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Abstract: Defect detection is a key element of quality control in today’s industries, and the process
requires the incorporation of automated methods, including image sensors, to detect any potential
defects that may occur during the manufacturing process. While there are various methods that
can be used for inspecting surfaces, such as those of metal and building materials, there are only a
limited number of techniques that are specifically designed to analyze specialized surfaces, such as
ceramics, which can potentially reveal distinctive anomalies or characteristics that require a more
precise and focused approach. This article describes a study and proposes an extended solution for
defect detection on ceramic pieces within an industrial environment, utilizing a computer vision
system with deep learning models. The solution includes an image acquisition process and a labeling
platform to create training datasets, as well as an image preprocessing technique, to feed a machine
learning algorithm based on convolutional neural networks (CNNs) capable of running in real time
within a manufacturing environment. The developed solution was implemented and evaluated at a
leading Portuguese company that specializes in the manufacturing of tableware and fine stoneware.
The collaboration between the research team and the company resulted in the development of an
automated and effective system for detecting defects in ceramic pieces, achieving an accuracy of
98.00% and an F1-Score of 97.29%.

Keywords: defect detection; deep learning; CNN; industrial surface; automatic surface inspection;
quality inspection

1. Introduction

Defect detection or anomaly detection in industrial processes is an important proce-
dure. Currently, manual and visual inspections performed by experts are expensive due
to the high cost of human labor during working hours, the possibility of material waste,
and the degraded quality of shipped products [1]. In contrast, the use of machine learning
algorithms for automatic defect detection reduces labor consumption [2]. In recent years,
automatic defect detection has played a critical role in the industry’s inspection process. It
improves product quality and aids in maintaining control of the manufacturing process,
such as approving or rejecting produced parts in factories. Additionally, it reduces material
waste by including the rework and repair of parts [3]. According to the literature reviewed
by Prakash et al. [4], CNNs demonstrate superiority in the quantity of existing articles,
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information extraction from images, and performance over traditional machine learning
models such as Support Vector Machines (SVMs), Cellular Neural Networks, and various
image processing algorithms. After conducting our systematic review [5], we found that
CNNs are predominantly used to detect defects in metals but have also been shown to be
effective on other materials such as wood, ceramics, and surfaces. Consequently, the use
of CNNs for surface defect detection provides a stable foundation and serves as an ideal
starting point for further research on new or less-studied surfaces, thereby opening up new
research opportunities. Based on the available information, it is feasible to apply the same
techniques, algorithms, and networks to novel surfaces. Our research focuses on ceramic
surfaces, and we collaborated with an industrial partner to conduct experiments in a real
manufacturing environment.

Our research addresses the issue of detecting defects in ceramic pieces and its im-
plementation in an industrial environment, including all the challenges associated with
the manufacturing process. Therefore, a comprehensive understanding of the ceramic
manufacturing chain is crucial for enhancing quality control in the factory. In our case,
we have established an extensive partnership with our industrial collaborator, which has
provided us with valuable insights into their manufacturing procedures.

This study is part of an industrial quality control process that aims to detect anomalies
and defects in pieces during manufacturing. The main objective of this process is to identify
defective pieces for further evaluation. The process is centered on acquiring images and
classifying them into categories, resulting in an image classification problem. Additionally,
the process becomes challenging and more complex due to several factors, including the
manufacturing of multiple types of ceramic pieces, the presence of various defects, a dusty
environment, and the difficulty of detecting very small defects, even for trained workers.

Our team aims to establish a standard classification for common ceramic surface
defects. We proposed, developed, and implemented an automated model for binary
classification using a deep learning model with CNNs to detect defects in ceramic pieces.
This system is capable of distinguishing between ceramic pieces with defects and ceramic
pieces without defects by utilizing images captured by a computer vision system that
was developed and implemented within the factory. These images are captured using
an image acquisition module equipped with an industrial camera, a customized housing
with dedicated lighting, and Raspberry Pi. The module was created and installed at
our collaborator’s factory and is responsible for storing the images in a digital repository.
We used the stored images to generate a high-quality, properly labeled dataset. These
images were preprocessed, and the resulting dataset were appropriately balanced. Then,
we created a CNN model for image classification using the pre-existing dataset. The model
has the ability to make precise predictions with images captured by the industrial camera.

In summary, the overall contributions of this article are as follows:

• The development of an automated real-time defect detection system using machine
learning and computer vision;

• To present a method for the preprocessing images, specifically those of ceramic pieces;
• The evaluation and selection of the most suitable CNN for defect detection in ce-

ramic pieces;
• The primary difficulties associated with capturing images in a factory, including issues

with lighting, focus, and image size, are detailed;
• Summary of the ceramic pieces manufacturing process, detailed in collaboration with

our industrial partner and adaptable to a wide range of cases within this sector.

This paper is divided into several sections. Section 2 presents the related work.
Section 3 provides a summary of the manufacturing process. In Section 4, we provide
an overview of the system, along with basic concepts and details of our methodology
for addressing the problem. Next, Section 5 details the experiments and results, while
Section 6 provides a discussion. Finally, we draw our conclusions and outline future work
in Section 7.
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2. Related Work

Studies were selected based on predefined criteria, including relevance to the topic,
methodological rigor, and contribution to the advancement of knowledge in the field of
surface defect detection. A systematic review process was used to carefully examine the
objectives, methodology, results, and conclusions of each selected study. This approach
facilitated a thorough and comparative assessment of the studies, culminating in our
systematic review [5], which provides significant insight into current advances in surface
defect detection.

