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Abstract: To tackle the problems of over-reliance on traditional experience, poor troubleshooting
robustness, and slow response by maintenance personnel to changes in faults in the current aircraft
health management field, this paper proposes the use of a knowledge graph. The knowledge
graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the
correlation between fault data by representing experience. The data source for this study consists
of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge
graph construction approach is proposed to construct a fault knowledge graph for aircraft health
management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity
relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve
entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic
perspective. Additionally, a knowledge graph platform for aircraft health management is developed.
The platform includes modules for text classification, knowledge extraction, knowledge auditing, a
Q&A system, and graph visualization. These modules improve the management of aircraft health
data and provide a foundation for rapid knowledge graph construction and knowledge graph-based
fault diagnosis.

Keywords: PHM; knowledge graph; joint extraction of entity relationships; Q&A system

1. Introduction

The demand for highly advanced and high-performance equipment, such as aircraft
and weaponry, is increasing due to the rapid advancement of information technology
and the implementation of Germany’s ‘Industry 4.0" and China’s ‘Made in China 2025’
strategies. This demand is particularly relevant in all-airspace, all-weather, multi-element
war scenarios. As a result, the system structure of this equipment is becoming increasingly
complex. The complexity of the system structure is accompanied by a higher degree of
functional integration operating in harsh environments. Consequently, a wide range of
failure modes can occur in aircraft and other weaponry, leading to complex fault propaga-
tion patterns [1]. These complex and diverse faults pose challenges to the safe and stable
operation of the entire aircraft. Efficiently and accurately identifying aircraft faults and
enhancing the effectiveness and efficiency of aircraft maintenance is crucial for ensuring
stable aircraft operation.

Based on the research into the current state of aircraft field maintenance and guarantee,
the current approach still relies on the passive method of “fault-locate the fault-troubleshoot
and repair”. When a failure occurs, it necessitates the involvement of a professional mainte-
nance team. In case of a fault, maintenance personnel need to analyze and troubleshoot
the fault phenomenon by incorporating relevant historical fault reports and other data.
Unfortunately, there remains a dearth of effective intelligent fault diagnosis techniques.
Furthermore, the varying proficiency levels of maintenance personnel have resulted in sub-
optimal stability of the troubleshooting effect. This has also caused maintenance personnel
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to respond slowly to changes in faults, thereby impeding their ability to promptly and
accurately deal with issues [2]. Additionally, given the complex structure of aircraft systems
and the varying nature of failures across different systems, aircraft Prognostics and Health
Management (PHM) demands a high level of professional expertise from technicians, mak-
ing it more challenging. Fault diagnosis techniques have evolved from manual testing and
external testing to manual diagnosis and intelligent fault diagnosis. Currently, research
in the field of Prognostics and Health Management (PHM) primarily focuses on methods
based on failure physical models [3] and data-driven approaches [4]. Particularly, migration
learning and deep learning methods are utilized to enhance the generalization capability
of diagnostic models [5-7]. However, physical model-based approaches possess certain
limitations. Firstly, they require researchers to possess a comprehensive understanding
of the physical structure of the system and the failure mechanism. Secondly, they need
to consider various stress factors in the degradation and failure process of the product,
in addition to the limited generalization ability of the model. On the other hand, the
data-driven approach faces challenges. Due to space and load restrictions on aircraft, it is
impractical to install a large number of sensors, making it difficult to obtain sufficient and
effective state data for characterizing failures. The existing aircraft systems have accumu-
lated a substantial number of unstructured and semi-structured text-based fault handling
cases. Thus, the pressing need in the aircraft PHM field is to swiftly and accurately extract
valuable information from this vast amount of text data [8,9].

The concept of the knowledge graph was formally introduced by Google in 2012 [10],
with the initial goal of enhancing search efficiency and the capabilities of search engines to
improve users’ search experiences. In comparison to traditional knowledge bases, knowl-
edge graphs offer several distinct advantages: Richer semantic relations, knowledge graph
can establish the connection between heterogeneous data from multiple sources and use re-
lational information to break the semantic gap between different modal data; higher knowl-
edge quality, the knowledge sources of knowledge graph are diverse, and also provide
knowledge representation learning methods such as symbolic representation and vector
representation to adapt to different application scenarios; and visualization, knowledge
graph supports the visual display, which provides great convenience for human-computer
interaction [11]. Currently, knowledge graphs have found widespread application in var-
ious industries, including medical, military, financial, and others [12-14]. Research on
knowledge graphs in the fields of intelligent decision-making, equipment operation, and
maintenance has been conducted earlier, and there are now preliminary applications in
these areas. Here are some examples: Guo [15] developed a fault diagnosis knowledge
graph using text from grid fault disposal plans. This enabled intelligent retrieval of fault
information and assisted in diagnosing faults. Guo [16] created a bogie knowledge map-
ping platform and retrieval system for high-speed trains. It integrated knowledge from
multiple sources and domains, aiding designers in product repairability design and im-
proving product quality. Xue [17] constructed a knowledge mapping system for on-board
equipment faults, which visually displayed and retrieved relationships between faults.
This improved the ability to discover knowledge from on-board fault logs and facilitated
fault maintenance guidance. Liu [18] built a service value chain multi-chain knowledge
mapping based on third-party cloud platform data resources. This method was validated
using relevant service businesses and demonstrated the feasibility of constructing such a
knowledge graph. Hu [19] enhanced the traditional knowledge graph construction process
by adding text pre-classification and entity reorganization processes. This resolved issues
like information redundancy and nested entities present only in text. Liu [20] proposed a
fault diagnosis method for mechanical equipment using machine learning algorithms. It
accurately predicted fault diagnosis results and used similarity matching to find suitable
solutions in the knowledge graph. Mao [21] developed a knowledge graph focused on
chemical process safety. It allowed retrieval of potential causes based on safety accident
phenomena and ranked corresponding solutions by comparing the probability of poten-
tial causes. Wu [22] utilized Bayesian algorithms to mine relationships between ternary



