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Abstract: This paper proposes a novel estimator for the purpose of fault detection and diagnosis. The
interacting multiple model (IMM) strategy is effective for estimating the behaviour of systems with
multiple operating modes. Each mode corresponds to a distinct mathematical model and is subject
to a filtering process. This paper applies various model-based filters in combination with the IMM
strategy. One such estimator employs the recently introduced extended sliding innovation filter (ESIF)
known as the IMM-ESIF. The ESIF is an extension of the sliding innovation filter for nonlinear systems
based on the sliding mode concept. In the presence of modeling uncertainties, the ESIF has been
proven to be more robust compared to methods such as the extended Kalman filter (EKF). The novel
IMM-ESIF strategy is also compared with the IMM strategy, which incorporates the unscented
Kalman filter (UKF), referred to herein as IMM-UKF. While EKF uses Taylor series approximation to
linearize the system model, the UKF uses sigma point to calculate the system’s mean and covariance.
The methods were applied to an experimental magnetorheological (MR) damper setup, which
was designed for testing control and estimation theory. Magnetorheological dampers exhibit a
diverse array of applications in the automotive and aerospace sectors, with particular relevance to
attenuating vibrations through adaptive suspension systems. Applied to a magnetorheological (MR)
damper with distinct operating modes determined by the damper’s current, the results showcase the
effectiveness of IMM-ESIF. In mixed operational conditions, IMM-ESIF demonstrates a notable 80%
to 90% reduction in estimation error compared to its counterparts. Furthermore, it exhibits a 4% to 5%
enhancement in correctly classifying operational modes, establishing IMM-ESIF as a promising and
efficient alternative for adaptive estimation in electromechanical systems. The improved accuracy
in estimating the system’s behaviour, even amidst uncertainties and mixed operational scenarios,
signifies the potential of IMM-ESIF to significantly enhance the overall robustness and efficiency
of estimations.

Keywords: fault detection; estimation theory; interacting multiple model (IMM); extended Kalman
filter (EKF); extended sliding innovation filter (ESIF); unscented Kalman filter (UKF)

1. Introduction

Electromechanical systems commonly exhibit distinct operational modes due to vari-
ous influences such as design specifications, environmental conditions, or the occurrence of
faults. When these different operational modes are amenable to modeling, the application
of adaptive estimation techniques can enhance the accuracy of estimation and facilitate
fault detection. In the context of magnetorheological dampers, fluctuations in temperature
and power supply failures can induce substantial alterations in the system’s behaviour.
These abrupt and unforeseeable changes introduce a notable degree of uncertainty. In the
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process of developing filtering strategies for forecasting the system’s output force, adaptive
algorithms can integrate multiple models to mitigate estimation errors.

Multiple model (MM) algorithms operate on a Bayesian framework to facilitate adap-
tive estimation. Various forms of the algorithm include static MM, dynamic MM, gen-
eralized pseudo-Bayesian MM, and interacting MM (IMM) [1–8]. The Bayesian premise
of the MM methods involves updating the probability of a system existing in a specific
mode following the acquisition of a new measurement. The algorithms incorporate a
finite number of modes and use state estimates to calculate the probability associated with
each mode.

The interacting multiple model Kalman filter (IMM-KF) is a widely adopted multiple
model (MM) technique. This approach incorporates a set of Kalman filters (KFs), with
the quantity of KFs aligning with the number of concurrent operating system models.
The KF is preferred for its capacity to deliver optimal state estimates and its straightforward
process for calculating corrective gains. Nevertheless, it is important to note that this
method generates accurate state estimates or precise models only for linear systems that
exhibit white noise (i.e., noise with a zero mean and a normal distribution) [9]. The Kalman
gain is calculated by minimizing the trace of the a priori (predicted) state error covariance,
which is a measure of the estimation error distribution [9–11]. The KF has been used
in several applications, such as signal processing, fault detection, and target tracking [9].
However, the stability of the estimates may be compromised in the presence of disturbances,
nonlinearities, and modeling uncertainties.

In nature, most systems exhibit some form of nonlinear behaviour. The extended
Kalman filter (EKF) approximates the nonlinear process through local linearization around
the a priori state estimate [9]. A first-order Taylor series of the nonlinear system model
and measurement process is employed to compute the corresponding Jacobian matrices.
The Jacobians may then be applied to the states and their covariance to calculate the
corrective Kalman gain. However, the EKF estimates may diverge from the true state
trajectory if the system is highly nonlinear [12].

Another method of capturing nonlinear behaviour is sampling. The unscented Kalman
filter (UKF) generates samples from a probability distribution of states propagated through
the system model known as sigma points [13]. The unscented transform is a deterministic
sampling method that selects a minimal number of sample points around a mean, which,
in this context, refers to the previous state estimate [9]. The mean and covariance of the
projected points can be approximated using Monte Carlo sampling. Unlike the EKF, the
UKF can approximate the updated statistical state mean and state error covariance up to
the third order for nonlinear processes [12]. In addition, the UKF does not require taking
partial derivatives of the system model or measurement process. However, the unscented
transform generally comes at a higher computational cost when compared to the EKF [9].

Variable structure control and a sliding mode controller framework were used in the
formulation of sliding mode observers (SMOs) [13]. The innovation is used to determine
the observer gain that ideally forces the error surface towards the origin [13]. SMOs define a
sliding surface, or hyperplane, in order to apply a discontinuous switching force [14]. This
practice maintains the estimated values within the confines of the sliding surface. In 2007,
the smooth variable structure filter (SVSF) was presented based on SMO concepts [15].

