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Abstract: A novel DAS setup based on geometric phases in coherent heterodyne detection is applied
for the first time to the characterisation of the Earth’s subsurface. In addition, an optimisation
of the proposed setup in terms of its spatial resolution is also presented for the first time. The
surface waves are generated by strong blasts of 25 kg of explosives at a dedicated test site. A
10 km dark fiber link in the vicinity of the test site connected to the test setup records the resulting
strain signals. The spike-free and low-noise strain data thus obtained minimize post-processing
requirements, making the setup a candidate for real-time seismic monitoring. An analysis of the
dispersion characteristics of the generated surface waves is performed using a recently reported
optimised seismic interferometric technique. Based on the dispersion characteristics, the shear wave
velocities of the surface waves as a function of the depth profile of the Earth’s crust are determined
using an optimised evolutionary algorithm.

Keywords: distributed acoustic sensing; distributed fiber optic sensing; geometric phase; seismology;
subsurface characterisation; surface waves; earthquake monitoring

1. Introduction

The characterisation of Earth’s near surface has important applications in natural
hazard assessment, resource exploration and planning of civil infrastructure. Earthquake
monitoring also benefits from it, as the magnitude of vibrations at a given location depends
on the near-surface structure and properties. Given its importance, it remains an ever-
evolving area of research spanning diverse techniques from digging boreholes to ground-
penetrating radar, electromagnetic induction and seismic surface wave analysis [1].

Seismic surface wave analysis is based on the study of seismic waves travelling along
the surface of the Earth. It is an established technique for near-surface characterisation,
where usually arrays of geophones are used as sensing points to be cross-correlated with
a source. The shear wave velocity of these waves at varying depths of the Earth gives
information about the density and composition of the respective subsurface layers [1].
Surface waves may emanate from natural processes occurring within Earth’s mantle or
acting from outside, including human-made ones, including regular anthropogenic activity.
Surface waves may be artificially induced at specific frequencies and amplitudes using
special sources like vibrating trucks or blasts. Several studies show subsurface character-
isation using dense geophone arrays whose spatial resolution is at minimum of around
50 to 60 m [2–8]. The limited density of these arrays as well as the installation cost and
difficulty may be a challenge, especially in hard-to-reach areas like the ocean bottom or
densely populated urban areas [9].

Distributed Acoustic Sensing (DAS) transforms an optical fiber buried in the Earth’s
surface into a several-kilometre-long dynamic strain sensor with a high spatial resolution [10,11].
The spatial density of the optical fiber sensor compared with an array of geophones is far
superior, making it an ideal candidate for surface wave monitoring. Moreover, the unused

Sensors 2024, 24, 30. https://doi.org/10.3390/s24010030 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010030
https://doi.org/10.3390/s24010030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5348-0747
https://orcid.org/0000-0001-7411-8296
https://doi.org/10.3390/s24010030
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010030?type=check_update&version=2


Sensors 2024, 24, 30 2 of 12

links in the optical fiber telecommunication network already deployed over the Earth’s
surface, including the ocean bottom [12,13], densely packed urban areas [14–20] or other
specialised terrains [21,22], are readily available for sensing. The permanent deployment
of optical fibers also entails the possibility of continuous monitoring. Considering its
unique advantages, application of DAS to surface waves and other seismic applications
like earthquake monitoring is an area of active research. The aim is to leverage its full
potential and overcome associated challenges such as generation of huge amounts of data
and signal fading due to characteristics of the optical fiber medium or the measurement
technique [9,23–25].

Using the principle of Optical Time-Domain Reflectometry (OTDR), a phase shift
experienced at a specific location in the optical fiber is determined, which is directly pro-
portional to the strain at this point [10,26]. The measured phase varies with changes in the
refractive index, length or wavelength and can be termed a dynamic phase. Interferometric
techniques, such as Mach–Zehnder or coherent homo- or heterodyne detection, may be
used to quantify the phase shift [10]. In coherent heterodyne detection, a local oscillator
(LO) signal is made to interfere with its backscattered counterpart coming from the fiber-
under-test (FUT) [26]. This technique offers a high signal-to-noise ratio (SNR) over a long
range and is therefore suitable for seismic monitoring. A challenge of this technique is
that the traditional method of measuring the phase assumes both the interfering beams as
having identical states-of-polarization (SOPs) [10]. This is not the case in the optical fiber
medium, where after the first few meters, the SOP of the probe signal diverges from that
of the LO [27]. Resulting polarization mismatches cause unwanted signal fades and are
traditionally handled with polarization diversity techniques [28–33]. The unwanted peaks
in the determined phase due to polarization mismatch fading or unwrapping errors can
cause false alarms in applications like earthquake and structural health monitoring [34].