Sensors 2024, 24, 231

3o0f21

groups, enabling knowledge fusion, reasoning, and updating. The resulting knowledge
graph facilitated fault prediction, fast discovery, fault localization, type identification,
and impact reasoning and provided solutions for decision-making. Li [23] established a
comprehensive life cycle knowledge graph for HVDC transmission systems. It combined
intelligent decision-making methods based on XGBoost to improve fault diagnosis speed,
accuracy, and robustness significantly. Chen [24] proposed a high-voltage substation fault
diagnosis method that combined LSTM and knowledge graphs. Integrating fault data
with the knowledge graph enabled quick identification and resolution of fault causes,
greatly enhancing management, operation, and maintenance efficiency. It is evident that
knowledge graphs have been applied in various domains to enhance decision-making, fault
diagnosis, and operational efficiency. Pan [25] proposed the Low-Rank Tensor Regularized
Graph Fuzzy Learning (LRTGFL) method for processing multiview data. This method
clusters the nonlinear structure between multisource heterogeneous data, facilitating a
more efficient establishment of relationships between multisource data. Liu [26] utilized a
self-supervised approach for knowledge graph completion of multiview data, harnessing
the complementarity and consistency of mining multisource heterogeneous data. Conse-
quently, knowledge mapping can yield more comprehensive information by establishing
connections between heterogeneous data from multiple sources. This effectively addresses
the problem of uncertainty caused by incomplete knowledge in the field of Prognostics and
Health Management (PHM) fault diagnosis while also laying the foundation for achieving
smarter assisted maintenance decisions.

Currently, there is limited integration of knowledge graphs in the field of aircraft
Prognostics and Health Management (PHM). However, the combination of knowledge
graphs with aircraft PHM holds significant potential for broad applications and high
utility. While research on knowledge mapping has made some headway in the realm
of aircraft manufacturing [11], its application in aircraft PHM is still in its early stages.
For example, Zhang [27] introduced the BERT-BiLSTM-CRF algorithm for identifying
defective entities in aero-engines but did not provide further details on the construction
method for the aero-engine fault knowledge graph. In a similar vein, Nie [28] proposed
key technologies for constructing knowledge graphs related to aircraft power system fault
diagnosis and conducted exploratory applications of intelligent systems. Additionally,
Wu [29] utilized the BERT-BiLSTM-CREF algorithm for entity relationship extraction within
the aero-engine lubrication system, subsequently constructing a fault knowledge graph for
this system. Tang [30] employed deep learning as the primary method and heuristic rules as
an auxiliary method to extract fault knowledge from both structured and unstructured fault
data, leading to the construction of a fault knowledge graph for a specific type of process.
Furthermore, Meng [31,32] presented a method for constructing a fault knowledge graph
for aircraft power system health management and developed an intelligent Q&A system
based on this knowledge graph, resulting in a significant enhancement of maintenance
personnel’s troubleshooting abilities.

The research aims to integrate knowledge graph technology into aviation fault diagno-
sis. Although these efforts have improved the efficiency of constructing fault knowledge
bases and the correlation performance of faults, they may not fully address the semantic
complexity of unstructured text during the knowledge graph construction process. In
this paper, we introduce a knowledge graph construction process specifically tailored
for aircraft health management, focusing on the flight control system as an illustrative
example. Additionally, we developed a knowledge graph management platform dedicated
to aircraft health management, facilitating the rapid construction of knowledge graphs and
Q&A systems.

Compared with previous work, this paper presents the following key contributions
and innovations:

(a) Proposal of a knowledge graph construction process for aircraft health management:
The paper introduces a tailored process to meet the specific requirements of aircraft
health management. To address the complexities and ambiguities of text seman-
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tics in entity relationship extraction, the approach incorporates text classification
to classify different segments of the text, thereby reducing the difficulty of entity
relationship extraction.

(b) Evaluation of a pre-trained linguistic joint extraction model based on ERNIE: The
paper assesses the effectiveness of a pre-trained linguistic joint extraction model
leveraging ERNIE. This model can generate feature vectors and encode contextual
semantic information. By integrating LSTM based on sequences and tree structures, as
well as syntactic dependency trees, the model effectively captures the interdependence
between entities and relations. This approach reduces error transmission in entity-
relationship extraction and mitigates the semantic complexity of the text.

(c) Development of a knowledge graph construction platform for aircraft health man-
agement: The paper introduces a comprehensive platform equipped with modules
such as text classification, knowledge extraction, knowledge audit, Q&A systems, and
graph visualization. This platform enhances the management capabilities of aircraft
health management data and provides a solid foundation for the rapid construction
of aircraft health management knowledge graphs.

These contributions represent significant advancements in the field of aircraft health
management and knowledge graph construction, addressing the limitations of previous
research endeavors.

2. Data Sources and Analyses
2.1. Data Sources

The data utilized in this paper comprise flight control system manuals and typical
failure cases related to a specific type of aircraft. Table 1 presents the data nomenclature
and types employed in this study. Upon observation, it becomes apparent that the system
manual primarily consists of unstructured data, including function descriptions and com-
position descriptions. Similarly, typical failure cases encompass unstructured data such as
failure phenomena and cause of failure. The objective of this paper is to extract the flight
control system triad from the system specifications and typical failure cases, subsequently
leveraging this information to construct an aircraft health management knowledge graph.

Table 1. Data type.

Data Sources Data Fields Data Type
Functional Description Unstructured data
System Manual . .