The measurement error and a switching term are used to calculate the SVSF gain [15,16].
The state estimates are bounded to the trajectory of the true state values by the switching
term, thereby enhancing the stability of the estimation process. While classical model-
based filters incorporate the state error covariance in the corrective gain calculation, the
original formulation of the SVSF did not. The corrective gain was later expanded by
minimizing the state error covariance. This optimization process results in a time-varying
smoothing boundary layer [15]. The boundary layer widths vary depending on the degree
of uncertainty inherent in the estimation process. In addition, the SVSF has been improved
through the incorporation of a chattering function for higher-order solutions and fault
detection [13,16–18].
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The sliding innovation filter (SIF) was first presented in 2020 based on SMOs as an
improvement over the SVSF [19]. The SIF retains robustness to uncertainties but uses a
more concise gain structure and achieves higher estimation accuracy. This paper introduces
a novel IMM strategy, which leverages an extension of the SIF tailored for the treatment of
nonlinear systems. This extended adaptation is termed the extended sliding innovation
filter (ESIF). Similar to the EKF, the ESIF utilizes the Jacobian matrix for linear approxima-
tion of the system to calculate the a priori state error covariance. The IMM algorithm is
combined with the ESIF to form the IMM-ESIF, as demonstrated in [20].

The following work will detail an approach to fault detection and diagnosis through
the development of a novel IMM-ESIF estimator. The proposed estimation strategies are
applied on a magnetorheological (MR) damper, which was built specifically for creating
a benchmark platform to test out new control and estimation theory. The MR damper
setup, which will be described later in the paper, can be modelled and operated according
to a finite number of distinct mathematical models. Leveraging the proven effectiveness
of the IMM strategy for systems with multiple operating modes, the proposed estimator
integrates the recently introduced ESIF due to its heightened robustness in addressing
modeling uncertainties. The IMM strategy enhances fault detection in MR dampers by
explicitly modeling both fault and nominal modes within the system. In the context of MR
dampers, the IMM strategy considers multiple dynamic models that capture the variations
in behaviour associated with fault conditions and normal operation. Each dynamic model
corresponds to a specific mode, representing either a fault scenario or the nominal state
of the damper. The IMM strategy incorporates a filtering process that utilizes probabil-
ity outputs to estimate the likelihood of being in a particular mode at any given time.
By considering the probabilities associated with each dynamic model, the IMM approach
offers a nuanced understanding of the system’s behaviour, enabling more accurate fault
detection. This flexibility and adaptability make the IMM strategy effective for systems
such as magnetorheological dampers, where multiple operating modes can significantly
influence performance, and a single fixed model might be insufficient to capture the dy-
namic behaviour accurately. The probabilistic nature of IMM allows for a robust estimation
process that accounts for uncertainties and mode transitions, enhancing its capability for
fault detection in complex and variable systems.

A meticulous comparison of the IMM-ESIF with IMM-EKF and IMM-UKF is per-
formed on experimental data from a physical MR Damper test bench, showcasing its
notably superior performance in estimation accuracy and mode classification, particularly
in the challenging scenario of mixed operational conditions. It was found that the IMM-
ESIF exhibits a significant reduction in estimation error and demonstrates improvements in
its capability to correctly classify operational modes compared to its counterparts. From
the results, the novel IMM-ESIF emerges as a promising and efficient alternative for fault
detection and diagnosis in electromechanical systems, setting a new standard for adaptive
estimation strategies.

The present study is structured as follows. The estimation methods employed herein
are expounded in Section 2, followed by the IMM algorithm in Section 3. A comprehensive
exposition of the experimental configuration is provided in Section 4. The formulation
of the mathematical model governing the MR damper is elaborated in Section 5, while
empirical findings are presented in Section 6. Finally, the conclusions of this paper are
drawn in Section 7.

2. Estimation Methods
2.1. Extended Kalman Filter

While the KF produces the optimal estimate for linear systems with white noise, the
majority of systems in nature exhibit nonlinear behaviour. The states and measurements
are determined by the nonlinear functions as follows:

xk+1 = f (xk, uk) + wk, (1)
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zk+1 = h(xk+1) + vk+1, (2)

where f and h are the nonlinear system process and measurement functions, respectively,
uk is the input, and wk and vk+1 are the system and measurement noise, respectively.

The EKF exhibits a similar structure to the conventional Kalman Filter (KF), with the
exception of variances in the system and measurement matrices. The nonlinear systems
and measurement functions cannot be applied to the covariances directly. Instead, linear
approximations of the nonlinear functions f and h are generated using a first-order Taylor
series. The resulting Jacobian matrix can then be applied to the state error covariance
matrix. In the case of highly nonlinear systems, it is observed that the utilization of a first-
order Taylor series may result in an inaccurate approximation of the system’s behaviour.
This inaccuracy has the potential to lead to instability in the estimation process [21,22].
The first-order partial derivatives of the nonlinear functions with respect to the states
produce the Jacobian of the system function Fk and the Jacobian of the measurement
process Hk+1 as follows:

Fk =
∂ f (x)

∂x

∣∣∣∣
x=x̂k|k ,uk

, (3)

Hk+1 =
∂h(x)

∂x

∣∣∣∣
x=x̂k+1|k

. (4)

The system and measurement functions are linearized around the state estimate from
the preceding time step [23]. As the linearization serves as an approximation of the system’s
behaviour, the EKF no longer yields the optimal state estimates [23]. The prediction stage
of the EKF consists of the a priori state estimate x̂k+1|k, which uses the nonlinear system
model, as well as the state error covariance Pk+1|k, which uses the Jacobian of the system
model. The prediction stage equations are given as follows:

x̂k+1|k = f (x̂k|k, uk), (5)