Identifying defects in the manufacturing process is critical for companies because it has
a direct impact on the quality and functionality of products. This makes defect inspection
an integral part of the manufacturing process [6]. The most frequent defects found in
most publicly available datasets are roll scratches, holes, cracks, patches, pitted surfaces,
inclusions, and rolled-in scales. These defects are mainly found on metal surfaces and can
serve as a guide for further studies on materials or surfaces. The five most prevalent types
of surfaces, categorized from our systematic analysis [5], are metal, building, wood, ceramic,
and special surfaces. The industry has conducted the most studies on metal surfaces.

The adoption of customized networks has gained popularity, with notable examples
including the method proposed by Zhou et al. [7]. In their work, the authors advocate for
the use of a streamlined CNN based on AlexNet and SDD (surface defect detection) for
quality control. Another example is the CNN introduced by Gai et al. [8], which leverages
VGG-16 for detecting surface defects in industrial steel parts. Defect detection in build-
ing surfaces is crucial to preventing structural failures. These defects can indicate aging,
deterioration, or internal structural flaws [9]. The methods used to collect images for the
datasets are noteworthy because of the challenges faced during acquisition. For instance,
obtaining images from elevated locations such as bridge piers, tall buildings, and high-rise
concrete structures requires specialized equipment. Saeed [10] used a quadcopter-type
UAV equipped with a GPS and a camera for this purpose. Although wood is one of the
most commonly used materials in industry, it remains understudied. Among the discov-
ered studies are Ding et al.’s [11] proposed technique, which employs industrial cameras
and supervised lighting to capture images, and Jung et al.’s [12] technique for generating
artificial datasets. Some surfaces have not been well-studied due to their infrequent use
in the industry, but they have been effectively incorporated into methods used for more
commonly studied surfaces. For instance, Zou et al. [13] presented a study on defect detec-
tion on the painted surfaces of ancient Chinese buildings, while F. Xu et al. [14] developed
a method for defect detection in paint film for anticorrosion and the decoration of metal
workpieces. Ceramic surfaces detect defects such as cracks, bubbles, scratches, and burrs to
reduce quality failures in industrial processes. To improve inspection and reduce material
waste, automated methods have recently been adapted [1,15]. Our study focuses on ceramic
surfaces, and we are guided by methods such as the one proposed by Min et al. [15]. This
method aims to classify defects, including cracks, burrs, and bubbles based on their size, us-
ing CNNs and a dataset obtained through data augmentation techniques. Additionally, we
consider the method introduced by Birlutiu et al. [1], which relies on image preprocessing
and a custom CNN to predict images with and without defects.

This paper proposes a new approach for defect detection in ceramic pieces, with a
machine learning model based on the information collected on the different types of sur-
faces found in our systematic review, performance improvement techniques, and image
preprocessing. Research on ceramic pieces is scarce, focusing mainly on network compar-
isons or postmanufacturing analysis. We did not find a specific real-time defect detection
system designed specifically for an industrial environment at this stage of manufacturing.
However, similar studies on other surfaces have guided our system, adapted to the specific
constraints of ceramic pieces (lighting, camera specifications, image dimensions, and dif-
ferent techniques). We stand out by offering a detailed and reproducible system, which is
valuable given the unique nature of this material compared with more studied surfaces.
Nonetheless, the confidentiality of the dataset is maintained. This is due to agreements
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with our industrial partner. We provide a comparison of three techniques (training from
scratch, transfer learning, and transfer learning followed by fine-tuning), selecting the one
with the most effective results. Next, we apply the selected technique to three different
networks (AlexNet, VGG, and ResNet), comparing their outcomes with the objective of
identifying the best-performing real-time model. For the ceramic piece images, we suggest
a particular preprocessing method before using them in training the CNN. Results from
experiments indicate that the chosen model’s performance and image preprocessing are
reliable and perform well for detecting defects in ceramic materials.

3. Ceramic Manufacturing Chain

Stoneware is a ceramic material characterized by its durability, strength, and diver-
sity of applications. It consists of a homogeneous mixture of clays, feldspar, and silica.
The manufacturing process of stoneware involves several steps, from preparing the raw
materials to the final firing of the ceramic, as shown in Figure 1.

Figure 1. Ceramic pieces manufacturing process with quality control stage localization (*).

After the preparation stage, the forming stage begins, in which molds, pastes, and cal-
ibrators are used. The choice of mold material, whether plaster or polymer, depends on
the specific forming technology employed. This industrial process employs four form-
ing technologies: roller, RAM (Rapid Adaptive Manufacturing) pressing, slip casting,
and high-pressure casting. Quality control is implemented manually through human vision
inspection before the drying phase. The labor-based human quality control process will
be replaced by the automatic computer vision quality control system. This quality control
is marked with an asterisk (*) in Figure 1. The next stage is decoration, which involves
applying paints and employing various techniques to create desired effects on the ceramic
pieces. Following decoration, the glazing stage is divided into two substages. More com-
plex ceramic pieces are dip-glazed, where an operator immerses the ceramic pieces in the
glaze. On the other hand, simpler ceramic pieces can be spray glazed manually using
machines or robots. Finally, the ceramics are fired at temperatures ranging from 1150 ◦C
to 1200 ◦C to prepare them for storage and distribution. Figure 1 illustrates the complete
manufacturing process.