Component Description Semi-structured data

Fault Phenomenon Unstructured data

Tyvpical Failure Cases Cause of Failure Unstructured data

P Troubleshooting Process Unstructured data

Fault Impact Unstructured data

2.2. Data Analysis

The text within the system manual and typical failure cases of the flight control system
analyzed in this paper exhibit the following characteristics:

(a) Abundance of specialized nouns: The text contains a substantial number of specialized
nouns, making direct employment of a thesaurus problematic due to the potential for
inaccurate entity extraction results.

(b) Similar semantic structure across diverse data sources: While the semantic structure
of the text is comparable across various sources, the extraction model encounters
challenges due to differing extraction content, leading to potential confusion.

(c) Complexity of data content: The data encompass complex content wherein certain
texts necessitate the entire sentence as an entity, while other texts do not require the
extraction of entity relations. This variance significantly impacts the efficacy of ternary
entity relation extraction.
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To address the aforementioned characteristics, this paper proposes the following
solutions for constructing the knowledge graph in aircraft health management: Problem 1:
Specialized Nouns This paper incorporates domain-specific nouns into the entity extraction
model using a dictionary. This approach prevents the influence of specialized nouns on the
extraction process, thereby improving extraction accuracy. Problem 2: Semantic Structure
Differences Before performing entity relationship extraction, this paper employs a text
classification process. By doing so, it mitigates the impact of semantic structure variations
across different data sources on the extraction model, enhancing its adaptability. Problem 3:
Text Classification Information The paper introduces text classification information as a
gating mechanism within the entity-relationship extraction model. It leverages global text
classification data to determine the extraction mode of the text, effectively avoiding the
influence of special text content on normal text triad extraction.

3. Knowledge Graph Construction for Aircraft Health Management
3.1. Knowledge Graph Construction Framework

There are three primary construction frameworks for knowledge graphs: top-down,
bottom-up, and a combination of both [33]. In the bottom-up approach, knowledge ex-
traction precedes the definition of ontology information, while the top-down approach
involves defining ontology information first, followed by knowledge extraction from the
data. Currently, domestic domain knowledge graph constructions predominantly employ
the top-down method. However, given the diverse data sources and schema disparities
within the aircraft health management domain, this paper advocates for a combined top-
down and bottom-up construction approach. Specifically, this approach entails initially
defining entity types and relationship types in the schema layer to guide the establishment
of the data layer. Subsequently, the data layer is updated during the establishment pro-
cess, continuously providing feedback to the schema layer. The construction process is
illustrated in Figure 1.

Send back

information

Knowledge fusion

Relational extraction

Defining entity types

Top-down
Bottom-up

Defining relationship
types

Named entity
recognition

q Direction '

Figure 1. Knowledge Graph Construction Process.

3.2. Construction of the Schema Layer

The schema layer of the knowledge graph serves as a semantic specification, guiding
the construction of the data layer and providing a semantically classified framework
within a specific scope. In this paper, the schema layer of the aircraft health management
knowledge graph, depicted in Figure 2, primarily encompasses nine entity types, such as
parts, faults, fault phenomena, and causes of faults, along with seven relationships between
these entity types.
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Figure 2. The schema layer of knowledge graph.

3.3. Construction of the Data Layer

The construction of the data layer primarily involves three tasks: entity extraction,
relationship extraction, and knowledge fusion. Among these, entity extraction serves as the
foundation for knowledge graph construction. It is also known as named entity recognition
(NER), and its primary objective is to extract entities from unstructured data. Relationship
extraction, on the other hand, is a crucial subtask of knowledge graph construction that
focuses on extracting semantic relationships between two entities from unstructured data.
Additionally, there may be cases where extracted entities have multiple meanings or are
near-synonyms, requiring knowledge fusion processing. This involves entity disambigua-
tion and co-reference disambiguation tasks.

Given that the entities in semi-structured data lack contextual information, this paper
adopts a manual approach to carry out knowledge fusion between semi-structured data
and unstructured data.

3.3.1. Text Classification

The processing result field in a typical fault case comprises four main contents: fault
phenomenon, troubleshooting process, cause of fault, and fault impact, as outlined in
Table 2.

Table 2. Text Categories and Examples.

Text Category Typical Example
Fault Phenomenon Electro-hydraulic servo valve housing oil seepage
Troubleshooting Process Replacement of machine parts
Cause of Fault Electro-hydraulic servo valve housing not sealing
fault impact Insufficient pressure in electro-hydraulic servo valve

In a typical fault case, each part shares semantic similarities, yet their extraction meth-
ods differ. For instance, in the troubleshooting process, each sentence should be treated
as an entity, while in other parts, the model needs to extract entities and relationships
from the text. Additionally, there are instances where certain texts do not require entity
and relationship extraction. These varied scenarios introduce ambiguity for the model.
Directly performing entity extraction on the processing result field would heighten the
extraction complexity due to the presence of other categories of information. As a re-
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sult, the text content in the field is considered to be pre-categorized, constituting a text
categorization task.

In current related research, machine learning models or deep learning models are
commonly employed for text classification. The model utilized in this paper is the ER-NIE
model, which is based on the transformer architecture proposed by Sun [34]. The ERNIE
model, introduced by Baidu, is a pre-trained language model that leverages knowledge
enhancement, endowing it with a robust ability to learn text representations. Specifically,
the ERNIE model facilitates the learning of semantic representations for complete concepts
by masking semantic units such as words and entities. In comparison to BERT, which learns
raw linguistic signals, ERNIE directly models a priori semantic knowledge units, thereby
enhancing the model’s semantic representation capability. The pre-training approach of the
ERNIE model and BERT model is illustrated in Figure 3.

= R
(][] [ [ ] ] o o) [ ] v o) e [l ] HEEEEE 5 5 [
Harbin is the capital of Heilongjiang and an international city of ice and
snow culture. snow culture.
(@) (b)

Figure 3. Pre-training model approach (a) BERT pre-training method; (b) ERNIE pre-training method.
3.3.2. Joint Extraction of Entity Relationships Based on ERNIE-BiLSTM-CRF-TreeBiLSTM

Entity-relationship joint Extraction refers to the task of simultaneously identifying and
extracting entities along with the relationships between them in a given text. In contrast
to traditional named entity extraction, which solely focuses on entity identification, entity
relationship joint extraction aims to achieve a more comprehensive understanding of the
semantic associations between entities present in the text.