Pk+1|k = FkPk|kFT
k + Qk, (6)

where x̂k|k is the previous state estimate, uk is the system input, Pk|k is the previous state
error covariance, and Qk is the system noise covariance. The matrix transpose operator
is denoted by T. The innovation z̃k+1 is calculated based on the nonlinear measurement
function h given by Equation (7). The innovation covariance matrix Sk+1, extended Kalman
gain Kk+1, and a posteriori state error covariance Pk+1|k+1 all utilize the Jacobian of the
measurement function Hk+1, as shown in Equations (8), (9) and (11). The innovation
covariance Sk+1 is used to calculate the extended Kalman gain Kk+1. This is applied to the
innovation z̃k+1 to update the a priori state estimate x̂k+1|k and produce the a posteriori
state estimate x̂k+1|k+1, as shown in Equation (10). The entirety of the update stage is given
by the following [23]:

z̃k+1 = zk+1 − h(x̂k+1|k), (7)

Sk+1 = Hk+1Pk+1|k HT
k+1 + Rk+1, (8)

Kk+1 = Pk+1|k HT
k+1S−1

k+1, (9)

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1, (10)

Pk+1|k+1 = (w − Kk+1Hk+1))Pk+1|k, (11)

where Rk+1 is the measurement noise covariance, and I is the identity matrix. Similar to
the KF, the EKF is known for its straightforward implementation [22]. However, special
consideration should be given to nonlinear systems that cannot be approximated accurately
by a first-order Taylor series.
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2.2. Unscented Kalman Filter

An alternative approach for addressing nonlinearities involves employing statisti-
cal linear regression of sample points projected using the nonlinear system model [24].
The unscented Kalman filter (UKF) is a popular formulation of the sigma-point Kalman
filter (SPKF). The UKF generates sigma points based on the previous state estimate and
covariances. The sigma points are then projected using the nonlinear system model to form
the a priori state estimate and state error covariance in a process known as the unscented
transform [25,26]. Additionally, the points are also projected using the nonlinear measure-
ment function as well. This method eliminates the necessity for linearization and generally
yields a more precise estimation compared to the Jacobian approximation for the nonlinear
system [21,25,27,28].

The UKF algorithm is detailed in the following equations [29]. Given a state space
with dimension n, the state xk can be represented with 2n + 1 sigma points denoted by X.
The sigma points have a mean of x̂k|k and a covariance of Pk|k. The initial sigma point X0,k|k
and corresponding weight W0 are given as follows:

X0,k|k = x̂k|k, (12)

W0 =
κ

n + κ
, (13)

where κ is a design parameter. The next 2n number of sigma points are calculated as follows:

Xi,k|k = x̂k|k +
(√

(n + κ)Pk|k

)
i
, (14)

Wi =
1

2(n + κ)
, (15)

where the value Xi,k|k is the ith sigma point and Wi is the weight that is associated with
the ith sigma point [30]. The sigma points are projected (X̂i,k+1|k) through the nonlinear
system function f and added together with their corresponding weights to produce the a
priori state estimate x̂k+1|k as follows [9]:

X̂i,k+1|k = f
(

Xi,k|k, uk

)
, (16)

x̂k+1|k =
2n

∑
i=0

WiX̂i,k+1|k. (17)

The previous calculations are used to calculate the a priori state error covariance as
follows [9]:

Pk+1|k =
2n

∑
i=0

Wi

(
X̂i,k+1|k − x̂k+1|k

)(
X̂i,k+1|k − x̂k+1|k

)T
+ Qk. (18)

The sigma points are also propagated through the nonlinear measurement function.
Unlike the KF and EKF, the UKF calculates a predicted measurement ẑk+1|k, which is used
to produce the innovation covariance Pzz.k+1|k.

Ẑi,k+1|k = h
(

X̂i,k+1|k, uk

)
, (19)

ẑk+1|k =
2n

∑
i=0

WiẐi,k+1|k, (20)

Pzz,k+1|k =
2n

∑
i=0

Wi

(
Ẑi,k+1 − ẑk+1|k

)(
Ẑi,k+1 − ẑk+1|k

)T
+ Rk+1. (21)

The cross-covariance (with respect to the state and measurement) is calculated as
follows [9]:
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Pxz,k+1|k =
2n

∑
i=0

Wi

(
X̂i,k+1 − x̂k+1|k

)(
Ẑi,k+1 − ẑk+1|k

)T
. (22)

The cross-covariance Pxz,k+1|k and innovation covariance Pzz,k+1|k are combined to
produce the corrective gain Kk+1 as follows:

Kk+1 = Pxz,k+1|kP−1
zz,k+1|k. (23)

To conclude the updated state of the UKF, the a posteriori state estimate and a posteriori
state error covariance are given as follows [9]:

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
zk+1 − ẑk+1|k

)
, (24)

Pk+1|k+1 = Pk+1|k − Kk+1 pzz,k+1|kKT
k+1. (25)

In the case of the UKF, there is a trade-off between computational cost and estimation
accuracy. While the EKF only propagates a single state estimate through a nonlinear process,
the UKF uses 2n + 1 sigma points to achieve a more accurate state estimate and state error
covariance. The performance of the UKF is akin to that of the EKF for systems exhibiting
mild nonlinearity, but it demonstrates superior performance when dealing with nonlinear
processes that cannot be suitably approximated using a first-order Taylor series [11].

2.3. Extended Sliding Innovation Filter

The SIF is a Bayesian, model-based estimator based on SMO concepts. The SIF cor-
rective gain is calculated using the measurement matrix, innovation signifying the mea-
surement error, as well as the sliding boundary layer. It is noted that this boundary layer
remains constant in the conventional formulation of the SIF. The fixed boundary layer rep-
resents an upper limit of potential noise/disturbances and modeling uncertainty [19]. The
initial estimate is forced towards the sliding boundary layer, or hyperplane. However, if
the estimate is already within the hyperplane layer, the corrective gain forces the estimates
to switch around the true state trajectory, as shown in Figure 1.

