min, Table 2) corresponds
with the third shower duration in the training set in Figure 4, which supports the accuracy
of our approach.

The primary events of interest, such as detecting primary appliances for carbon
emissions in the electricity and heating sector or tracking environmental chemical sensing
related to waste disposal, hold significant implications for addressing the critical challenge
of climate change. Therefore, embracing the possible imperfections and exploring the
possibilities offered by these low-power devices is a worthwhile pursuit with promising
environmental and societal benefits.

4.3.1. Accuracy of the Event Classification Algorithm

The accuracy of our event classification algorithm is a critical aspect of our study. We
have made the algorithm’s source code, written in the C programming language, available
in Listing A1 in Appendix A.1 for comprehensive transparency. The algorithm operates
in real time, processing data on the fly without the need for extensive memory storage,
therefore minimizing memory requirements.

To assess the accuracy, we performed a manual comparison with the Environmental
CO2 dataset. Although the Energy-Monitoring dataset contains a higher sampling fre-
quency (1.5 min), the Environmental dataset, with a sampling period of 6 h, was chosen for
this specific analysis due to the manageable number of data points for auditing. The manual
processing of the Environmental data, when compared with the outcomes of our binary
classification algorithm, demonstrated complete agreement. This meticulous verification
process attests to the algorithm’s accuracy in identifying and classifying events.

4.3.2. Advantages of the Event Classification Algorithm

Our event classification algorithm exhibits notable advantages. Operating autonomously,
the algorithm processes data in real time, eliminating the need for extensive memory storage
during its operation and contributing to reduced memory requirements. The device’s
on-the-fly processing further minimizes its memory footprint, aligning with resource-
efficient practices and memory constraints on microcontrollers. With a relatively high
sampling frequency of 6 h for the Environmental dataset, our device offers a significant
monitoring advantage over traditional manual methods, which often operate on a much
lower frequency (e.g., 4 times per year). This autonomous capability allows for continuous
monitoring, showcasing its practicality in environmental applications. Our validation of our
algorithm on the Environmental dataset resulted in a 100% agreement in event statistics. This
reliability underscores the effectiveness of our algorithm in field measurements. Importantly,
our algorithm’s efficiency reduces reliance on manual data collection and the deployment of
highly advanced machine-learning systems. By utilizing the processing capabilities of the
microcontroller, our device provides critical information with high accuracy, contributing to a
reduction in carbon emissions associated with complex computational processes.

4.4. Power Impact

One of the critical factors in the design of deployable sensor networks is power
consumption. Transmitting data consumes a significant amount of energy, especially when
using battery-powered devices. To address this issue, we explore a scenario where the
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sensor network minimizes data transmission when no events occur, as indicated by the
deployment statistics presented in Tables 1 and 2.

4.4.1. Deployments

First, let us examine the environmental CO2 data, where a total of 70 events were
detected out of 1121 transmitted measurements over the year. If the system were configured
to transmit data only when an event occurs, an impressive 93.8% of measurements could
be spared from transmission, resulting in substantial power savings. Alternatively, even
if data were transmitted at the beginning and end of an event, it would still mean that
87.5% of the transmitted data were redundant, representing a significant energy waste. This
aspect becomes particularly critical for battery-powered devices, especially when utilizing
power-hungry communication methods like GSM.

In contrast, the energy data presents an even more pronounced opportunity for power
conservation. A staggering 99.8% of the transmitted data are considered redundant if
data transmission occurs only once per event. Even with data transmitted at the start and
end of an event, 99.7% of the transmitted data remains unnecessary. This high percent-
age of redundant data underscores the significant energy waste in the context of energy
monitoring. However, it is worth noting that, unlike environmental data, the tracking
of significant appliance usage may not require real-time alerts. Thus, in the context of
energy monitoring, a single transmission per event could be a practical and energy-efficient
approach, balancing the need for data with power conservation.