3.1. Forming

Ceramic tableware is produced by different forming methodologies described in
Figure 1. The RAM press is advantageous for preparing small series due to cost-effective
mold development and shorter manufacturing times. However, it generates a significant
amount of waste due to mold overflow. Depending on the type of tableware, jiggering is
used for round pieces such as mugs and plates, while ram pressing is suitable for various
geometric forms like squares, triangles, and rounds. Slip casting in plaster molds enables
the manufacturing of complex forms and hollowware. However, it is time-consuming
and generates waste, similar to RAM pressing. In contrast, HPC (High-Pressure Casting)
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produces high-quality pieces while minimizing waste and achieving the same level of
complexity as slip casting, except for hollowware. The exceptional quality of HPC is due to
the use of polymeric-based molds, resulting in smoother surfaces and fewer surface defects
caused by mold irregularities. Compared with slip casting, HPC offers faster manufacturing
cycles. Jigging and jolly (roller) equipment is used to produce round parts. Each of the four
forming technologies listed in this study requires a specific type of mold. Slip casting uses
plaster molds, which have the greatest porosity. HPC uses polymer molds. The RAM press
and roller techniques both require plaster molds, with roller molds providing the greatest
mechanical strength. After the forming process, the ceramic pieces undergo a two-stage
fettling process. The initial step is deburring, which entails the elimination of excess paste
in the region where the molds were joined. The subsequent stage is sponging, which
utilizes a moist sponge to remove any imperfections. The previously described quality
issues with the demolding must be dealt with in this step. The variety of pieces coming
out of the drier at the same time, requires equipment able to identify and fettling pieces
according to the established protocols. Currently, this quality control process is carried out
manually; therefore, our proposal is made at this stage of the manufacturing process.

3.2. Decoration

This stage of manufacturing involves the application of paints, engobes, granules,
and other materials through manual techniques such as carving, sponging, troweling,
and cutting to create decorative effects on pieces. It is one of the most complex stages of
the manufacturing process, as these effects can be applied before glazing, between two
different glazes, and/or after glazing.

3.3. Glazing

Glazing is the process of applying a layer of glaze to ceramic pieces. There are two
methods of glazing mentioned below.

Dip glazing is used for more complex pieces (for example hollow or very closed
parts) where the spray does not reach the interior (e.g., mugs, teapots, and pitchers).
The equipment secures the piece via suction cup under vacuum and submerges it into
glaze while rotating to achieve uniform coverage. The dip time and rotation speed depend
on the type of piece being glazed. After removal, the operator places the ceramic piece
in a small fountain to glaze the bottom. Subsequently, the operator passes the piece over
a rotating wet sponge mat, removing the glaze that remains on the bottom of the piece,
which must always be free of glaze. Spray glazing can be performed manually (in specific
situations), applied in circular machines, or applied by a robot. In all three approaches,
the pieces are placed on rotating supports, and manual glazing is performed manually by
an operator. In the case of circular equipment, the rotation is automatic with stationary
spray guns (manually tuned by an operator). In the last case, the glazing is performed by a
robot applying the glaze in a predetermined way. The glaze suspension is applied using
compressed air guns and is circulated through pumps that maintain the glaze in agitation.

3.4. Firing

The glazed and decorated pieces are placed on trolleys and manually loaded onto
refractory slabs that are attached to wagons. The majority of the manufacturing is fired
using continuous kilns that are fueled by natural gas. The pieces are fired at temperatures
between 1150–1200 ◦C.

4. Materials and Methods

The implementation of this system, together with all the materials, was carried out in
the facilities of Grestel S.A., a factory specialized in the production of ceramic pieces for the
international market. This company is located in the industrial area of Vagos, Portugal.

This article presents a methodology for identifying flaws or defects in ceramic pieces
in real time within an industrial environment, reducing losses and improving product
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quality. The methodology involves implementing a solution for acquiring and storing
images during the manufacturing process. A user-friendly labeling process is employed to
construct an image dataset for the training stage of the CNNs. The following subsections
present an exhaustive account of the methodology applied in this study. The section begins
with a system overview, followed by an explanation of the image acquisition process and
dataset creation. Following this, we examine the CNNs used in this study and conclude
with a detailed description of the training methods employed.

4.1. System Overview

This paper presents a methodology aimed at real-time defect detection in ceramic
pieces, with the overarching goals of minimizing losses and enhancing product quality.
The methodology employs convolutional neural networks (CNNs) and specialized image
preprocessing techniques designed specifically for ceramic pieces. Its applicability is
particularly relevant for factories seeking to automate their quality control processes, given
the similarities observed during the forming stage in most cases. The methodology was
successfully implemented at our partner’s industrial facilities.

The system comprises several crucial components that collaborate to achieve the de-
sired outcomes. Firstly, a digital platform is integrated to enable real-time visualization of
the defect detection process. This platform provides an interactive interface for monitoring
the ongoing detection activities. Furthermore, a central repository is deployed to store all
captured images during the defect detection process. This resource is valuable for data
management and analysis. For accurate labeling of the images, an easy-to-use dashboard is
implemented. This dashboard enables users to assign accurate labels to images, facilitating
the training and validation phases of the CNN model. In addition, the image acquisition
module is seamlessly integrated into the factory infrastructure and captures high-quality
images of ceramic pieces, which serve as input data for the defect detection system. The pro-
posed system combines essential components to present an effective and complete solution
for real-time defect detection in ceramic pieces. The result is reduced losses and improved
product quality. The methodology, as shown in Figure 2, comprises two distinct phases.
The initial phase, which includes the flow of the green arrow, involves creating and training
a CNN model that the platform uses to generate predictions. This phase commences with
the image acquisition module, which captures images that are later stored in a repository
to form a labeled dataset. The final CNN model is trained on a GPU server.

Figure 2. General solution architecture for model training and deployment.
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Once the model is created, the second phase follows the bidirectional flow of the blue
arrow between two components and includes using it to detect defects. The camera in
the factory captures an image of the forming process, which the system receives through
the image acquisition module. The received image is preprocessed to extract meaningful
information. The system then provides a prediction for the ceramic piece based on the
processed image. This prediction provides crucial feedback in the form of an alert to the
operators, indicating the presence of defects on the surface of the ceramic piece. In response
to the alert, operators can swiftly discard the identified defective ceramic piece. Thus,
the proposed system helps to reduce manufacturing costs and improve the overall quality
of the product.