Figure 1. The SIF concept depicting the effects of the switching gain structure and sliding boundary
layer, adapted from [19].

For a linear system, the prediction stage is identical to the EKF in Section 2.1 as follows:

x̂k+1|k = f
(

x̂k|k, uk

)
, (26)

Pk+1|k = FkPk|kFT
k + Qk, (27)
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z̃k+1|k = zk+1 − Cx̂k+1|k. (28)

However, the measurement process h was considered to be linear and constant for the
purpose of this research. Thus, measurement matrix C was used instead of the Jacobian
Hk+1. The extended sliding innovation filter (ESIF) is a formulation of the SIF for nonlinear
system models and measurement processes. The ESIF corrective gain Kk+1i is calculated
using the measurement matrix C, innovation z̃k+1|k and fixed sliding boundary layer δ.
The corrective gain is applied to the innovation stage to calculate the a posteriori state
estimate in a similar fashion to the EKF. In addition, the a posteriori state error covariance
follows the EKF formulation as well. The entirety of the update stage is given as follows [19]:

Kk+1 = C+sat


∣∣∣z̃k+1|k

∣∣∣
δ

, (29)

x̂k+1|k+1 = x̂k+1|k + Kk+1z̃k+1|k, (30)

Pk+1|k+1 =
(

I − Kk+1C+
)

Pk+1|k
(

I − Kk+1C+
)T

+ Kk+1Rk+1KT
k+1, (31)

where C+ is the pseudoinverse of the measurement matrix, sat is the diagonal matrix
of the saturated vector values, and

∣∣∣z̃k+1|k

∣∣∣ refers to the absolute innovation value [19].
The adjustment of the sliding boundary layer term is accomplished through manual tuning
informed by an understanding of the system, encompassing factors such as noise and
modeling uncertainty, or via alternative optimization techniques, with the objective of
minimizing the estimation error [1]. The SIF estimation process can be summarized by
Equation (26) through (31). Proof of stability for the SIF is provided in [19]. The updated
innovation was used to define a Lyapunov function in order to prove that the estimation
error is bounded.

3. Proposed IMM-SIF

The interacting multiple model (IMM) method incorporates a finite number of models
and filtering strategies that run in parallel. Each filter associated with a specific model
generates its distinct state estimate, state error covariance, and an indication of the model’s
correctness. The likelihood is a function of the innovation (measurement error) and its
covariance. This indication is contingent on the innovation (measurement error) and its
covariance. Subsequently, these indications are leveraged to compute mode probabilities,
which signify the likelihood of the system adopting a particular mode based on the current
information.

The IMM method’s access to additional modeling information presents a clear advan-
tage over single-model strategies [31]. Combining the IMM with the ESIF adds stability
and robustness while increasing adaptability and accuracy with access to multiple models.
In this paper, the efficacy of this strategy is evaluated against previous IMM strategies, such
as the IMM-EKF and IMM-UKF, when applied to a highly nonlinear MR damper system.

The IMM-ESIF algorithm is shown in Figure 2. The green arrows indicate measurement
input, the blue arrows indicate recursion, and the red arrow indicates the overall IMM-ESIF
output. A number of SIFs equivalent to the number of models are run in parallel. While
Figure 2 shows two models for conciseness, there is no limit to the number of models that
can be incorporated. However, it should be noted that processing time scales linearly with
each additional model. The IMM-ESIF estimator consists of five steps: mixing probability
calculation, ESIF mode-matched filtering, mode probability update, and a combination of
the state estimate and covariance.
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Figure 2. Overview of the proposed IMM-ESIF algorithm.

The mixing probabilities µi|j,k|k represent the probability of the system in mode i
and switching to mode j at the next time step. The mixing probabilities are calculated as
follows [8]:

µi|j,k|k =
1
cj

pijµi,k, (32)

cj =
r

∑
i=1

pijµi,k, (33)

where pij is the mode transition probability, which is a design parameter, µik is the proba-
bility of the system existing in mode i, and r is the number of system modes. The previous
mode matched state x̂i,k|k and covariance Pi,k|k are used to calculate the mixed initial condi-
tions state x̂0j,k|k and covariance P0j,k|k for the filter matched to mode j as follows [8]:

x̂0j,k|k =
r

∑
i=1

x̂ij,k|kµi|j,k|k, (34)

P0j,k|k =
r

∑
i=0

µi|j.k|k

{
Pi,k|k +

(
x̂i,k|k − x̂0,k|k

)(
x̂i,k|k − x̂0,k|k

)T
}

. (35)

These mixed initial conditions are then fed into the filters matched to mode j. Each ESIF uses
the measurement zk+1 as well as any system inputs uk to calculate the updated states and
corresponding state error covariance. The initial state estimate x̂0j,k|k and corresponding
state error covariance P0j,k|k for each mode j are used to calculate the a priori states x̂j,k+1|k
error covariance Pj,k+1|k as follows:

x̂j,k+1|k = f j

(
x̂0j,k|k, uk

)
, (36)

Pj,k+1|k = FjP0j,k|kFT
j + Qk, (37)
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where f j is the nonlinear system state equations of mode j and Fj is the Jacobian matrix of
said equations.

The mode-matched innovation covariance Sj,k+1|k and mode-matched a priori mea-
surement error ej,z,k+1|k are calculated as follows [8]:

Sj,k+1|k = CjPj,k+1|kCT
j + Rk+1, (38)

ej,z,k+1|k = zk+1 − Cj x̂j,k+1|k, (39)

where the measurement matrix Cj is considered linear and constant for the purposes of
this paper.