In the current paradigm of sensor networks, the prevalent approach often involves
collecting raw data and transmitting it to the cloud for later processing using AI/ML
techniques. However, this approach can result in unnecessary processing and energy con-
sumption. By adopting a more efficient strategy, as demonstrated in this study with event
detection on the microcontroller itself, significant benefits can be achieved. Not only does
this approach lead to reduced data transmission, prolonging the operational lifespan of the
sensor, but it also contributes to the reduction of carbon emissions. The need for continuous
server farms can be minimized, aligning with the broader goal of addressing climate change
by making resource allocation more sustainable and environmentally friendly.

4.4.2. Power Savings

To assess the power savings achieved through our event detection method, we con-
ducted a detailed analysis of the power usage for the two deployments. The results
presented in Table 3 highlight the significant reduction in energy consumption when the
platform is not required to transmit until the end of an event.

In the context of environmental CO2 monitoring, the average current during trans-
mission (TX) was measured at 37 mA, with an average TX time of 22.9 s. The energy
consumption per TX was calculated as 10.1 J, resulting in an overall energy consumption of
11.4 kJ for all TX events. However, by leveraging our event detection method, the energy
expended for events (TX/RX) was substantially reduced to 710.2 J, leading to an impressive
energy savings of 93.8%.

Similarly, in the case of energy monitoring, where the platform transmits only to report
an event, the energy savings were even more remarkable. With an average TX current
of 35.5 mA and a minimal TX time of 0.1 s, the energy consumption per TX was merely
19.2 mJ. The overall energy consumption for all TX events was 6.6 kJ, but with the event
detection method, the energy expended for events (TX/RX) reduced significantly to 10.3 J,
yielding an extraordinary energy savings of 99.8%.

These findings underscore the effectiveness of our event detection method in minimiz-
ing energy consumption, making it a crucial component for sustainable and energy-efficient
sensor network operations in addition to further reducing the carbon footprint. By extend-
ing this to a WSN of thousands of sensory devices, one can understand the significance of
adopting a more power-efficient strategy.
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Table 3. Power Use and Savings.

Description Environmental CO2 Energy Monitoring

Avg. TX Current (mA) 36.992 35.5
Avg. RX Current (mA) - 35.5

Avg. TX Time (s) 22.856 0.1
Avg. RX Time (s) - 0.05

Energy per TX/RX (J) 10.146 0.0192
Energy for All TX/RX (J) 11,373.666 6622.502

Energy for Events TX/RX (J) 710.22 10.3488
Energy Savings (%) 93.756 99.844

4.4.3. Platform Power Comparison

A traditional AI/ML system typically refers to a setup where machine-learning tasks,
such as training and inference, are performed on powerful computational platforms, often
involving high-performance servers or cloud-based infrastructure. These systems may
include Graphics Processing Units (GPUs) or specialized hardware like Tensor Processing
Units (TPUs) to accelerate the computational demands of machine-learning algorithms. In
the context of this work centralized around carbon emissions and generation, it becomes
important to compare the various platforms in terms of power use. Table 4 presents the
power draw of the platforms used in this study and alike with other platforms typically
used for AI/ML with conversion to carbon emissions using the USA current definition of
367 gCO2e [72]. We note that the first two platforms in the table were used in this study:
MSP430 (Case Study I) and EMP250 (Case Study II). Although server farms clearly use
significantly more power than those listed, they were omitted for closer comparisons, i.e.,
it was more comparable to list microcontrollers with edge devices and desktop equivalents.
A stark contrast exists between the power draw of microcontrollers (top 3) and CPU/GPU-
based platforms (bottom 6), which draws approximately ×20,000 the amount of power as
microcontrollers, resulting in the same proportion of carbon emissions.

Table 4. Platform comparison in terms of power requirements arranged from least (top) to most
(bottom) power consumption.