Recently, it was reported that a geometric phase exists in the beating of lightwaves
as long as the interfering beams have non-identical SOPs. It is measured per beat period
and found to be coupled to the dynamic phase [35]. The said geometric phase was detected
with a novel DAS setup based on coherent heterodyne detection [36]. Afterwards, a DAS
system utilizing a geometric phase instead of the traditionally measured dynamic phase
was demonstrated [37]. The new setup, termed ϕg-OTDR [37], is immune from polariza-
tion mismatch fading as non-identical SOPs of the interfering beams is a condition for
its existence, not a hindrance. Moreover, its calculation does not generate unwrapping
errors [35,37], which may cause unwanted phase spikes, especially when the signal-to-noise
ratio (SNR) is low [38].

Surface wave monitoring usually requires significant data cleaning and averaging
to be able to detect surface waves [9,23,24]. We anticipate that using the less noisy and
spike-free data from ϕg-OTDR may prove advantageous in this regard. Thus, in this work,
we use the ϕg-OTDR system for surface wave monitoring. As a source for surface waves,
we use a series of two test site blasts of 25 kg of explosive material each, buried underground.
Relatively few studies exist that use blasts as a source for surface wave interferometry [17,39];
the present study contributes to this body of work. The dispersion characteristics of the
surface waves are extracted using an optimisation of the cross-correlation method [40],
termed the fast dispersion method. Further analysis of the dispersion characteristics is
performed using an optimised evolutionary algorithm that enables one to extract shear
wave velocities as a function of Earth’s crust, given an initial model [41].

Finally, a performance optimisation of ϕg-OTDR in terms of its spatial resolution is
presented here for the first time. The spatial resolution of ϕg-OTDR [37] was earlier reported
to be lower than that of standard, phase-sensitive OTDR based on coherent detection of
the traditionally measured dynamic phase, ϕ-OTDR [10,42]. This is because the numerical
method used to compute the geometric phase relies on dividing the beat period into N
segments and summing over them. Earlier, a single value was computed over each beat
period [36,37], but in the present study, we use a moving/sliding summation so that we
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obtain a value at every spatial point, thereby bringing the spatial resolution of ϕg-OTDR
equal to that of standard ϕ-OTDR based on coherent heterodyne detection [10,42].

2. Experimental Setup

A DAS setup based on coherent heterodyne detection utilizing a geometric phase
instead of the typically measured dynamic phase was recently demonstrated [37]. The same
experimental setup is also used in the present study, shown in Figure 1. The calculation of
the geometric phase in the beat signal, S0, obtained after coherent heterodyne interference
of two frequency offset beams of light, S

′
0 and S

′′
0 , is accomplished using the following

formula [35], where N is the number of sections into which a beat period is divided into:

ϕg = ±π −
N

∑
n=1

arg[S
′
0exp(

−iπ
N

) + S
′′
0 exp(

iπ
N
) + 2

√
S′

0S′′
0 |γ0|cos(

n2π

N
)] (1)

where γ0 is calculated as [35]:

γ0 = S0/
√

S′
0S′′

0 (2)

Figure 1. Experimental setup of ϕg-OTDR used to interrogate a 10 km dark fiber link surround-
ing the blast test site. EDFA: erbium-doped fiber amplifier, FUT: fiber-under-test, BPD: balanced
photodetector, Cir.: circulator, AOM: acousto-optic modulator.