The update stage is described by the following four equations. The mode-matched
ESIF gain Kj,k+1 is calculated via Equation (40) and used to update the state estimate
x̂j,k+1|k+1 via Equation (41).

Ki,k+1 = H+
j sat


∣∣∣ej,z,k+1|k

∣∣∣
δ

, (40)

x̂j,k+1|k+1 = x̂j,k+1|k + Kj,k+1ej,z,k+1|k. (41)

The updated state error covariance matrix Pj,k+1|k+1 is generated via Equation (42)
and is used to produce the a posteriori measurement error ej,z,k+1|k+1, as illustrated in
Equation (43).

Pj,K+1|k+1 =
(

I − Kj,k+1Cj

)
Pj,k+1|k

(
I − Kj,k+1Cj

)T
+ Kj,k+1Rk+1KT

j,k+1, (42)

ej,z,k+1|k+1 = zk+1 − Hj x̂j,k+1|k+1. (43)

Using the mode-mode matched innovation matrix Sj,k+1|k and the mode-matched up-
dated measurement error ej,z,k+1|k, a corresponding likelihood function Λj,k+1 is calculated
as follows [8]:

Λj,k+1 = N
(

zk+1; ej,z,k+1|k, Sj,k+1|K

)
. (44)

The likelihood is calculated by applying measurement zk+1 to a Gaussian probability
density function with mean ej,z,k+1|k and covariance Sj,k+1|k. The likelihood can be rewritten
as the following Equation [8]:

Λj,k+1 =
1√∣∣∣2πSj,k+1|k

∣∣∣ exp

− 1
2 eT

j,z,k+1|kej,z,k+1|k

Sj,k+1|k

. (45)

The mode-matched likelihood function Λj,k+1 is then used to update the mode proba-
bility µi,k, as shown [8]:

µi,k =
1
c

Λj,k+1

r

∑
i=1

pijµi,k, (46)

where the normalizing constant c is defined as follows [8]:

c =
r

∑
j=1

Λj,k+1

r

∑
j=1

pijµi,k. (47)

Finally, the IMM-ESIF outputs the overall state estimates x̂k+1|k+1 and corresponding
state error covariance Pk+1|k+1, which are calculated as follows [8]:

x̂k+1|k+1 =
r

∑
j=1

µi,k+1 x̂j,k+1|k+1, (48)



Sensors 2024, 24, 251 10 of 21

Pk+1|k+1 =
r

∑
j+1

µi,k+1

{
Pi,k+1|k+1 +

(
x̂j,k+1|k+1 − x̂k+1|k+1

)(
x̂j,k+1|k+1 − x̂k+1|k+1

)T
}

. (49)

The formulation of the IMM-ESIF can be summarized by Equations (32)–(49). Note that
the estimator’s overall output x̂k+1|k+1 from (48) and Pk+1|k+1 from (49) are not used in the
algorithm recursions [8]. The IMM-EKF and IMM-UKF follow a similar process, with the
primary difference being their respective corrective gain calculations.

4. Experimental Setup

The primary component of the experimental setup utilized in this study is the RD-8041-
1 MR damper, procured from LORD corporation. MR dampers exhibit a diverse array of
applications in the automotive and aerospace sectors, with particular relevance to attenuat-
ing vibrations through adaptive suspension systems [32]. A typical MR damper consists of
the MR fluid itself, housing, piston, diaphragm, and magnetic coil [33]. The manipulation
of the damper’s performance involves the supply of an electrical current to modulate the
viscosity of the MR fluid, thereby elevating the damping force. This variation in viscosity
arises from the repositioning of ferromagnetic particles dispersed within the fluid. In the
presence of a magnetic field, these particles align to create linear chain structures [33]. As
the MR damper is driven, the MR fluid moves between different chambers via small orifices
in the piston assembly and converts mechanical energy into friction losses [33].

The experimental setup was developed at the University of Guelph by the primary
author. In order to mathematically model the MR damper, an A1 series linear actuator
from Ultra Motion was employed to actuate the damper. An RAS1-500S-S resistive load
cell acquired from Loadstar Sensors was used to measure the damping force, and a Korad
programmable power supply was used to supply current to the MR damper. Data acquisi-
tion and command transmission occurred via RS232 serial communication on a laboratory
computer. The components were assembled using an extruded t-slotted aluminum frame,
as depicted in Figure 3.

Figure 3. Magnetorheological testing setup used in this study.

The RD-8041-1 is a linear MR damper with continuous variable damping determined
by the yield strength of the MR fluid in response to a magnetic field. The damper responds
in less than 15 milliseconds to changes in the magnetic field and can operate at 1 A
continuously or 2 A intermittently at 12 Volts DC. The RD-8041-1 is a monotube shock
containing high-pressure nitrogen gas (300 psi), which fully extends the piston under no
load. At ambient temperatures, the resistance of the coil is 5 Ω and at 71 ◦C, the resistance
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increases to 7 Ω. Extreme temperature changes can drastically alter the performance of the
MR damper [34].

The Ultra Motion linear actuator used to drive the MR damper is a standard servo
cylinder with an ACME screw to prevent back-drive and operates at a power rating of
180 Watts. The actuator is capable of 445 Newtons of continuous force and 1001 Newtons at
its peak with a maximum speed of 178 mm/s. Numerous onboard sensors are employed for
the measurement of various states, including position, torque, temperature, and humidity.
The position of the linear actuator is measured using the phase index absolute position
sensor. This sensor is a multi-turn magnetic encoder with a resolution of 1024 counts
per revolution used for absolute position feedback and commutation. The measurement
noise covariance of the sensor is discussed in subsequent sections. The torque feedback
is calculated using closed-loop current feedback on each motor phase, which may then
be subsequently translated into an actuator output force. Utilizing current feedback as a
means for output force calculation has been found to be lacking in accuracy, leading to
notable discrepancies and noise in the measurements.