Platform Type Power Draw
(W) gCO2e (US)/h Reference

EM250 Microcontroller 5.4 × 10−6 1.98 × 10−6 [73]
MSP430 F449 Microcontroller 616 × 10−6 2.26 × 10−4 [74]
ATmega328P Microcontroller 750 × 10−6 2.75 × 10−4 [75]
Raspberry Pi-Pico Microcontroller 6.5 × 10−3 2.4 × 10−3 [76]
Raspberry Pi-4B Microprocessor 2.56–7.30 0.94–2.68 [77]
NVIDIA Jetson Nano Edge GPU 5–10 1.84–3.67 [77]
NVIDIA Jetson TX2 Edge GPU 7.5–15 2.75–5.51 [77]
NVIDIA Xavier Edge GPU 8–15 2.94–5.51 [77]
Intel Core i7 8700 Desktop CPU 52–59 19.08–21.65 [78]
Nvidia RTX 2080Ti Desktop GPU 102–157 37.43–57.62 [78]

4.5. Energy Harvesting

In the context of addressing carbon emissions, it is essential to consider the sustain-
ability of sensor nodes, particularly their ability to operate using renewable energy sources,
such as solar cells. Sensor networks are uniquely positioned to operate for extended peri-
ods, thanks to the low-power characteristics of microcontrollers, which complement the
energy output of available energy harvesting methods. This stands in stark contrast to the
resource-intensive operation of server farms. Although significant advancements are being
made in harnessing renewable energy sources for data centers [79], the demand on server
farms remains such that achieving zero carbon emissions is still a challenge.
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Alternative approaches to sustainable sensing systems involve strategies aimed at
significantly reducing the per-sample power cost. For instance, opting for reagent chemistry
with LEDs for gas detection [63,80], as opposed to IR-based methods, can lead to substantial
power savings. We note that the use of LEDs as light detectors has demonstrated signifi-
cantly less power consumption than the traditional photodiode counterpart [81–83]. For
instance, previous work in turbidity sensing [84] performed a direct comparison between
photodiodes (447 mW) and LED (446 nW) power draw and found two orders of magnitude
difference, i.e., 1.002 × 10−6 less power draw. Such advances, coupled with renewable
energy strategies, could prove invaluable for battery-powered devices.

In scenarios where water-based sensors are employed [85,86], especially in environ-
ments with limited access to renewable energy sources such as solar or wind, an event-
driven approach proves advantageous. The attenuation of RF signals in water can hinder
data transmission, making it essential to minimize data transmission and adopt an event-
driven model. Additionally, alternative communication methods like sonar, while effective,
can be power-intensive, and their usage should be optimized to maximize the longevity
of deployments.

By integrating energy harvesting and optimizing power usage in sensor networks, we
can further reduce the carbon footprint associated with continuous data transmission and
processing, contributing to a more sustainable and environmentally responsible approach
to sensor network design.

4.6. Resource Placement

Historically, the development of sensor systems necessitated a myriad of specialized
resources, often involving the expertise of electrical engineers, intricate PCB design and
assembly, and the creation of custom firmware. These requirements made entry into the
field of sensor networks daunting and limited to those with extensive technical knowledge.

However, a transformative shift occurred with the advent of single-board microcon-
trollers. These compact, versatile devices ushered in a new era of sensor system develop-
ment, democratizing the process and making it accessible to a wider range of enthusiasts.
A pivotal aspect of this transformation was the emergence of a vibrant community of
users and the availability of libraries that offered pre-built code for common functions.
As a result, the barriers to entry significantly lowered, enabling a more diverse group of
individuals to engage in sensor network projects.

In recent times, there has been a prevailing trend toward harnessing the power of
artificial intelligence (AI) and machine learning (ML) for data processing within sensor
networks. The appeal of these technologies lies in their ability to perform complex tasks,
offering high-level programming and classification solutions. AI and ML tools continue
to evolve, providing increasingly sophisticated capabilities for handling data and making
sense of intricate patterns.

Although the integration of AI and ML for data processing presents remarkable
advantages, it is not without drawbacks. One of the significant downsides is the increased
power consumption associated with these resource-intensive systems. Consequently, the
carbon footprint of sensor networks can expand, which may counteract the overarching
goal of reducing carbon emissions.