The experimental setup consists of a narrow linewidth laser that splits light with a
1550 nm wavelength and 20 mW intensity into probe and local oscillator (LO) branches in a
ratio of 90:10, respectively. This splitting ratio [43] works optimally as the LO signal does
not need to travel beyond a meter on the optical table and its power easily matches the low
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backscatter signal arriving from the probe branch. Ratios of 99:1 [26,44] and 50:50 have also
been reported [42].

The intensity of the LO, S
′′
0 , remains constant and therefore has to be measured with an

optical power meter only once. In the probe branch, a high-speed optical shutter (Booster
Optical Amplifier) is used to carve a pulse train that is sent into an FUT, a 10 km dark
fiber link, after amplification by an erbium-doped fiber amplifier (EDFA). The pulse width
is 50 ns, while the pulse repetition rate is 500 Hz. The Rayleigh backscattered signal
(RBS) from the FUT is amplified once again with an EDFA. It is then split equally using
a 1 × 2 50:50 splitter. One half of this signal is detected directly with a single photode-
tector, giving us S

′
0. The other half is coherently heterodyned with the LO signal using a

2 × 2 50:50 coupler. However, the LO is first given a frequency upshift, ∆ f = 110 MHz,
by passing it through an acousto-optic modulator (AOM). The subsequent interference
between the LO and RBS is detected by a balanced photo-detector, giving us the resulting
beat signal, S0. The frequency offset between the interfering arms, ∆ f , determines the
period of S0.

The outputs from both photodetectors are sampled using an analog-to-digital con-
verter at a sampling rate of 500 MSa/s. The setup thus allows for the calculation of ϕg

using Equations (1) and (2) by plugging in the values of S0, S
′
0 and S

′′
0 [37]. In the present

study, we use an AOM with a ∆ f = 110 MHz, giving us N = 9 over two beat periods,
as per Equation (3), where two beat periods are considered to obtain an integer value of N.
The latter is a function of the sampling frequency fs and ∆ f , calculated as [37]:

N = fs/∆ f (3)

The equivalence between the dynamic phase measured per sample and the geometric
phase measured per beat period is given as [37]:

ϕ = −g · ϕg (4)

In this work, we present a performance enhancement by taking a moving summation
for the calculation of ϕg using Equation (1). The number of samples covered in one gauge
length for the ϕg-OTDR was reported as gg = g/N [37], where g is the number of samples
per gauge length for standard ϕ-OTDR [42]. The spatial resolution of ϕg-OTDR was lower
because ϕg is measured per beat period using Equation (1). However, now, by taking a
moving summation, Equation (1), the spatial resolution of ϕg-OTDR becomes equal to that
of standard ϕ-OTDR [42]. In other words, the number of samples covered in one gauge
length for both systems is now equal and equal to g. In the present study, this value is
g = 25.

A pulse repetition frequency of 500 Hz is employed to interrogate a 10 km FUT,
implying the maximum detectable signal frequencies up to 250 Hz. The frequencies
of interest that surface waves exhibit lie well below this limit, in the order of tens of
Hz [1,45]. The proposed pulse repetition frequency is therefore optimal considering the
data acquisition and processing load. A computer program written in Python (v. 3.10) for
the calculation of geometric phases and further details of the hardware are available in the
Supplementary File S1. Further details about the choice of system parameters are discussed
in Section 5.

3. Experimental Data

Figure 2 shows a satellite image of the blast test site. The circular sandy patch, marked
by a star (blue), is where the explosives were buried underground. The ϕg-OTDR setup
described above was placed in a server room which is represented by a triangle (orange)
pointing to the beginning of the FUT, to which it is connected. The FUT is represented by a
line (red), and was laid out in the vicinity of the test site. It is a standard telecommunication
FUT which was laid in the late 1990s at a depth of approximately 1.25 m. One can assume it
is a loose tube cable with a gel/oil filling without any special armour or rodent protection.
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It has a diameter of approximately 30 mm and is not further protected by extra pipes.
The layout of the FUT comprises an eastern and a western section or loop. The 6 km
eastern loop forms a partial L-shape around the test site, with a one-way length of 3 km.
The western loop is 4 km long with a one-way length of 2 km. The two sections/loops are
connected in the server room to create a 10 km link. The test setup is connected first to the
west-side link, which then connects to the longer one on the east-side.