In general, a direct relationship exists between motor torque and actuator output
force, yet several complicating factors may exert significant influence on this association.
Rotational inertial loads, lubricant viscosity, and seal friction can all contribute to output
force variability. Factory test data were used in order to convert motor torque into actuator
output force. The data are collected on each actuator during the acceptance test procedure
(ATP) before leaving the factory [35]. The generated current-force curves exhibit distinc-
tive characteristics for individual actuators. Nevertheless, notable fluctuations in force
output persist. To mitigate some of the fluctuations in the torque sensor data, a first-order
Butterworth filter was implemented with a cutoff frequency between 0 and 0.05 of the
Nyquist rate.

The RAS1-500S-S is a resistive S-Beam load cell capable of measuring both compressive
and tensile force measurement. The load cell is made from tool steel and has a capacity
of 2224 N and a sample rate of 1000 Hz. The calibration measurement equipment is
traceable to NIST via Pacific Calibration Services. This sensor was employed to assess
the effectiveness of implementing adaptive filtering strategies on the current feedback
of the linear actuator. While the noise covariance of the load cell is 26.535 N, the noise
covariance of the Ultra Motion motor torque sensor is 622.407 N. The comparatively high
noise distribution of the onboard Ultra Motion motor torque sensor makes it a suitable
candidate for applying adaptive filtering strategies.

Force-velocity hysteresis curves have been modeled extensively by [36,37]. However,
at low velocities over long stroke lengths, the force of the diaphragm and compressed
nitrogen gas is not negligible. Thus, a force-position hysteresis curve was modeled by
driving the MR damper at a constant velocity over one full stroke. For the MR model used
in this study, the actuator speed was set to 30 mm/s, and the damping force was recorded
by the load cell over a stroke length of 57 mm. Approximately 200 strokes (extension
and retraction) were used to model the behaviour at each operational mode (normal,
over-current, undercurrent). The conditions of the operational modes are discussed below.

There are several different types of faults that can be experienced during MR damper
operations. The viscosity of the MR fluid is sensitive to extreme temperatures [33], and
the particles in the MR fluid are also subject to degradation over time [38]. However, this
study primarily investigates issues arising from faulty power supplies, which alter the
current supplied to the MR damper. Undercurrent and over-current fault modes were
modeled in addition to the normal operating current. The undercurrent, normal, and
over-current operational modes are denoted by a supply current of 0 mA, 120 mA, and
220 mA, respectively.

A sample of experimental data used to model the MR damper can be seen in Figure 4.
The diagram depicts the actuator undergoing constant-speed extension and retraction,
with measurements of MR force captured by a load cell and an actuator current sensor.
Additionally, the figure demonstrates the application of a first-order Butterworth filter
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on the actuator current sensor readings to diminish noise before implementing adaptive
filtering techniques.

Figure 4. Sample of experimental data used to model the MR damper under normal operating
conditions.

5. Magnetorheological Damper Setup

The force-velocity hysteresis of an MR damper has been described in the literature
using many different mathematical models such as the nonlinear hysteretic bi-viscous
model, polynomial function model, generalized sigmoid hysteresis model, and Bouc-Wen
hysteresis model [36]. However, under conditions of low velocities and extended stroke
lengths, the force exerted by the diaphragm and the compressed nitrogen gas cannot be
disregarded. Consequently, the correlation between the force generated by the MR damper
and its position was integrated into established models.

The comprehensive mathematical model of the MR damper computes force based
on velocity, position, and the applied current. When maintaining a constant current, the
force can be expressed as a function of position and velocity and can be represented as
a polynomial surface, as depicted in Figures 5–7. Since the experiments were conducted
using constant velocity, the model was further reduced to Equation (51).

Figure 5. MR force during extension with respect to position and velocity.
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Figure 6. MR force during retraction with respect to position and velocity.

Figure 7. Full MR force model with extension and retraction.

In this experiment, a ninth-order polynomial model was selected due to its compu-
tational efficiency when implementing model-based filters such as EKF, UKF, and ESIF
without compromising model accuracy. The basic polynomial hysteresis function is pre-
sented as follows:

fh =
n

∑
k=0

akyk; n = 9, (50)

where y is the position of the MR piston, ak is the polynomial coefficient constant, which is
experimentally obtained, k represents the polynomial exponent, and n represents the poly-
nomial order [36]. The velocity (direction) of the piston determines whether the damping
force follows the upper or lower hysteresis curve, as shown as follows [36]:

fd =


∑9

k=0 aukyk ; ẏ < 0

∑9
k=0 adkyk ; ẏ > 0

∑9
k=0

1
2 (auk + adk)yk ; ẏ = 0

, (51)

where auk and adk are the lower and upper polynomial coefficients, respectively. Conver-
gence of the two polynomial functions near the extremities is ensured by averaging the
lower and upper polynomial functions when the piston velocity changes direction or is
equal to 0 mm/s [36]. The coefficients of the polynomial model are given in Table 1.



Sensors 2024, 24, 251 14 of 21

Table 1. Experimentally obtained coefficients for the polynomial for the magnetorheological
damper model.