In this study, we have demonstrated the noteworthy achievements that can be un-
locked through the utilization of microcontrollers as primary resources for gathering and
processing data in sensor networks. Our research has highlighted the potential of these low-
power yet efficient devices to extract valuable insights from data, particularly in contexts
where the primary focus is the identification and management of high-power-consuming
appliances—a critical aspect of reducing carbon emissions.

To achieve the best possible reduction in carbon emissions, it is imperative to optimize
the placement of resources within sensor networks. This entails careful consideration of
when and where to employ resource-intensive AI/ML systems and when to leverage the
efficiency of microcontrollers. Software tools like openLCA offer a means to assess the
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environmental impacts associated with every stage of the life cycle of WSN systems, from
sensor deployment to data processing on servers. By optimizing resource placement, we
can strike a balance between data processing efficiency and environmental sustainability,
aligning with the overarching goal of addressing climate change.

Applications and Advantages of Microcontroller Methods

The applications of MCU methods in sensor networks for carbon emissions monitoring
are diverse and offer distinct advantages. In the context of this research, the implementation
of MCU-based real-time event detection has been successfully demonstrated in two specific
applications: environmental CO2 monitoring and home energy usage tracking.

In environmental CO2 monitoring, the MCU method excels in providing a low-power
solution for gathering and processing data from sensors. The MCU’s ability to perform
event detection locally on the sensor node minimizes the need for continuous data trans-
mission, resulting in significant energy savings. This approach is particularly advantageous
for remote or inaccessible deployment locations, where frequent data transmission may
not be feasible and/or transmission costs are a bottleneck. The MCU’s efficiency (coupled
with event-driven data transmission) ensures that only relevant information is transmitted,
which reduces the overall power consumption of the sensor node.

For home energy usage tracking, the MCU method proves instrumental in detecting
and classifying events related to high-power-consuming appliances. The efficiency of
MCU-based algorithms allows for real-time processing of data, enabling the identification
of specific appliance usage patterns. This capability is crucial for assessing the contribution
of individual appliances to the overall carbon footprint of a household. The MCU’s low-
power characteristics make it a suitable choice for deployment in smart homes, where
continuous monitoring is essential for understanding energy consumption patterns.

The advantages of MCU methods extend beyond specific applications to address
overarching challenges in sensor network design. The inherent low-power characteristics
of microcontrollers contribute to prolonged sensor node operational lifespans, reducing
the frequency of battery replacements and associated environmental impact. Additionally,
the accessibility and affordability of microcontrollers have democratized sensor system
development, making it feasible for a broader range of individuals and communities to
engage in carbon emissions monitoring initiatives.

In summary, the applications of microcontroller methods in carbon emissions monitor-
ing encompass diverse scenarios. In this work, we demonstrated this from environmental
sensing to household energy tracking. The inherent advantages of low-power real-time
processing contribute to energy efficiency, sustainability, and accessibility in sensor network
design. These attributes position microcontrollers as key components in addressing the
challenges of climate change through effective resource placement and optimized data
processing strategies.

4.7. Current and Future Challenges

As outlined in the Introduction, MCU-based data processing comes with various chal-
lenges, such as hardware heterogeneity, diverse MCU architectures, resource limitations,
constrained memory management, and the need for seamless software interoperability
across devices. These challenges can be addressed through the development of standard-
ized programming libraries and compatibility with device-specific code compilation. This
has been demonstrated through the developed code in Listing A1 in Appendix A.1 for
event detection for two diverse applications. It is noted that this was 98 lines of C code,
while the same result can be achieved through a few lines in Python due to the relatively
plentiful availability of memory and imported libraries.

Network connectivity remains a significant challenge for MCU-based solutions. Em-
phasis should be placed on standard protocols, interoperability, and security to overcome
this challenge. The LwM2M protocol is discussed as a potential solution for addressing
the challenges related to network connectivity and interoperability. Additionally, the
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first ACM/IEEE TinyML Design Contest (TDC’22) focuses on developing AI/ML-based
real-time detection algorithms for life-threatening ventricular arrhythmia on low-power
microcontrollers used in Implantable Cardioverter-Defibrillators (ICDs) [87].