The traditional extraction approach involves initially conducting entity recognition
within the sentence and then determining the type of relationship between entities based
on the combination of subject and object in the entity extraction result, thereby forming
a ternary group of subject, relationship, and object [35]. Nevertheless, this extraction ap-
proach has certain shortcomings. Firstly, it faces the issue of error accumulation, where any
errors in entity recognition will consequently impact the subsequent relationship classifica-
tion results, leading to further error propagation [36]. Secondly, there is an underutilization
of information, as the tasks of entity extraction and relationship extraction are relatively
independent, and the inherent connection between the two is not effectively leveraged,
particularly with relationship extraction failing to capitalize on the relationship between
the two [37]. To mitigate these challenges, a joint relational extraction model can be em-
ployed. This model is designed to maximize the potential information between the two
tasks and enhance the interaction between the entity recognition model and the relationship
classification model, thereby addressing these limitations [38].

Amidst the emergence of the big data era, numerous scholars have dedicated them-
selves to the exploration of entity-relationship joint extraction. For instance, Zheng [39]
devised a new annotation scheme to transform the entity-relationship joint extraction
task into a sequence annotation problem. Sun [40] employed graph convolutional neural
networks for relationship extraction, utilizing relationship weights to capture connec-
tions between multiple entity types and relationship types within a sentence. Nayak [41]
introduced a joint entity-relationship extraction method utilizing an encoder-decoder ar-
chitecture, leading to a substantial enhancement in the F1 score. Yu [42] proposed a novel
entity-relationship extraction strategy using Span’s annotation scheme to break down
the joint extraction task into two interconnected subtasks (HE extraction and TER extrac-
tion), which exhibited noteworthy performance improvements in test application scenarios.
Wei [43] put forward a new cascading binary annotation framework, Casrel, which trans-
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lates the task of extracting triples into three levels: central entities, relations, and object
entities. Katiyar [44] was the first to introduce the attention mechanism in combination
with a bi-directional LSTM for joint entity-relationship extraction. In the literature [45], the
attention mechanism for neural networks in relation to extraction was introduced, proving
to be more effective than other structured perceptron joint models. Literature [46] proposed
an entity-relationship extraction model based on the sequence and tree structure of LSTM
and integrated syntactic dependency trees to reduce the linguistic complexity of utterances,
offering valuable insights and ideas for further research and problem-solving.

This study employs a classical end-to-end relationship extraction model based on
sequence and tree structure LSTM. The model uses an end-to-end neural network structure
to extract entities and entity relationships by leveraging both sequence and dependent tree
structure information. To enhance the parsing ability of the sequence and tree-structured
LSTM model, we introduce the ERNIE model as the embedding layer of our model. The
output of the ERNIE model is connected to the sequence and tree-structured LSTM model.
Additionally, we incorporate the output vector X from text classification based on the
ERNIE model into the relationship extraction task. This helps address the impact of
special text on relationship extraction. The entity-relationship extraction model, known as
ERNIE-BiLSTM-CRF-TreeBiLSTM, is illustrated in Figure 4.

¥ [
|[ vmrn —[1f—
| E—
Flight control
system B
3-axis controlled -
tabilisation O]
' map
Transformer
syntactic
i ] L3R 1
)| o
R ) wr 1 T g |
( EXUTHREES: 12 D) Flight control contain 3-axis controlled
L system sov stabilisation

The flight control system provides basic flight functions including:
1. 3-axis control stabilisation;...

Figure 4. Entity-relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM.

The specific process is as follows: first, the text sequence’s lexicality is annotated using
the syntactic dependency tree. In this paper, the Baidu-DDParser tool is utilized for the
syntactic analysis of the text. Subsequently, the text is converted into a text sequence. The
input vector X of the ERNIE model is then transformed into the ERNIE model, as depicted
in Equation (1).

XI[X1X2...Xn]€Rn><H 1
{xi—Ef—i—Ef—i—E?i—LZ,...,n M

The process starts with H representing the vector dimension, E! denoting the word
embedding coding for word sequences, and Ef representing the positional information
coding for word sequences. Additionally, E; signifies the utterance information coding for
word sequences. These components are collectively mapped to attain the input sequence X
of the ERNIE layer through high-dimensional summation.

Subsequently, the sequence X undergoes the computation of comprehensive features
via the multilayer Transformer to yield the final feature vector T. This feature vector T is
then fed into the Sequential BILSTM layer, which captures linguistic features based on
contextual information, thereby producing a sequence of vectors O = [01 02 ... 0,] that
integrates contextual details. Following this, a sequence of vectors O is generated and input
to the CRF layer.
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Ultimately, the CRF layer derives the optimal entity labels, employing the globally best
label sequence based on neighboring label relationships. This process yields the optimal
entity labels labeled with BILOU (Begin, Inside, Last, Outside, Unit).

In order to incorporate both the word sequences and dependency tree structure
information into the output, we introduce the dependency layer on top of the sequence

layer. The LSTM unit within the dependency layer receives x; = [s; vgd)] as input at the
t-th word, and its corresponding hidden state vector s; is then integrated with the sequence
layer, specifically with the sequence BILSTM embedding vgd).