Polynomial
Coefficient

Undercurrent
(0 mA) Normal Operation Overcurrent

(220 mA)

au0 −362.5338 −402.2871 −455.7308
au1 55.6247 46.6965 29.2484
au2 −8.3330 −7.2734 −4.2088
au3 0.6791 0.6116 0.3078
au4 −0.0333 −0.0309 −0.0125
au5 0.0010 9.7782 × 104 2.8271 × 104

au6 −2.0429 × 105 −1.9756 × 105 −3.2121 × 106

au7 2.5395 × 107 2.4911 × 107 9.3169 × 109

au8 −1.8183 × 109 −1.7990 × 109 1.3375e × 1010

au9 5.7430e × 1012 5.7019 × 1012 −9.3501 × 1013

ad0 −27.3674 47.9106 167.3362
ad1 28.4778 30.7247 24.0020
ad2 −7.1661 −7.5816 −6.1759
ad3 0.8976 0.9404 0.8009
ad4 −0.0633 −0.0663 −0.0587
ad5 0.0027 0.0028 0.00264
ad6 −6.8046 × 105 −7.1970 × 105 −6.7311 × 105

ad7 1.0341 × 106 1.1028 × 106 1.0519 × 106

ad8 −8.5880 × 109 −9.2442 × 109 −8.9620 × 109

ad9 3.0007 × 1011 3.2615 × 1011 3.2055 × 1011

The models shown in Figure 8 depict the force–position hysteresis relationship of the
MR damper at a velocity of 41.5 mm/s. This represents a cross-section of Figure 6 at the
specified velocity. The data points were fitted using Equation (51) to obtain the polynomial
coefficients in Table 1. The norm of the residuals for each data set to their polynomial
models are [12.086, 8.1279], [6.794, 8.070], and [7.367, 13.693] for the undercurrent, normal,
and overcurrent modes, respectively. The first number represents the upper polynomial
curve, while the second represents the lower polynomial curve.

Figure 8. MR damping force with respect to position when piston velocity is set to 30 mm/s.

The discretized state space equations can be written as follows:

x1,k+1 = x1,k + T · x2,k, (52)
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x2,k+1 = x2,k, (53)

x3,k+1 =


∑9

k=0 aukx1,k ; x2,k < 0

∑9
k=0 adkx1,k ; x2,k > 0

∑9
k=0

1
2 (auk + adk)x1,k ; x2,k = 0

, (54)

where x1, x2, x3, are the position, velocity, and force of the MR damper and T is the
sampling rate.

The system and measurement noise covariance matrices are defined respectively, as
follows, based on factory testing:

Q = R × 10−1, (55)

R =

5.5134 × 10−4 0 0
0 7.797 × 10−4 0
0 0 622.407

. (56)

The system noise was not measured directly but was assumed to be one magnitude
smaller than the measurement noise.

6. Results and Discussion

The linear actuator drove the MR damper for a total of 11.62 s with constant velocity
(30 mm/s) during extension and retraction. The position and velocity profile captured by
the actuator encoder can be seen in Figure 9. The initial current of 120 mA was applied to
the MR damper, which represents normal operation. The MR damper was allowed to fully
extend and retract before an overcurrent fault (220 mA) was introduced at 3.86 s. After
another full period of motion, an undercurrent fault (0 mA) was introduced to the MR
damper at 7.73 s before completing a final extension and retraction.

Figure 9. Sample of experimental data used to model the MR damper under normal operating
conditions.

The fixed boundary layer applied in the ESIF was tuned based on minimizing the force
state estimation error. The smoothing boundary layer widths are given by the following:

δ =

5.5134 × 10−4 0 0
0 7.797 × 10−4 0
0 0 80

. (57)
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For all estimation strategies, the initial conditions were set to the following:

x̂0 = [4.2788 30.2793 − 303.0187]T , (58)

P0|0 = 10 ∗ Q. (59)

For the experiments conducted in this paper, it is assumed that the MR damper oper-
ates normally 65% of the time and has an equal likelihood of experiencing an undercurrent
or overcurrent fault. The initial mode probability µi,0 is given as follows:

µi,0 = [0.65 0.175 0.175]T . (60)

Based on experimental procedures, the mode transition matrix pi,j is defined by a 3 by
3 diagonal matrix with 0.65 on the diagonal and 0.175 on the off-diagonal. This transition
matrix signifies that there is a 65% probability that the system will remain in the current
mode. For example, if the system is experiencing normal operation, there is a 65% chance
the system will continue to undergo normal operation in the next time step.

As described previously, the experiment consisted of a test in which all three modes
(normal, overcurrent, undercurrent) were experienced. Following one actuation period in a
specific mode, the system transitioned to the next mode in sequence until all three modes
were introduced. Figure 10 shows the results of the IMM-EKF, IMM-UKF, and IMM-ESIF
for estimating the force exerted by the MR damper during testing.

Figure 10. Force estimation of the MR damper undergoing mixed operation with normal, overcurrent,
and undercurrent modes.

The root mean squared error (RMSE) for each estimator was calculated as follows:

RSME =

√
∑n

n=1(xi − x̂i)

n
, (61)

where n is the number of steps. The values shown in Tables 2 and 3 are the average RMSE
of the 20 separate trials similar to the one shown in Figure 10. The order in which the
modes were experienced was randomized for each trial.

The IMM-EKF, IMM-UKF, and IMM-ESIF perform comparatively well when the MR
is in normal operation. As shown in Table 2, the IMM-ESIF performs slightly better
than the IMM-EKF and IMM-UKF under normal operation. However, the benefit of
the increased robustness is demonstrated in Table 3, which shows the RMSE for mixed
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operation. In the presence of faults and modeling uncertainty, the IMM-ESIF shows a clear
advantage over its counterparts. There is an 83.7% improvement over the IMM-EKF and
an 89.4% improvement over the IMM-UKF. It is interesting to note that while the UKF
generally performs better than the EKF for highly nonlinear systems, the EKF outperformed
the UKF during mixed operations.