Figure 2. Satellite image of blast test site where the fiber-under-test (FUT) is represented by a line
(red), the location of the blasts by a star (blue) and the ϕg-OTDR test setup by a triangle (orange)
pointing to the beginning of the FUT to which it is connected.

Figure 3 displays the test site blast signals recorded by the entire 10 km of the optical
fiber link. A pair of blasts, utilizing approximately 25 kg of explosive material buried
underground, was recorded in a period of 2 min. Figure 3a shows a distance–time contour
plot of the resulting strain data at roughly 30 and 60 s. The blast signal was recorded a
total of 4 times through the 10 km link. At a fiber distance of around 2.5 km, relatively
poor coupling between the fiber cable and the ground is noted. This is due to the cable
being buried in a sandy patch around this location. The strain data obtained from ϕg-
OTDR are a function of both the intensity and the polarisation state of the probe signal
with reference to the LO [36]. To remove the dependence of the strain data on intensity,
the mean of the time series of strain at each spatial point was subtracted from them and the
resulting data were subjected to fifth-order Butterworth high-pass filtering with a cutoff
above 0.1 Hz. The frequencies of interest are not anticipated to fall below this range [1,45];
however, the primary function of this filtering is to remove DC components from strain
data. However, some traces of change with intensity in the shape of vertical lines along the
time-axis can still be seen.

The horizontal bands along the distance axis following the blast signals represent
ground vibrations following the blast. Figure 3b represents the spectrum of the strain
data obtained through a one-dimensional Fourier transform along the time axis for each
measurement position. Most of the power is concentrated in the lower frequency bands
between 0 and 5 Hz.

To analyse the dispersion characteristics of surface waves, we choose a single blast
at 30 s that has been recorded by the first 2 km of the FUT, shown in Figure 4a. This was
executed because the signal is the strongest in the beginning of the FUT. The two blasts can
be stacked one on top the other in the time domain to enhance the SNR; however, this may
mix the surface waves from the two blasts. Alternatively, the four instances of the first blast
along the spatial dimension may be stacked. However, such a scheme did not lead to any
improvement in the SNR. Moreover, due to the varied coupling conditions that the FUT
encounters, the blast signal looks different in the four sections of the fiber. Therefore, we
chose only the first instance of the first blast to isolate the surface waves it produces. No
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improvement is offered by stacking in either the spatial or time domain. Figure 4b shows
the power spectral density (PSD) of the time series of strain in nϵ at 1 km, marked by a
vertical line (green) in Figure 4a. They are broad-spectrum data distributed along a noise
floor of approximately −18 dB with reference to 1 nϵ. An SNR of around 25 dB with respect
to the noise floor can be observed at low frequencies between 1.5 and 4 Hz.

Figure 3. (a) Distance–time contour plot of strain data from ϕg-OTDR and its (b) spectrum.

25 dB
noise floor

Figure 4. (a) Distance–time contour plot of a section of strain data from ϕg-OTDR used for dispersion
analysis; (b) power spectral density (PSD) of a time series of strain at a fiber distance of 1 km (marked
by a vertical green line in (a)), where the vertical red line indicates the signal-to-noise ratio (SNR) and
the horizontal dotted line indicates the noise floor.

4. Analysis and Results
4.1. Dispersion Image Extraction

As surface waves propagate along the Earth’s surface, the substructure of the Earth
causes different frequency components to travel at different speeds, causing dispersion.
A common method of calculating a dispersion image involves cross-correlating the time
series of strain from all the sensors with respect to a single source, giving us the Green’s
function [46] for that source. The sensors then perceive the waves to be emanating from
this source (which is accordingly called a virtual source). Cross-correlation is followed by
slant stacking [47] to obtain a dispersion image. An optimisation of this method, known
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as the fast dispersion method, was recently reported [40]. This optimisation is based on
isolating repetitive calculations and performing them only once. This implies that the
Green’s function of each virtual source is not required to be calculated individually; rather,
a parameter termed sigma is calculated once for the whole data-set. The dispersion image
for a given virtual source can then be extracted by using the time series of strain at a
given spatial location and sigma. We use this method to compute dispersion images,
considering its computational efficiency and sharper results [40]. Surface waves are further
divided into Rayleigh waves with elliptical motion and Love waves that move horizontally
perpendicular to the direction of propagation. The method we follow targets the detection
of Rayleigh waves which are slower and last longer compared to Love waves [1,48].