4.2. Defect Types

During the ceramic forming stage, factory personnel analyze the surfaces of the pieces
to define the most frequent defect types, along with one type for the pieces without defects.
These defects are marked with blue circles in each quadrant of the image, as shown in
Figure 3. The challenge lies in acquiring a substantial number of images for classification.
Certain defect types occur more frequently than others, leading to the conclusion that the
entire range of defects in the dataset will fall under the “defect” category. The “nodefect”
category refers to ceramic pieces that are not defective. The captured image will always
show a complete ceramic piece for a comprehensive inspection.

Figure 3. Examples of different defect categories that arise during the manufacturing process.

4.3. Image Acquisition

The camera is the most essential element of the image acquisition module. Selecting
the appropriate camera enhances dataset quality, thus increasing defect detection accuracy.
We chose an industrial camera due to its superior quality compared with webcams and
conventional cameras. It offers a frame resolution of 4024 × 3036. The camera is equipped
with dedicated software that optimizes image capture through customizable parameters.
Users can select lenses according to their needs to ensure greater focus and image quality.
In the present scenario, we used a MER-1220-32U3C camera with a 6 mm focal length.
The physical image capture module design is shown in Figure 4a, with Raspberry Pi at the
center of the connections. It receives images from the industrial camera and sends them to
the digital repository located on our server. The camera was positioned on the height bar,
allowing for easy selection of the ideal distance for acquisition based on the type of ceramic
pieces. This approach eliminates the need for zoom, which we avoid due to its potential
interference with real-time quality.

The camera lens settings are manually set and remain fixed to ensure that the dataset
images have the same characteristics as those used for predictions. The physical infras-
tructure of the image acquisition module is shown in Figure 4b, highlighting the manually
configured stable illumination. The module connects to the image repository via the inter-
net and Raspberry Pi 4. The source code is hosted on Raspberry Pi 4 developed using the
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official documentation of the industrial camera. This module is used to generate an image
dataset and capture images in real time during the manufacturing process to detect defects.

Figure 4. Image acquisition module: schematic representation and real image of the manufacturing
scene. Image acquisition system design (a). Image Acquisition system installed at the factory (b).

The images for the datasets are stored in a platform named “Dashboard” developed
by the team. This platform stores and labels images in a repository so that they can be
processed to create the dataset used for CNN training. An illustration of the Dashboard
labeling by the factory personnel is shown in Figure 5. This method stores the defect’s
coordinates in each captured image. A red circle is drawn using the coordinates of the
defects that we had captured as the center, thus showing where the defect is located. This
approach allows us to easily identify any defects that are not initially visible. It can also aid
in labeling if we need to use an object detection algorithm.

Figure 5. Developed Dashboard for image labeling.

Finally, Figure 6 displays several examples of the images captured and stored in the
repository, showcasing the wide range of ceramic pieces produced by the factory. In this
case, we focus on the top 10 most commonly produced ceramic pieces within the factory.
Due to their differing sizes, the varied ceramic pieces pose a challenge during CNN training
as their defects are less apparent. Therefore, it is imperative to preprocess the images before
developing the dataset.

4.4. Image Preprocessing

Image preprocessing for CNNs in the context of classification problems involves
the application of a variety of techniques to images prior to their input into the CNN
model. The aim of image preprocessing is to improve image quality, with the ultimate
goal of improving CNN performance in classification tasks. In this particular case, we
convert the initial RGB image obtained from the industrial camera into an image with
uniform dimensions. It is critical for CNN models to have a fixed image size, which ensures
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uniformity across all input images. Additionally, we maximize the space of the ceramic
piece within the image.

Figure 6. Samples of ceramic pieces with different sizes stored in the repository.

Our four-step preprocessing process, depicted in Figure 7, involves RGB to grayscale
converting, thresholding, contour detection, and cropping and resizing of the original
RGB image. Initially, the image representation is transformed from the RGB color space
to the grayscale space, which is represented by luminance (Y), as shown in Equation (1).
The coefficients 0.299, 0.587, and 0.114 are commonly used to convert RGB to grayscale, as
recommended by ITU-R BT.601-7. These coefficients reflect the relative sensitivity of the
human eye to each of the primary colors. Notably, these formulas match the functions of
PyTorch, where our experiments were performed.

RGB[A]toGray : Y ← 0.299 · R + 0.587 · G + 0.114 · B (1)

The grayscale image is then used to apply the THRESH BINARY operation based on
the Equation (2). Where, src(x, y) represents the current pixel value, and T(x, y) represents
the threshold value for each pixel. Furthermore, maxValue is assigned to pixel values
in excess of the threshold. Careful illumination control of the image acquisition module
ensures that T(x, y) remains consistent across ceramic pieces, regardless of their shape.
This consistency is due to the uniformity of both the pieces’ material and color.

dst(x, y) =

{
maxValue, if src(x, y) > T(x, y)
0, otherwise

(2)

The subsequent step involves obtaining the contours, which is achieved by using the
contour detection algorithm called findContours, developed by Suzuki and Be [16] within
OpenCV. This algorithm generates an array of contours for the objects present in the image.
The largest contour, which corresponds to the ceramic piece in our specific case, is indicated
by the green line. The we use OpenCV’s boundingRect function to extract the coordinates of
a bounding rectangle. The ceramic piece is bounded by a red highlighted rectangle.

As a result, we achieved our objective of obtaining the four coordinates needed to
crop the original image. The resulting image includes the ceramic piece and a small margin
that will later be resized to a fixed size. Afterwards, the entire dataset must be resized,
taking into consideration the size of the smallest image, to guarantee that all images have
the same dimensions. This process is highly dependent on the camera used and the size
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of the ceramic piece. A positive aspect of this approach is that it yields a dataset that is
compatible with different networks.