Another concern is security and data trustworthiness issues for IoT systems [88,89].
Critical assurances must be put in place for the environmental data, as landfill sites can be
financially penalized for breaching legal limits and be appealed in court systems. Moreover,
considering that many are privately owned sites, there is a vested interest in favoring
sub-threshold values by the owners and/or higher for competitors. For the household
data, access by unauthorized persons could reveal when the household is empty as seen in
Figure 5 and therefore be vulnerable to burglary [90]. Parikh et al. [91] outlined opportu-
nities and challenges related to wireless systems, particularly for smart grid applications,
which is particularly relevant for our household monitoring system. In addition, a game-
theoretic approach has been proposed by Abdalzaher et al. [92] to enhance security and
data trustworthiness in IoT applications. This model focuses on clustered wireless sensor
networks (WSNs) in IoT, addressing challenges such as data trustworthiness (DT) and
power management. The repeated game model presented in the paper aims to enhance
security against selective forwarding attacks, detect hardware failures in cluster members,
and conserve power consumption due to packet retransmission.

Another challenge is incremental on-device learning, which allows both inference
and training of models directly on MCU devices. A toolbox called TyBox is introduced to
address this challenge and provide automatic design and code generation for incremental
on-device classification models [93].

5. Conclusions

In conclusion, this research underscores the transformative role of low-power micro-
controllers in shaping sustainable and energy-efficient sensor networks for carbon emissions
monitoring. By showcasing the successful implementation of MCU-based real-time event
detection in diverse applications, the study establishes the feasibility of minimizing power
consumption without compromising the quality of environmental data. The power savings
achieved through event-driven data transmission, coupled with the exploration of energy
harvesting strategies, positions MCU-powered sensor nodes as key components in reducing
the carbon footprint of sensor networks. The work not only addresses the challenges of
resource allocation in sensor systems but also emphasizes the need for a balanced approach,
judiciously integrating AI/ML for complex tasks while leveraging the inherent efficiency
of microcontrollers. Ultimately, this research contributes to a more nuanced understanding
of resource placement in sensor networks, offering a practical and sustainable framework
for addressing the critical issue of climate change.
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Appendix A.1. Code for Compiling Global and Event Data

Listing A1 presents—Code used for compiling the global and event information.

Listing 1. Global Statistics Algorithm.
1 typedef s t r u c t {
2 u i n t 3 2 _ t time ;
3 f l o a t val ;
4 } DataPoint ;
5
6 typedef s t r u c t {
7 u i n t 3 2 _ t counter , counterAboveThreshold , sleepTime ;
8 f l o a t sum , min , max , threshold ;
9 } G l o b a l S t a t s ;