The TreeLSTM produces three outputs: dy = [hp ,; hp,; hp,; hp,] represents the hidden
state vector of the top LSTM cell in the bottom-up TreeL.STM, while 1y, ,, hp,, and h, denote
the hidden state vectors of the two LSTM cells representing the first and second target
words in the top-down TreeLSTM. Additionally, /. signifies the hidden state vector of the
last word in the ERNIE model. These associations are depicted by the corresponding arrows
in Figure 1. Finally, a two-layer neural network, as depicted in Equation (2), comprising a
ny, dimensional hidden layer (") and a softmax output layer, is employed to output the
relationship type.

hy(") = tanh(W(nd,, + b))

yp = softmax(W) i, (1) 4 p(rv)) (2)

where W(t) and W(v) are the weight matrix, b("») and b("v) are the bias vector.

4. Test Analyses
4.1. Test Platform Construction and Test Indicators

We labeled 1648 entities from a total of 1000 faulty texts, with 700 texts allocated
to the training set and 300 texts assigned to the test set. The evaluation metrics for joint
extraction of entity relations include accuracy, as depicted in Equation (3), recall, as depicted
in Equation (4), and F; value, as depicted in Equation (5). The F; value serves as a
comprehensive evaluation metric for assessing the model’s extraction effectiveness and is
calculated using the following formula:

p— 1 )
Tp—i—Fp
T
R = 4 4
Tp—i-FN @)
2PR
'T PR ®

In the experiment, the evaluation metrics are defined as follows: T}, represents the
positive examples that were correctly predicted, F, denotes the positive examples whose
true value was a counterexample that was incorrectly predicted, and Fy refers to the
positive examples whose true value was incorrectly predicted as a counterexample. The
joint extraction model constructed in this paper considers a triad to be correctly predicted
when the head entity, relationship entity, and tail entity are all predicted accurately.

4.2. ERNIE-Based Text Classification

Text can be broadly categorized into two groups: normal text and special text. Normal
text includes fault causes, fault phenomena, fault effects, and troubleshooting processes. On
the other hand, special text can be further divided into two subcategories: whole-sentence
extraction and non-extraction. Prior to training the model, it is necessary to configure the
model parameters. The training parameters for the text classification model are outlined in
Table 3. During training, the iteration is stopped when the difference in accuracy between
the latest 10 iterations is less than 0.2.
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Table 3. Training parameters for text classification models.

Parameters Value
Batch size 8
Learning rate 0.00003
Epochs 10
Max length 128
Optimiser Adam
Dropout 0.1

To evaluate the performance of the text classification model presented in this paper, we
conducted a comparative test using several models, including BERT [47], BERT_CNN [48],
BERT_RNN, BERT_RCNN, and BERT_DPCNN [49]. The model accuracy diagram is
illustrated in Figure 5, and the test results are summarized in Table 4, where the test
results are taken as the average of 5 tests, and the F; values are accompanied by upper and
lower limits.

Training and Testing Accuracy Training and Testing Accuracy Training and Testing Accuracy
10
SN AN NN ,vh/\/A PANNL A ,vh AALANNL
o~ V v 084 T 08 Lt

Accuracy

g g
g g
€ £
04 044 oad

02

/ —— Train Accuracy ). — Train Accuracy — Train Accuracy
— est Accuracy Test Accuracy { Test Accuracy

0 10 20 30 ) 50 0 10 20 EY © 0 o 10 20 B 0 %
Iterations Rerations Rerations

(a) (b) (c)
Training and Testing Accuracy Training and Testing Accuracy Training and Testing Accuracy
10 10 10
/*\N\f'\"’\"’\ e e\ NN
NPy VN adas PONLWYA T T A
AN
o MW wl Y o
o6 306 “ o6
g g
04 04 04
/ —— Train Accurac y | —— Train Accuracy )
Test Accuracy ! Test Accuracy
o 10 20 30 0 0 6 70 0 20 40 60 80 o vy 2
terations terations cwticos
(d) (e) (f)

Figure 5. Model Text Classification Accuracy: (a) BERT Model Text Classification Accuracy; (b) BERT-
CNN Model Text Classification Accuracy; (¢) BERT-RNN Model Text Classification Accuracy;
(d) BERT-RCNN Model Text Classification Accuracy; (e) BERT-DPCNN Model Text Classification
Accuracy; (f) ERNIE Model Text Classification Accuracy.

Table 4. Text Classification Test Results.

Model p R F
BERT 90.57 90.68 90.63 £ 0.01
BERT_CNN 90.61 90.51 90.56 £ 0.02
BERT_RNN 90.94 90.92 90.93 £ 0.00
BERT_RCNN 91.20 91.24 91.22 £+ 0.00
BERT_DPCNN 90.39 90.35 90.37 £ 0.02
ERNIE 94.49 94.53 94.51 £ 0.02

The experimental results demonstrate that, on the flight control system fault dataset
developed in this study, the ERNIE model outperforms other benchmark models in terms
of precision, recall, and F; score values when it comes to classifying each part of the text in
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a typical fault case. This superiority can be attributed to the utilization of word pairs in the
form of masking during the pre-training task, which maximizes the extraction of textual
information. Additionally, in the model using BERT as the embedding layer, BERT_RCNN
exhibits better classification performance. This indicates that the BILSTM module can
effectively capture semantic information from the text. To explore this aspect further,
another experiment involving the ERNIE_RCNN model was conducted. As depicted in
Figure 6, the accuracy value of the ERNIE_RCNN model reaches 94.75%. Therefore, this
paper selects the ERNIE_RCNN model as the text classification model for typical fault cases
in the flight control system.

Training and Testing Accuracy

10
N WAV AV
7V == Y

0.8
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04

0.2
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Test Accuracy
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Rterations

Figure 6. ERNIE_RCNN Model Text Classification Accuracy.

4.3. Test on Joint Extraction of Entity Relationships Based on ERNIE-BiLSTM-CRF-TreeBiLSTM

Before model training, the model parameters need to be set; the training parameters
of the ERNIE-BiLSTM-CRF-TreeBiLSTM model are shown in Table 5.

Table 5. Training parameters for text classification models.