Figure 7. Image preprocessing pipeline from the original image to the cropped and resized image.

4.5. Data Augmentation

Data augmentation is an important technique when working with small datasets to
enhance outcomes [17]. It helps prevent overfitting and underfitting problems during
training by expanding the range of datasets and helping the model identify important pat-
terns. By augmenting the available data, the model can enhance its robustness, adaptability,
and ability to achieve superior generalization performance [18]. This methodology facili-
tates the artificial generation of new images in an efficient and convenient manner, using
techniques such as perspective skewing, elastic distortions, rotation, shearing, cropping,
and mirroring [17]. However, for our specific case, we decided to limit the augmentation
process to rotation and flipping. This decision is motivated by the observation that im-
portant details can be lost then zooming, especially at the periphery of ceramic pieces.
This poses a challenge because our datasets must contain defects in these edge regions.
As shown in Figure 8, implementing a zooming technique results in missing defects, lead-
ing to imprecise training data and potential misclassification. Therefore, we prioritize the
chosen augmentation methods to preserve critical defect information during the training
process. This is executed prior to the training stage by generating a fixed number of images
for each original image, which distinguishes it from other data augmentation techniques
that apply random transformations at the batch level during the training stage.

Figure 8. Correct (left) (using flip and rotation) and incorrect (right) data augmentation using Zoom.

4.6. Transforms and Normalization

Transforms and normalizations are often used at the batch level during the training
phase to enhance model generalization and convergence [19]. Transforms are used as
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data augmentation techniques to randomly alter images within a batch before inputting
them into the model for training. In our system, we implement random small rotations
within the range of [−15; +15] degrees and flips as data transformations. By utilizing
batch data augmentation, we increase the diversity of the training data within each
batch and epoch, ultimately reducing overfitting and enhancing the model’s capacity
to generalize to unseen data. The second method, referred to as “normalization” by
Finlayson et al. [20], involves removing dependencies caused by lighting geometry and
illuminant color. Deininger et al. [21] describe normalization as a process that expands or
reduces the range of pixel intensity values by manipulating either the intensity level or the
entire range. The goal is to ensure uniform intensity levels among all images. To achieve
this, we apply the mean and standard deviation within the normalization function after
scaling pixel values to a range of [0, 1]. As per [22], the normalization of image datasets
enhances network training by reducing internal covariate shift.

Standardizing all three color channels (RGB) requires calculating the mean (ū) by
summing the pixel values of each image in the dataset and dividing by the number of
images (N) using Equation (3). The previously calculated mean is then used to determine
the standard deviation (σ) in Equation (4).

ū =
1
N

N

∑
i=1

ui (3)

σ =

√
∑N

i=1(ui − ū)2

N
(4)

Mean and standard deviation are calculated for each individual dataset. This is
necessary because the lighting conditions varied throughout the project. Equation (5) is
used to normalize each pixel (x) of the image.

x :=
(x− ū)

σ
(5)

The images shown in Figure 9 are the output of the normalization and transform
application. These images are a product of the random flips and rotations that were applied,
followed by normalization.

Figure 9. Samples of random transforms and normalization during the training.

4.7. Networks Architecture

The CNNs used in this study follow the foundational architecture illustrated in
Figure 10. These networks leverage different types of layers such as convolution, normal-
ization, pooling, and fully connected layers to enable deep learning, resulting in remarkable
outcomes for defect detection. For our experiment, we chose three well-known networks
and implemented three specific techniques, which are elaborated in subsequent subsec-
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tions. Our objective is to determine the top-performing network for integration into our
final model.

Figure 10. General structure of a CNN with convolution layers, normalization layers, pooling layers,
and fully connected layers.

We chose three of the most extensively used neural networks based on our systematic
review [5] and the recommendations provided by Kermanidis et al. [23]. Although there is
a lack of studies focused on ceramic pieces, it is worth noting that ResNet [15] and VGG [24]
have been successfully implemented by researchers. Additionally, we included AlexNet in
our selection due to its abundance of information and studies showcasing successful defect
detection. The detailed descriptions of the selected networks are provided below.

First, AlexNet was developed by Alex Krizhevsky in collaboration with Ilya Sutskever
and Geoffrey Hinton, specifically for the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC-2012) [25]. Technical abbreviations will be explained upon their first usage.
This convolutional neural network (CNN) consists of five convolutional layers with max
pooling operations and is followed by three fully connected (FC) layers [26]. Second, there is
the Visual Geometry Group (VGG), which was proposed by Simonyan and Zisserman [27]
from the University of Oxford for the ImageNet Challenge 2014. Dhillon and Verma [28]
mention that VGG stands out for being a simple and deep network because it uses very
small convolution filters (3 × 3), and every hidden layer has a rectification nonlinearity
function, so it obtains good results on the classification of images and their localizations.
Finally, the deep residual network (ResNet), created by He et al. [29] in 2015 and win-
ner of the ILSVRC 2015 classification task, has gained recognition for its groundbreaking
performance in training hundreds or thousands of layers while retaining excellent results.

4.8. Training Methods

Different training techniques aim to address common challenges in neural network
training, such as early overfitting and lack of training images. Two main concepts are
used to overcome these problems. The first technique is called “freezing layers”, which
preserves the weights of specific chosen layers, frequently the initial layers of a pretrained
model, to avoid alteration. On the other hand, the concept of “unfreezing layers” enables
modifications and retraining of layers in a pretrained model [30]. Our experimental process
uses three commonly employed approaches to train neural networks: training from scratch
(TFS), transfer learning (TL), and fine-tuning (FT).