10
11 typedef s t r u c t {
12 u i n t 3 2 _ t counter , t S t a r t , tEnd ;
13 f l o a t min , max , sum ;
14 } Event ;
15
16 typedef s t r u c t {
17 u i n t 3 2 _ t counter , dpCounter ; / / , t S t a r t , tEnd ;
18 f l o a t min , max ;
19 f l o a t tMax , tSum ;
20 f l o a t dpSum ;
21 } EventS ta ts ;
22
23 void updateGlobalStats ( DataPoint *dp , G l o b a l S t a t s * gs ) {
24 gs−>counter ++;
25 gs−>sum += dp−>val ;
26 i f ( dp−>val > gs−>threshold ) gs−>counterAboveThreshold ++;
27 i f ( dp−>val < gs−>min ) gs−>min = dp−>val ;
28 i f ( dp−>val > gs−>min ) gs−>min = dp−>val ;
29 }
30 void updateEvent ( DataPoint *dp , Event * event ) {
31 event −>counter ++;
32 event −>sum += dp−>val ;
33 i f ( dp−>val < event −>min ) event −>min = dp−>val ;
34 i f ( dp−>val > event −>max) event −>max = dp−>val ;
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35 }
36 void updateGlobalEventStats ( EventS ta ts * es , Event * event ) {
37 es −>counter ++;
38 es −>dpCounter += event −>counter ;
39 es −>dpSum += event −>sum ;
40 es −>tSum += event −>tEnd − event −> t S t a r t ;
41
42 i f ( event −>min < es −>min ) es −>min = event −>min ;
43 i f ( event −>max > es −>max) es −>max = event −>max ;
44 i f ( event −>tEnd−event −> t S t a r t > es −>tMax )
45 es −>tMax = event −>tEnd−event −> t S t a r t ;
46 }
47 i n t main ( void ) {
48 G l o b a l S t a t s gs ;
49 memset(&gs , 0 , s i ze of ( gs ) ) ;
50 gs . min = FLT_MAX;
51 gs . samplingPeriod = 21600 ;
52
53 EventS ta ts es ;
54 memset(&es , 0 , s i ze of ( es ) ) ;
55 es . min = FLT_MAX;
56
57 DataPoint dp ;
58 u i n t 8 _ t monitoring = 1 ;
59
60 while ( monitoring == 1) {
61 getDataPoint (&dp ) ;
62 i f ( dp . val > gs . threshold ) {
63 Event event ;
64 memset(&event , 0 , s i ze o f ( event ) ) ;
65 event . min = FLT_MAX;
66 event . t S t a r t = dp . time ;
67 while ( dp . val > gs . threshold ) {
68 updateEvent(&dp , &event ) ;
69 updateGlobalStats (&dp , &gs ) ;
70 s leep ( gs . samplingPeriod ) ;
71 getDataPoint (&dp ) ;
72 }
73 event . tEnd = dp . time ;
74 } e ls e {
75 updateGlobalStats (&dp , &gs ) ;
76 s leep ( gs . samplingPeriod ) ;
77 }
78 }
79
80 p r i n t f ( " Threshold\ t%f \n" , gs . threshold ) ;
81 p r i n t f ( " Measurements :\ t%d\n" , gs . counter ) ;
82 p r i n t f ( " # > Threshold :\ t%d\n" , gs . counterAboveThreshold ) ;
83 p r i n t f ( "PC > Threshold :\ t%f \n" , 1 0 0 . 0 * gs . counterAboveThreshold/gs . counter ) ;
84 p r i n t f ( " Summation :\ t%f \n" , gs . sum ) ;
85 p r i n t f ( "Max:\ t \ t%f \n" , gs . max ) ;
86 p r i n t f ( "Min:\ t \ t%f \n" , gs . min ) ;
87 p r i n t f ( " Average :\ t%f \n" , gs . sum/gs . counter ) ;
88
89 p r i n t f ( " Tota l Number of Events :\ t%d\n" , es . counter ) ;
90 p r i n t f ( "Avg . Events Per Day:\ t%f \n" , es . counter / 3 6 5 . 0 ) ;
91 p r i n t f ( "Avg . Events Per Week:\ t%f \n" , es . counter / 5 2 . 0 ) ;
92 p r i n t f ( "Avg . Events Per Month :\ t%f \n" , es . counter * 3 0 / 3 6 5 ) ;
93 p r i n t f ( "Max Event Value :\ t \ t%f \n" , es . max ) ;
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94 p r i n t f ( "Min Event Value :\ t \ t%f \n" , es . min ) ;
95 p r i n t f ( "Avg . Event Value :\ t \ t%f \n" , es . dpSum/es . dpCounter ) ;
96 p r i n t f ( "Max Duration :\ t \ t%f \n" , es . tMax / 8 6 4 0 0 . 0 ) ;
97 p r i n t f ( "Avg . Duration :\ t \ t%f \n" , ( es . tSum/es . counter ) / 8 6 4 0 0 . 0 ) ;
98 }
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