Figure 5a shows the dispersion image of the strain data section shown in Figure 4a,
generated by the fast dispersion algorithm described above [40]. The fundamental mode of
the Rayleigh surface waves is detected at low frequencies of around 0.2 Hz with the virtual
source at a fiber distance of 0.34 km. The chosen virtual source location gives relatively
strong dispersion values compared with other points in the 2 km fiber section chosen for
this analysis. It may be that the Earth’s near surface changes drastically from one point
to the next; however, in our study, the differences in the mode shapes and dispersion
values at various points along the chosen fiber section are overall not so drastic. The phase
velocity goes up to approximately 490 m/s. A dispersion curve, marked by white stars, is
obtained by following the fundamental mode along the phase velocity and frequency axis.
The values obtained were interpolated to obtain uniform samples along the frequency axis
and processed further for extracting shear wave velocities.

Figure 5. (a) Dispersion image; (b) fundamental mode of Rayleigh wave where white-colored stars
indicate the dispersion curve.
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4.2. Dispersion Curve Inversion

Dispersion curve inversion is a process in which subsurface layer thicknesses and shear
wave velocities, Vs, of the surface waves for every layer are determined, given a specific
dispersion curve. Vs is directly related to the shear and elastic modulus of the material and
may then be used to determine the material properties of the Earth’s layers [1]. Accurate
estimation of subsurface features is challenging, as more than one solution may fit the
curve or the algorithm may converge to a local maximum/minimum. Several algorithms
have been devised accordingly, including full-waveform inversion and Bayesian inversion
using the Markov Chain Monte Carlo algorithm, respectively [45]. Genetic or evolutionary
algorithms have also been used, where the principle of ’multiply, vary, let the fittest survive’
is applied to generate an initial set of models, from which the ones that fit best to the
dispersion curve survive in successive iterations [41].

For inversion of dispersion curves, we used an evolutionary algorithm known as com-
petitive particle swarm optimisation (CPSO), which is available as an open-source Python
package, evodvinv [41,49]. It is based on the evolutionary patterns of swarms, whereas
the optimisation offered by CPSO avoids local minima/maxima by adding competition
between the models [41]. An initial model of the Earth’s surface, given in Table 1, was used
as input to the algorithm. The algorithm serves to refine this model to fit with the frequency
versus phase velocity values extracted from the dispersion image. The model consists of
four layers with varying thicknesses and shear wave velocity values. A population size of
50 was used with 1000 iterations.

Table 1. Initial model of the Earth’s sub-surface [45].

Layer No. Min. Thickness
(m)

Max. Thickness
(m)

Min. Velocity
(m/s)

Max. Velocity
(m/s)

1 10 60 250 700
2 30 100 300 900
3 30 100 400 1000
4 50 100 600 1200
5 50 100 900 1600

Figure 6a shows the results of dispersion curve inversion. Overall, the Vs at shallow
depths of a few meters is 0.2 km/s, but increases gradually to over 1.5 km/s at the maximum
penetrated depth of 130 m. The increase in Vs with depth may be attributed to hardening
of soil with depth. Figure 6b shows the misfit values, which represent the error in fitting
the curve to the model. Misfit values should be as low as possible, with 1% considered low
enough [45]. For our results, these values remain close to 1%, showing a close fit.