4.8.1. Train from Scratch (TFS)

When starting from scratch, a neural network is first randomly initialized and then
trained on your specific task and dataset, as depicted in Figure 11. The network learns task-
specific features and parameters from scratch, without relying on pre-existing knowledge
or models. Another approach is to use a network architecture without transfer learning and
use a random weight initialization, as described by Boyd et al. [31]. This method consumes
more computational resources, time, and new data than using a network with transfer
learning or fine-tuning, which uses weights created in pretrained models [32]. According
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to Ali et al. [9], establishing a reliable CNN from scratch entails extensive training with a
sizable and resilient dataset. Although widely used techniques such as transfer learning
and fine-tuning exist, some studies demonstrate that training from scratch produces better
results than using a pretrained model. Shi et al. [33] and Bethge et al. [34] provide evidence
to support this claim. This training method is used to address a problem with data that are
not within the knowledge of a pretrained model.

Figure 11. CNN from scratch.

4.8.2. Transfer Learning (TL)

Transfer learning is a widely used technique in machine learning that is typically em-
ployed when working with small datasets, limited time, or high computational processing
costs, as datasets are often difficult to create and require significant financial investment.
This methodology is based on using previous knowledge gained from solving similar
problems and applying it to a new problem with comparable characteristics [32]. Rather
than beginning from a random starting point, we employ the weights from the pretrained
model to initiate the process. The notion is that the pretrained model has already under-
stood general functions that are transferable to the task at hand. The initial step usually
entails replacing the output layer with one tailored to a specific problem. Next, the training
process involves unfreezing the last layer, or a portion of the network, usually the classifier
comprising the top three fully connected layers, as depicted in Figure 12.

Figure 12. CNN training with transfer learning.

4.8.3. Transfer Learning with Fine-Tuning (FT)

Fine-tuning is a technique that follows transfer learning. It entails adjusting the
weights of a pretrained model on a specific dataset for a given task. Instead of training the
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entire network from scratch, certain layers of the pretrained model are selectively unfrozen
and updated while the others remain frozen. This allows the model to adapt its learned
representations for the new task while maintaining the general knowledge acquired during
the pretraining phase. Fine-tuning can be beneficial when working with smaller datasets
or when the pretrained model’s knowledge is highly relevant to the task at hand [35,36].
The process of fine-tuning involves adding our custom network on top of an already
pretrained base network, extracting features, freezing it, and training the remaining layers,
typically the classifier. Then, the created model must be trained again. So, some layers in
the base network are progressively unfrozen and trained together with the classifier. This
process is illustrated in Figure 13. First, we initialize a pretrained CNN and apply transfer
learning to train the classifier layers. The trained model is then saved for future use. When
training with new adjustments, the objective is to enhance the process by incorporating the
cumulative knowledge of the model. Therefore, the model is retrained by unfreezing an
additional layer, specifically the last convolutional layer of the feature extractor.

Figure 13. Training CNN model using fine-tuning.

5. Experiment and Results

Several experiments were conducted using Python to assess the performance of the
proposed system and to identify the most effective combination of training techniques and
CNN network architecture for detecting defects in ceramic pieces on a real manufacturing
line. Three deep learning training techniques outlined in Section 4.8 were compared,
and the most appropriate one was used to train, evaluate, and compare three of the most
well-known CNN architectures. To ensure a robust working system, it is important to
conduct a concise training process. Comparable training accuracy and validation are
desirable, and the training loss should be similar to or slightly lower than the validation
loss [9].

5.1. Dataset

The dataset used in the study includes images taken at the manufacturing line (as
shown in Figure 14), using the labeling tool we developed. To streamline the images for
both training and testing, we concentrated on the ten types of continuous manufacturing
in the factory and subsequently categorized them into the two classes mentioned above.

The dataset was divided into training, validation, and test subsets. The training subset
consisted of approximately 80% of the data, while the validation and testing subsets each
consisted of 10%. Given the challenges encountered during image acquisition, we strove
for balance and accomplished this by incorporating 374 images for the “defect” category
and 294 images for the “nodefect” category within the training subset, while the testing
and validation subsets each comprised 50 images per class. To balance and enhance the
training set, we utilized data augmentation techniques to generate 2000 images for each
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class. Figure 14 shows an example of the dataset where each image solely depicts the
ceramic piece with a slight border.

Figure 14. Samples of defect class (left) and samples of nodefect class (right).

5.2. Techniques Comparison

The primary aim of the initial set of experiments is to determine the optimal train-
ing technique and to gather quantitative data on performance outcomes. To study the
training methodology, we used the AlexNet architecture in our defect detection system.
The selection of this architecture is based on its recognized reputation, straightforward
analysis process, availability of ample documented information, and multiple successful
use cases found in the image classification literature. Previous studies, such as the one
in [37–39], have demonstrated the efficacy of this network in tackling similar problems,
further supporting our choice.

The results presented in Table 1 were obtained with 250 training epochs, except for
the last row, which pertains to the FT technique, where only 200 epochs were used. TL
unfreezes three dense layers of the classifier and achieves remarkable results, despite the
ceramic pieces having distinct characteristics from the images that generated the pretrained
model. Next, FT uses the weights generated by TL for retraining. However, a significant
difference in this scenario is that the final four layers are unfrozen, resulting in additional
enhancements. As a result, there is a steady pattern of enhancement as the networks
are modified.

Table 1. Training and test evaluation results for the 3 training methods.