Parameters Value
Batch size 8
Learning rate 0.00003
Epochs 10
Max length 128
Optimiser Adam
Dropout 0.1

To verify the superiority of the model ERNIE-BiLSTM-CRF-TreeBiLSTM to the fault
triple extraction task, this paper selects the mainstream extraction models, such as Cas-
rel [43] and GPlinker [50], as the control and conducts comparative experiments on the
self-built flight control system fault data set. The experimental results are shown in Table 6,
where the test results are taken as the average of 5 tests, and the F; values are accompanied
by upper and lower limits.

Table 6. Text Classification Test Results.

Model P R F
Casrel 69.492 74.738 72.114 £ 0.035
GPlinker 72.479 76.753 74.616 £ 0.033
BiLSTM-CRE-TreeBiLSTM 60.753 62.859 61.806 + 0.022
ERNIE-BiLSTM-CREF-
TreeBiLSTM* 76.524 79.848 78.186 £ 0.031
ERNIE-BiLSTM-CRF-TreeBiLSTM 83.441 86.737 85.089 £ 0.032

ERNIE-BiLSTM-CRF-TreeBiLSTM* for models without text classification.

The experimental results demonstrate that the ERNIE-BiLSTM-CRF-TreeBiLSTM
model, applied to the flight control system fault dataset constructed in this study, effec-
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tively addresses the challenge of semantic complexity in PHM domain text. It significantly
enhances ternary extraction, yielding better precision, recall, and F; score values compared
to other benchmark models. Furthermore, a comparison between ERNIE-BiLSTM-CRF-
TreeBiLSTM*, Casrel, and GPlinker reveals that the ERNIE model outperforms the BERT
model in mining Chinese text information. Additionally, comparing the ternary extrac-
tion effects of ERNIE-BiLSTM-CRF-TreeBiLSTM* with ERNIE-BiLSTM-CRF-TreeBiLSTM
demonstrates that categorizing text between ternary extraction improves the effectiveness
of handling the semantic complexity of text during ternary extraction. By utilizing ERNIE-
BiLSTM-CRF-TreeBiLSTM for entity-relationship recognition within ternary groups, the
proposed model in this study effectively enhances the efficiency of extracting ternary group
information. It strengthens the correlation between entity recognition and relationship ex-
traction, facilitating the integration and utilization of fault information. This advancement
provides valuable technical support in the field of fault diagnosis.

5. Design and Implementation of Knowledge Graph Platform
5.1. Platform Architecture Design

To streamline data management and expedite the development of Prognostics and
Health Management (PHM)-oriented knowledge graphs, this paper introduces a fault
knowledge graph platform tailored for aircraft PHM. Figure 7 illustrates the design of the
platform’s functional modules, encompassing the system’s overall architecture and the
interconnections among each functional module.

Fault Knowledge Mapping Platform for
Aircraft PHM

Knowledge Interaction
Module

!—k—\

Knowledge Graph Construction Module

Buljjaqe| ezeg
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Figure 7. System Functional Module Diagram.

Figure 7 presents the functional modules of the knowledge mapping platform for
aircraft Prognostics and Health Management (PHM) faults. It primarily consists of a
knowledge map construction module and a knowledge interaction module. The data
annotation function is utilized to annotate ternary data and provide training samples
for the knowledge extraction model. The text classification function performs sentence-
level classification, reducing the impact of semantic complexity between different texts on
subsequent knowledge extraction. The knowledge extraction function extracts entity types
and relationship types from the text. The data audit function allows manual auditing of
the ternary extraction effect, enabling modification of the results. The data management
function handles user-uploaded data, encompassing equipment fault statistics, equipment
structural information, and equipment status visualization. The intelligent Q&A function
and knowledge visualization function facilitate human—computer interaction by providing
feedback to user queries and presenting information visually.

The system’s functional architecture, depicted in Figure 8, comprises the application
layer, interface layer, and data layer from top to bottom. The application layer is user-
centric, empowering the administrator user to conduct data annotation, extract document
knowledge, and perform quality assessments within the front-end. Additionally, the
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knowledge interaction user can intelligently pose and respond to questions, as well as
engage in knowledge visualization. Meanwhile, the interface layer serves to actualize the
system’s functions, encapsulating the implementation details and serving as the system’s
core. Lastly, the data layer primarily encompasses the Neo4j knowledge graph within this
system. The specific details of the architecture of the system functionality are described in
Sections 5.3 and 5.4 of this paper.

|
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apFTIaICZ:I on knowledge of a
v documents Knowledge
Quality isualisation

Data Problematic
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Interface ini ion i
layer Knowledge Question

‘ Data review ‘ ‘ Q&A ‘

e I

Neo4j
Data layer Knowledge
Graph

Figure 8. System Functional Architecture Diagram.

5.2. Platform Development Environment and Tools

Table 7 demonstrates the development environment for this experiment, including the
hardware environment and software environment.

Table 7. Development Environment and Version Information Sheet.

Development Environment Tools and Version Information
CPU Intel Core i7-10750H@2.60GHz
GPU NVIDIA GeForce GTX 1660ti
Development tool Visual Studio Code1.84.0
Databases Neo4j 3.4.0
Dependent environment Python 3.9.13, Vue 2.6.11

The system’s front-end is developed using Vue, a modern JavaScript framework
designed for constructing user interfaces. Vue aims to assist developers in creating in-
teractive, responsive single-page applications (SPAs) by offering user-friendly APIs and
efficient rendering performance. On the other hand, the back-end is powered by FastAPI, a
contemporary and swift Python-based web framework tailored for building APIs.

5.3. Knowledge Graph Building Module
5.3.1. Design of Knowledge Graph Building Module

Figure 9 illustrates the design flow of the knowledge graph-building module, encom-
passing file import, file classification, text classification, data extraction, data annotation,
data audit, and data management. Notably, text classification and knowledge extraction
are automatically executed by algorithms in the background. Consequently, the subsequent
focus is primarily on implementing the data labeling module, knowledge audit module,
and data management module.
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Figure 9. Knowledge Graph Building Module Design Process.