Figure 6. (a) Depth vs. shear wave velocity, Vs, profile obtained from inversion of the dispersion
curve, (b) misfit values corresponding to (a).
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5. Discussion

In the experimental setup described in Section 2, an optical shutter is used for pulse
carving, while an AOM is used in the LO only to shift the frequency. An AOM can be
used instead of an optical shutter in the probe branch for both pulse carving and frequency
shifting. The proposed scheme is chosen due to the very short rise-and-fall time of 1 ns of
the optical shutter and the driver circuitry used with it, the details of which are given in the
Supplementary File S1. In practice, the rise-and-fall times are limited by the electrical signal
generator to 2.9 ns. The high switching speed of the optical shutter enables the setup to
effectively reach its theoretical spatial resolution. In the present study, the spatial resolution
is 5 m, as a 50 ns pulse train is used for interrogating the FUT. The overall rise-and-fall time
of around 6 ns does not significantly lower the theoretical spatial resolution of the system.
The minimum gauge length is the same as the spatial resolution of the system, but it can
be increased in post-processing, similar to coherent heterodyne-based ϕ-OTDR that uses
dynamic phases [42].

The maximum measurement range of the proposed setup has not been determined
experimentally; however, we can infer the following: the calculation of geometric phase
relies on the measurement of the beat signal, as is the case for ϕ-OTDR based on coherent
heterodyne detection. However, in addition, we also need to directly detect the backscatter
intensity. Therefore, the range of the proposed system may be theoretically limited by the
successful direct detection of backscatter intensity or of the beat signal’s amplitude. More-
over, distributed amplification or the use of repeaters inside the FUT may also influence
the measurement range.

The cable installation depth is roughly the same as that of the explosives buried
underground. The effect of cable depth relative to the signal source has not been determined.
However, it is noted that cable directivity, that may indirectly be related to the cable depth
relative to the source, does play a role when DAS is employed for seismic sensing [50].
The effect of directivity is also not explored in the current study. The Rayleigh waves
that are to be detected are elliptical and therefore possess both vertical and horizontal
dimensions as they propagate across the Earth’s near-surface [1]. Thus, a relatively uniform
directivity is assumed across the length of the 2 km fiber section in both vertical and
horizontal dimensions.

Finally, the increase in spatial resolution of the system is a theoretical principle whose
effects can be seen directly in the strain data shown in Figures 3a and 4a and indirectly in
the dispersion images shown in Figure 5. However, the higher spatial resolution is relative
to the study presented in [37], where the same setup was tested in a lab environment
but with a relatively lower spatial resolution. The system’s immunity to polarisation
mismatch fading and phase unwrapping errors was also demonstrated in the latter study.
The current work focusses on successful detection of Rayleigh surface waves with minimal
data cleaning required due to the absence of spikes and fades that result from the absence
of polarisation mismatch fading and unwrapping errors in a ϕg-OTDR system.

6. Conclusions

We firstly optimise the proposed DAS setup in terms of its spatial resolution based
on coherent heterodyne detection utilizing a geometric phase and then demonstrate its
feasibility for subsurface characterisation. We perform a dispersion analysis of the surface
waves that have been generated by test site blasts and detected by a 10 km dark fiber link
using the proposed setup, ϕg-OTDR. The fundamental mode of Rayleigh surface waves is
detected at a frequency of around 0.2 Hz with phase velocities between 150 and 500 m/s.
The shear wave velocities of the Rayleigh surface waves are between 0.2 and 1.5 km/s,
gradually increasing with depth and penetrating up to 130 m. The shear wave velocities
can be used to determine the material composition of Earth’s layers, thus characterising
the subsurface. The strain data from ϕg-OTDR are free from polarisation mismatch fades,
unwrapping errors and associated spikes, and therefore require minimal post-processing.
Real-time seismic monitoring may benefit from the reduced data processing time. The given
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method can be used for earthquake monitoring and associated disaster response planning,
as the speed of waves generated by earthquakes also depends on the subsurface structure.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s24010030/s1, Supplementary File S1: A python code for calculation of
geometric phases and details of the hardware used in the experimental setup.
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The following abbreviations are used in this manuscript:

AOM Acousto-optic Modulator
BPD Balanced Photodetector
Cir. Circulator
CPSO Competitive Particle Swarm Optimisation
DAS Distributed Acoustic Sensing
EDFA Erbium Doped Fiber Amplifier
FUT Fiber-under-Test
LO Local Oscillator
OTDR Optical Time-Domain Reflectometry
PSD Power Spectral Density
RBS Rayleigh Backscatter
SNR Signal-to-Noise Ratio
SOP State of Polarization
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