Method Epochs Train Acc. Train Loss Test Acc. Test Loss Precision Recall F1-Score

TFS 250 96.84% 0.1107 93.50% 0.2142 95.28% 91.00% 93.09%
TL 250 92.53% 0.2114 92.25% 0.2201 91.83% 90.00% 90.90%
FT 200 97.28% 0.0934 94.75% 0.2172 95.43% 94.00% 94.71%

The training processes and the corresponding accuracy and loss curves for the training
and validation sets are presented in various charts in Figure 15. The accuracy curve for TFS
shows instability at the beginning, while the loss curve exhibits variations in the validation
values. Nevertheless, both curves appear stable, as depicted in Figure 15a. In the TL
method, the accuracy curve for both training and validation sets continued to improve,
as seen in Figure 15b. Throughout the FT process, the accuracy curves for training and
validation maintain an upward trajectory, starting from the final values of the transfer
learning and reaching the highest values among the three training methods, as shown in
Figure 15c. We also analyzed the loss curves for FT with 250, 300, and 400 epochs and found
that the loss curve for 200 epochs is the most stable with the least overfitting.
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Figure 15. Accuracy and loss curves during the training process for the three techniques used.

After training, the best models were periodically evaluated using the validation set
and stored for carrying out quantitative testing using the F1-score metric (6).

F1-score =
2× (Recall× Precision)

Recall + Precision
(6)

These tests were conducted on images not previously seen by the models, which form
the test set and are depicted in Figure 16. Confusion matrices were used for the analysis.

Figure 16. Confusion matrices.

5.3. Network Comparison

The manufacturing line in this industry generates thousands of ceramic pieces per
day. The aim of this study is to create a system that can instantly notify users to remove
any substandard ceramic pieces from the manufacturing line. The subsequent tests seek
to determine the ideal network, custom-made for image classification problems, that is
most appropriate for our case study. The deciding factor in our selection is based on
quantitative values that serve to validate our choice. In addition to the model used in
the previous test set, our study incorporated two other convolutional architecture models,
namely VGG11 [27] and Resnet18 [29]. These models are readily available in the official
PyTorch documentation (https://pytorch.org/docs, accessed on 20 July 2023) and have
demonstrated a high level of effectiveness and accuracy in a variety of image classification
challenges within an industrial context, e.g., [40–42].

The three models were trained using the most effective methodology from the previous
test set, which was FT. Figure 17 displays the accuracy and loss curves obtained during the

https://pytorch.org/docs
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training process. The results are comparable, and none of the three networks experienced
overfitting issues.

Figure 17. Accuracy and loss curves for 3 CNN models.

The selected networks underwent the fine-tuning methodology with subtle differences
that varied according to each network, following the identical steps adopted in AlexNet.
Specifically, for VGG, the classifier and two convolutional layers were unfrozen, while for
ResNet, the initial two sequential blocks needed to be unfrozen.

Table 2 presents the results that were obtained, wherein it was concluded that ResNet
outperformed the others with a 98% accuracy rate and an F1-score of 97.2%.

Table 2. Network models comparison using the FT method.

Method Epochs Train Acc. Train Loss Test Acc. Test Loss Precision Recall F1-Score

AlexNet 200 97.28% 0.0934 94.75% 0.2172 95.43% 94.00% 94.71%
VGG 200 99.58% 0.0137 96.33% 0.0936 95.42% 97.33% 96.37%

ResNet 200 99.83% 0.0041 98.00% 0.0791 98.63% 96.00% 97.29%

The system based on the ResNet architecture, trained with the FT method applied after
the TL process, was tested under real conditions in a factory environment. In Figure 18, two
examples of classification results generated by the neural network are shown, demonstrat-
ing a high level of confidence in the predictions made, i.e., above 98% for each image sample.

Figure 18. Prediction values for two sample images.
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6. Discussion

The system resulting from the multiexperiment comparative study, which encom-
passed multiple experiments, includes an image preprocessing algorithm and a specific
training model. The training model employs fine-tuning after transfer learning using
the ResNet-adapted model. The automated defect detection system for ceramic pieces
operates in real time and achieves impressive performance results. It has a testing accuracy
of 98.00% and an F1-score of 97.29%, as evidenced in Table 2. The FT method enhances
system performance, with the ResNet model demonstrating superior performance to other
tested models.

The acquisition of a sufficient number of images to develop a comprehensive and
trainable dataset is a vital aspect of systems and experiments in this field. Unfortunately, we
experienced delays in this collection process. When applying this approach in an industrial
environment, challenges arose during image acquisition due to the need to prioritize daily
manufacturing demands and the limited time and resources available for experiments.
As a result, we are currently limited to categorizing the available images into “defect” and
“nodefect” groups. However, the increasing number of images presents an opportunity to
improve our classification by generating new categories dependent on the types of ceramic
pieces and defects.

The development of a suitable tool, demonstrated in Figure 5, for prompt and easy
annotation significantly reduced the waiting time and facilitated the creation of a balanced
dataset. In the initial stages of our experiments, we encountered the problem of overfitting
caused by a lack of images. We addressed this problem by using data augmentation prior
to training, followed by transformations and normalization during the training phase.
The addition of more images led to a significant improvement that increased over time.
Modifying the model to classify multiple categories of defects in ceramic pieces posed
another challenge. To tackle this problem, we applied dropout to specific fully connected
layers and employed input data normalization through mean and standard deviation. It
remains experimental for future work due to the problem of insufficient images to expand
to more than two classes but shows favorable results in binary classification.