5.3.2. Data Labeling Module

The data annotation process is primarily triggered when a new document type is
imported, enabling users to annotate the newly uploaded text. The platform conducts
annotations based on the outcomes of text classification illustrated in the diagram. The
primary objective involves annotating entity types, subjects, objects, and the relationships
between subjects and objects within the text. Once all texts are annotated, they are trans-
mitted to the back-end to furnish data support for the knowledge extraction model. The
output of the data annotation interface is depicted in Figure 10.
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Figure 10. Data labeling interface.

To implement front-end annotation highlighting, the Tiptap rich text editor plugin
can be employed. Tiptap is a Vue-based rich text editor that utilizes a JSON data structure
for managing text content and styles. To begin, initialize the text editor using the Editor
component provided by Tiptap. Then, utilize the highlight() method to achieve text
highlighting. This method allows you to specify the selection and apply a highlight to the
desired portion of text. Additionally, you can use the selection feature to obtain the text
content and position of the selected words or phrases. By leveraging Tiptap’s functionalities,
you can effectively enable annotation highlighting within the front-end interface.

The system consolidates the annotation results into a JSON string, which is then
transmitted to the back-end and can be saved by the user. This JSON string encompasses
the sentence ID, the original text content, and the triple spo_list. The spo_list includes the
entity type, entity location, and relationship information for effective data representation
and storage. For example: {“ID”: “AT0000”, “text”: “The flight control system provides
the following basic flight functions: three-axis control stabilisation”, “spo_list”: [{“h”: {"*
System “: “Flight Control System”, “pos”: [0, 4]}, “t”: {* System Function “: “Three-Axis
Control Stabilisation”, “pos”: [16, 21]}, “relation”: “System Function”}]}.

5.3.3. Data Review Module

The data review interface enables users to inspect the knowledge extraction results,
identify the original text location, and subsequently rectify any erroneous extraction out-
comes while also adding new entities and relationships as necessary. Figure 11 provides a
visual representation of the data review interface.
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Knowledge extraction

Figure 11. Data Review Interface.

Once the data review process is finalized, the ternary results can be imported into the
Neo4j graph database to construct a knowledge graph. Figure 12 presents a portion of the
resulting knowledge graph.
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Figure 12. Partial Knowledge Graph Presentation.
5.3.4. Data Review Module

The primary role of the data management module is to facilitate the centralized
management of data. This includes storing information such as past failure cases and
data related to the composition structure of each component within the system. The data
management module ensures efficient organization, retrieval, and maintenance of these
diverse sets of data.

As illustrated in Figure 13, the data management module plays a crucial role in the
PHM system by providing unified management of heterogeneous data from multiple
sources. Figure 13a showcases the aircraft status overview interface, which offers a com-
prehensive view of aircraft status data. This includes information on aircraft failures,
troubleshooting progress, and historical failure records. Users can easily access and analyze
this data using the aircraft status overview map. Figure 13b presents the equipment infor-
mation interface, enabling users to visualize the structural composition of data between
different aircraft systems. This map allows for a clear understanding of how data is inter-
connected and provides insights into the relationships and dependencies among various
components. By facilitating the effective management and organization of diverse data, the
data management module establishes a solid foundation for the PHM system’s operations,
enhancing its ability to handle data from multiple sources efficiently and cohesively.
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Figure 13. Data Management Interface: (a) The aircraft status overview interface; (b) Equipment
information interface.

5.4. Knowledge Interaction Module
5.4.1. Design of the Knowledge Interaction Module

The Knowledge Interaction Module typically involves several steps, including entity
recognition, question type identification, knowledge matching, and answer generation.
However, in this experiment, the question parsing part is not required as it utilizes its own
model for entity recognition. The principle of entity recognition remains the same as the
entity recognition employed in the previous knowledge extraction phase, so there is no
need to repeat it.

Figure 14 showcases the sequence diagram of the natural language question and
answer module. The process begins with the user inputting a question, which is then
passed from the front-end to the back-end. The question classification part identifies the
question type using user intent classification labeling tags and keyword lists. Next, in the
entity identification part, the entity within the question is determined. Once the question’s
entity and category are obtained, they form the basis for constructing a Cypher query
statement. This Cypher query statement is then passed to the Neo4j graph database. The
Neo4j graph database processes the query and returns an array of Answers. Based on the
question’s category, an answer generation template is used to format the array of answers
into a natural language form. This formatted answer is returned to the front-end and
presented to the user for reading. Figure 15 showcases the flowchart of the smart Q&A
system, providing a visual representation of the overall process.
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Figure 14. Intelligent Question and Answer Sequence Chart.
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Figure 15. Flowchart of Intelligent Q&A.

5.4.2. Q&A Module

The connection between the Python back-end and the Knowledge Graph is established
via the utilization of the py2neo library. Py2neo serves as a driver for the Neo4j graph
database specifically designed for Python. It offers a user-friendly API that facilitates seam-
less interaction with Neo4j databases, enabling various query and modification operations
to be performed efficiently.

During initialization, the system will read the nodes in the graph to enable subse-
quent similarity calculations. After the user inputs a question and submits it, the normal
question-and-answer process is executed. This involves attempting to successfully identify
the relationship between the target entity and the corresponding entity in the graph. If
the relationship is successfully found, the answer stored in the graph will be provided in
a natural language format. However, if the entities extracted from the question do not
have a corresponding node within the similarity threshold, the answer will be “no corre-
sponding node exists at all”. In cases where nodes are found but there is no corresponding
relationship between them, the answer will be “there is no [relationship] for [entity]”. The
implementation of intelligent Q&A is demonstrated in Figure 16, which illustrates the
resulting outcome.