Table 2. Tabulated RMSE of various estimation strategies under normal operation.

Estimation Strategy RMSE (Newtons)

IMM-EKF 2.37
IMM-UKF 2.36
IMM-ESIF 1.97

Table 3. Tabulated RMSE of various estimation strategies under mixed operation.

Estimation Strategy RMSE (Newtons)

IMM-EKF 17.52
IMM-UKF 19.20
IMM-ESIF 2.04

The IMM-EKF, IMM-UKF, and IMM-ESIF were all able to properly detect the mode
probabilities with varying degrees of confidence. Figures 11–13 show the mode probabilities
calculated by each estimation strategy. In order to clearly depict the mode probabilities, the
overall trends are shown as solid lines, while spikes in the mode probability are represented
as dots. The mode probabilities show that the IMM-ESIF misclassifies the correct mode
when the velocity of the MR damper changes direction. However, the overall classification
accuracy of the IMM-ESIF is higher than its counterparts.

Figure 11. Normal operation mode probability.
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Figure 12. Overcurrent fault mode probability.

Figure 13. Undercurrent fault mode probability.

A value “1” for a mode probability refers to a 100% confidence that the system is
experiencing that mode, while a “0” refers to a probability of 0%. Tables 4–6 illustrate
the confusion matrices for each estimator that are commonly used in fault detection and
diagnosis. The vertical axis typically represents the predicted mode, while the horizontal
axis represents the actual mode being experienced by the MR damper.

The presented confusion matrices illustrate that the IMM-EKF, IMM-UKF, and IMM-
ESIF models successfully predicted the correct operational mode with a notable degree of
confidence. Specifically, it is observed that the classification accuracy for normal operation
was relatively lower in comparison to the other modes. This discrepancy can be attributed
to the fact that the damping force associated with normal operation falls within the range
between the overcurrent and undercurrent modes, as depicted in Figure 8. Likewise,
the classification of overcurrent fault had the highest accuracy because it has greater
separation from the normal operation than the undercurrent fault. The IMM-UKF had
slightly higher classification accuracy than the IMM-EKF. However, the IMM-ESIF shows a
4–5% higher accuracy when classifying the correct mode when compared to the IMM-EKF
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and IMM-UKF. Overall, the IMM-ESIF showed significant improvement in both estimation
accuracy (RMSE) and classification (confusion matrix) when compared to the IMM-EKF
and IMM-UKF.

Table 4. IMM-EKF confusion matrix.

Actual Normal Operation Actual Overcurrent Fault Actual Undercurrent Fault

Predicted Normal Operation 88.75% 4.86% 5.62%
Predicted Overcurrent Fault 4.49% 90.58% 5.08%

Predicted Undercurrent Fault 6.76% 4.55% 89.30%

Table 5. IMM-UKF confusion matrix.

Actual Normal Operation Actual Overcurrent Fault Actual Undercurrent Fault

Predicted Normal Operation 88.99% 4.84% 5.43%
Predicted Overcurrent Fault 4.48% 90.61% 5.07%

Predicted Undercurrent Fault 6.53% 4.55% 89.50%

Table 6. IMM-ESIF confusion matrix.

Actual Normal Operation Actual Overcurrent Fault Actual Undercurrent Fault

Predicted Normal Operation 93.78% 2.66% 2.09%
Predicted Overcurrent Fault 1.26% 94.58% 1.55%

Predicted Undercurrent Fault 4.97% 2.76% 96.36%

7. Conclusions

This paper introduced a novel model-based estimator that combined the IMM strategy
with the relatively new ESIF. The novel estimator, referred to as the IMM-ESIF, was applied
to an MR damper for force estimation and fault detection. The experiments involved three
distinct operational modes: normal operation, an overcurrent fault, and an undercurrent
fault. It is noteworthy that the damping behaviour of the MR damper is significantly
influenced by the supplied current, making prompt identification of power supply faults
crucial. During normal operation, the IMM-ESIF demonstrated performance on par with
other well-established Kalman-based strategies. However, when the MR damper operated
under mixed conditions (both normal and faulty operation), the IMM-ESIF outperformed
both IMM-EKF and IMM-UKF. In fact, the IMM-ESIF exhibited a substantial reduction in
estimation error, ranging from 80% to 90% compared to its counterparts. Additionally, it
displayed a 4% to 5% improvement in correctly classifying operational modes, resulting in
fewer misclassifications compared to other estimators. The IMM-ESIF emerges as a promis-
ing alternative to existing IMM estimation strategies. In light of the outcomes achieved
by the proposed IMM-ESIF model-based estimator, the trajectory for future research en-
deavors presents a rich landscape for exploration and refinement. Firstly, an avenue for
investigation lies in the comprehensive examination of additional fault scenarios within
MR dampers, such as those related to MR fluid degradation, to ascertain the robustness
and versatility of the IMM-ESIF across a spectrum of potential challenges. This research
could delve into the development of tailored fault detection strategies, leveraging the
inherent strengths of the IMM-ESIF in capturing nuanced variations in damper behaviour.
Furthermore, the exploration of alternative nonlinear formulations of the SIF, coupled with
a thorough integration into the IMM framework, holds the promise of further enhancing
estimation accuracy. The synergistic fusion of advanced signal processing techniques and
machine learning methodologies may be explored to push the boundaries of estimator
performance, especially in scenarios involving complex and dynamic interactions. Ad-
ditionally, comparative studies involving a broader array of well-established estimation
strategies can be undertaken to establish a more nuanced understanding of the IMM-ESIF’s
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relative advantages and limitations. By addressing these facets, future research endeavors
can contribute significantly to the evolution of model-based estimators.
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