One drawback is the requirement for high-quality images due to the small size and
lack of contrast of defects in the ceramic pieces. Acquiring images in this type of system
can be challenging in terms of lighting and calibration. Incorrect lighting control led to
poor model performance in our early experiments, as the use of ambient lighting caused
defects to be picked up by the camera depending on the time of day or environmental
conditions, ultimately ruining many images. Thus, we found that static lighting in a
controlled environment is the first step, as lighting variations cause noise and degrade
image quality. Next, the camera should be placed at the ideal distance according to the
manufacturer’s specifications. Lenses play an important role, and depending on the type
of lens used, it is necessary to manually calibrate parameters such as aperture, focal length,
minimum distance, and zoom, among others. We observed a difference in quality when
using automatic white balance and static gain. Therefore, it is essential to have good
knowledge of the subject and to experiment with the lighting to achieve a harmony of
settings. Clear and detailed images yield better results.

Our industrial partner produces many types of ceramic pieces, including unique designs
for custom orders and others intended for continuous production. Therefore, in this initial
phase of our study, we focused on the 10 most common ceramic pieces, divided into two
classes (defect and nodefect) to ensure a balanced dataset. This strategic selection minimizes
the differences between parts by using common molds and suction cup types, achieving
uniformity of defects and contributing to dataset standardization. We use all the generated
images in the dataset, but it will be essential to balance the number of images for ceramic
pieces with and without defects in future stages. A future automation of the image acquisition
process will solve this time constraint associated with manual acquisition, which is currently
limited to the available time of the company’s assigned personnel.
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The fragility of the pieces is a consequence of the manufacturing process, in which
the stoneware pieces are subjected to only one firing, in witch the ceramic body is fired
in the kiln together with the glaze. Thus, the entire manufacturing process is carried
out with fragile pieces and low mechanical strength. This requires the use of special
equipment that only applies the force that is strictly necessary to handle the pieces through
the various stages of forming, fettling, glazing, decoration, and firing. When analyzing the
manufacturing process described in Section 3, one aspect stands out, namely the amount
of manual work performed during this industrial process. With the exception of glazing,
which is performed by a robot, all the operations shown in Figure 1 are carried out manually,
from the handling of the pieces after forming to fettling dry pieces, glazing, decoration,
loading the pieces into wagons that enter the kiln, unloading these wagons, sorting the
final product, and packaging.

The defect detection system was integrated into the quality control framework, as
shown in Figure 1. Previously, quality control was performed manually by an operator.
Now, our automated system has replaced this process by issuing an alert when a defect
is detected in a ceramic piece. After this detection, the operator performs a second val-
idation and makes the decision to discard or keep the ceramic pieces. This approach
facilitates human–machine collaboration, resulting in a significant improvement in the
manufacturing process.

The manufacturing of tiles has a higher level of automation due to the tendency
towards monomanufacturing, and the same is true for tableware when the manufacturing is
more uniform. However, automating the stoneware tableware industry presents three main
challenges: the complexity of products (including a variety of shapes, sizes, and decorations
performed simultaneously), the fragility of the pieces, and the need for quality control.

Similar research on materials such as metal, concrete, wood, ceramics, and specialty
surfaces exists and is detailed in our systematic review [5]. We identified common character-
istics and challenges in these materials and applied them specifically to the ceramic context.
Techniques such as data augmentation have proven valuable in improving our model’s
performance. It is important to consider factors such as lighting issues for metallic surfaces,
transfer learning for specialty surfaces due to image scarcity, and camera variations in
concrete. This work contributes to improving our current model and lays the foundation
for future research in this area. In Section 3, we explain the manufacturing process as a
guide and source of information for small companies This information comes from a large
company in the industry with large-scale manufacturing.

The results are consistent. Our main contribution is a new system that uses CNNs and
industrial cameras, along with a web platform and a specific dataset we created. We also
developed a method for image preprocessing of ceramic pieces that is capable of detecting
defects in real-time industrial environments.

7. Conclusions and Future Work

The research team developed an automated defect detection system. The system
includes an image acquisition module, a dataset generation for training purposes, and a
convolutional neural network model. The dataset was generated using industrial cameras
and carefully regulated lighting, and the system achieved an exceptional accuracy rate
of 98.00% despite overcoming numerous challenges through extensive testing. Proper
lighting is a crucial parameter to consider, as it directly affects the camera’s ability to
capture defects in images. Regarding CNN training, the best results were achieved by
using fine-tuning, data augmentation techniques, and calculating the mean and standard
deviation for each dataset.

ResNet was selected as the convolutional neural network model due to its exceptional
accuracy, achieving a testing accuracy of 98.00% and an F1-score of 97.29%. The F1-score
metric is well suited to this problem domain as it effectively measures the network’s ability
to detect defective ceramic pieces, also known as true positives (TP). ResNet surpassed
the other two networks assessed and demonstrated the best results. Although ResNet
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is the deepest network of the three, VGG also demonstrated impressive performance
for this particular surface-related task. The automation process is meaningless without
an integrated system that allows for comprehensive management of the manufacturing
process. Ensuring product quality control at various stages of the manufacturing line is
a key factor in achieving this integrated control. The project specifically targeted quality
control during the initial forming and fettling stages.

In the future, the lessons learned here will be applied to the other stages of the manu-
facturing process, specifically glazing, decoration, firing, and sorting. It is important to note
that these stages will present much greater challenges than the one currently addressed.
It is evident that the future of the ceramic industry will involve a more automated manu-
facturing process. The next step is to establish additional categories based on the specific
types of ceramic pieces and other types of defects. This procedure entails identifying these
types and then categorizing the defects inherent in each ceramic piece, automating the
process, and facilitating the efficient organization and distribution of datasets. Unlike other
industries, ceramics, with its distinctive organic shapes and inherent diversity, presents
significant challenges that cannot be met by conventional methods used in more typi-
cal manufacturing lines. Tailored solutions are necessary to address the specificities of
stoneware tableware. These solutions should not be prohibitively expensive to implement.
Ceramic tablewares are not high-value products; therefore, any solutions developed must
consider the cost and the ability of the solution to withstand industrial environments.
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