Figure 16. Intelligent Q&A interface.

In Figure 16, the user inputs the question “how to fix the hydraulic light out”, the
front-end passes the question to the back-end, and the back-end determines that the type
of the question is “troubleshooting process” based on “how to fix” in the sentence. The
entity extraction part extracts the entity “hydraulic light is out”, the combination result
and the node “hydraulic light does not light up” in the graph have the closest similarity,
and the entity type of the question is “hydraulic light does not light up”, according to
the entity type of the question “hydraulic light does not light up”, the entity type of the
question is “hydraulic light does not light up”. The entity type of the question is “hydraulic
light is not on”, and according to the entity and the type of the question, the Cypher query
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statement Cypher statement “MATCH (n {name: ‘Hydraulic light is not on’})-[r1:Relation
{name: “Troubleshooting process’}]->(m)RETURN n.name, m.name” is generated, which
can be obtained as the return result [{"Hydraulic light is not on’}]->(m)RETURN n.name,
m.name”. Result[{'n.name”: "Hydraulic light is not on’, ‘m.name”: ‘Read the flight reference,
make sure the hydraulic signal is normal’}, {'n.name”: ‘Hydraulic light is not on’, ‘m.name’:
‘Connect the checker, check the hydraulic light signal’}, {'n.name’: “Hydraulic light is not
on’, ‘m.name”: ‘Disconnect the hydraulic pressure, power down the plane., check platform
system relay box status’}, {'n.name”: ‘Hydraulic light not on’, ‘m.name”: ‘Platform powered
down, check wire resistance’}]. The result is passed to the intelligent answer generation
section, and the “troubleshooting process” corresponds to the template. Finally, the answer
“Possible reasons for weak engine acceleration include: firstly, read the flight reference to
see if the hydraulic signal is normal; secondly, connect the checker to check the hydraulic
light signal; thirdly, disconnect the hydraulic pressure, power down the aircraft, and check
the status of the relay box of the platform system; lastly, power down the platform, and
check the resistance of the wires” is generated and passed to the front-end display. The
answer to the question was passed to the front-end display.

5.4.3. Knowledge Presentation Module

The Knowledge Presentation module utilizes Neovis.js to establish a connection be-
tween the Vue front-end and the Neo4j graph. Neovis.js is a JavaScript library specifically
designed for visualizing Neo4j graph databases within a web browser. It offers a straight-
forward API that simplifies the process of creating interactive and customizable graphical
visualization interfaces. This allows users to easily build visually appealing and interactive
representations of the data stored in the Neo4j graph.

To enable specific knowledge search and display, the input provided in the input box is
transformed into a Cypher statement to construct a query. The results of this query are then
visually presented to the user, allowing them to interact with the displayed information.
Users have the capability to drag nodes and zoom in and out within the interface, facili-
tating ease of viewing. Furthermore, adjustments were made to the coefficients to display
the name attribute of entities and relationships, as well as to illustrate the connections
between relationships. This enhancement improves the clarity and comprehensiveness
of the visual representation, thereby enhancing the user’s experience while exploring the
knowledge graph.

For instance, when the user inputs “ flight control system “, Neo4j performs a Cypher
query with the statement “MATCH (n:Entity {name: ‘engine’})-[r]->(m) RETURN n, r, m”.
This query retrieves the node “engine” along with the nodes and relationships connected to
it. The front-end processes this data using Neovis.js and displays the visual representation
accordingly. In the event that no corresponding node is found in the search result, a pop-up
message “No corresponding node exists” is displayed to notify the user. The knowledge
display interface is illustrated in Figure 17.

Neutral speed stability

Figure 17. Knowledge Visualisation interface.
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6. Conclusions and Discussion

This paper proposes a method for constructing a fault knowledge graph specifically
for aircraft Prognostics and Health Management (PHM) applications. The method ad-
dresses the unique requirements of the aircraft PHM domain. The process begins with text
classification based on the characteristics of aircraft PHM data. This step aims to reduce
the complexity and ambiguity of Chinese text, making it easier for subsequent knowledge
extraction. Next, a joint extraction model for entity relations is introduced. This model
tackles the challenge of error transmission during the extraction of entity relations while
also reducing the linguistic complexity of the text from a semantic perspective. The pro-
posed method is then applied to construct the fault knowledge graph for a specific aircraft
flight control system. The resulting knowledge graph is visually displayed, providing an
intuitive representation of the information. Finally, a fault knowledge graph management
platform for aircraft PHM is developed. This platform facilitates the rapid construction of
knowledge graphs, unified management of multisource heterogeneous data, knowledge
visualization, and intelligent Q&A capabilities.

Experience has demonstrated that knowledge graph technology can effectively lever-
age diverse sources of heterogeneous fault data within the PHM domain to establish
correlations among fault data. By distilling insights from historical data, knowledge graphs
offer substantial potential for enhancing fault diagnosis within the PHM domain. Never-
theless, it is important to acknowledge the limitations of this study, which warrant further
exploration in the future.

The knowledge graph presented in this paper is centered on textual data. However,
fault data gathered within the PHM domain typically comprises diverse, multisource
heterogeneous content, including images, videos, and signals. Establishing semantic
associations across such varied data types poses a significant challenge. Consequently,
to tackle this issue, our future work will entail conducting a thorough investigation into
multimodal knowledge graphs.

This paper leverages traditional knowledge graphs to address the challenge of fault
diagnosis within the PHM domain. However, conventional knowledge graphs primar-
ily establish static representations, overlooking the dynamic relationships between fault
entities during the fault diagnosis process. Effectively realizing the dynamic association
between entities within the fault knowledge graph is pivotal for laying the groundwork for
fault prediction in the PHM domain—a task ripe for significant research exploration. Con-
sequently, we aim to incorporate time information into the knowledge graph to facilitate
knowledge graph-based fault prediction.
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