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Abstract: Tracking human operators working in the vicinity of collaborative robots can improve
the design of safety architecture, ergonomics, and the execution of assembly tasks in a human–
robot collaboration scenario. Three commercial spatial computation kits were used along with their
Software Development Kits that provide various real-time functionalities to track human poses.
The paper explored the possibility of combining the capabilities of different hardware systems and
software frameworks that may lead to better performance and accuracy in detecting the human pose
in collaborative robotic applications. This study assessed their performance in two different human
poses at six depth levels, comparing the raw data and noise-reducing filtered data. In addition, a
laser measurement device was employed as a ground truth indicator, together with the average Root
Mean Square Error as an error metric. The obtained results were analysed and compared in terms
of positional accuracy and repeatability, indicating the dependence of the sensors’ performance on
the tracking distance. A Kalman-based filter was applied to fuse the human skeleton data and then
to reconstruct the operator’s poses considering their performance in different distance zones. The
results indicated that at a distance less than 3 m, Microsoft Azure Kinect demonstrated better tracking
performance, followed by Intel RealSense D455 and Stereolabs ZED2, while at ranges higher than
3 m, ZED2 had superior tracking performance.

Keywords: vision sensors; markerless tracking; collaborative robotics; data-fusion; human-tracking

1. Introduction

Industry 4.0 principles have been evolving in parallel with working environments
that encapsulate human skills (e.g., cognition, decision making) and capabilities of robotic
systems (e.g., dexterity, robustness, accuracy). Industry 4.0 technologies are on the advert of
becoming an integral part of the current manufacturing ecosystem [1]. This causes multiple
concerns about safety, ergonomics, and task optimisation [2], rendering the modelling
of humans and their activities a critical aspect to be considered. Towards this direction,
the utilisation of multiple sensors skeleton and Internet of Things (IoT) technologies, has
gained popularity within manufacturing environments for various applications. The
collection, transfer, and exchange of data from IoT devices via communication networks
enable real-time interaction and cooperation among physical objects [3]. A series of virtual
simulation-based solutions have been proposed, such as Digital Twin (DT), Cyber-Physical
Systems (CPSs), and Digital Human Modelling (DHM), paving the way for fully digitising
industrial shop floors [4–6].

The safety of operators within collaborative workspaces where they may share tasks
with robots [7] is of paramount importance [8]. The design of these human–robot appli-
cations can be rendered more efficient with the utilisation of vision systems [9] as their
technology enables the constant tracking and monitoring of human operators’ joints and the
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adaptive human–robot cooperation and interaction [10]. Typically, vision-based tracking
solutions are widely categorised into marker-based and markerless. While marker-based
tracking attains high accuracy, its increased cost, rigorous preparation requirements, and
complexity have restricted its applicability [11]. On the other hand, markerless depth
sensors with skeleton tracking capabilities have become increasingly popular due to their
portability, generic applicability, and affordable cost [12]. These sensors exhibit Human
Activity Recognition capabilities, by tracking the human pose and changes occurring in the
environment and are applied to diverse research applications. However, Human Activity
Recognition still remains a challenging area of research in computer vision [13].

Nevertheless, before considering vision systems as a viable option to operate in con-
junction with or in lieu of ISO-certified sensor devices, such as safety camera systems,
laser scanners, and proximity sensors [14], rigorous testing scenarios and methods are
required to investigate their efficiency. The main goal would be to allow vision-based
human tracking technologies to complement and work synergistically with built-in safety
sensors that commercially available collaborative robots carry in order to overcome un-
foreseen circumstances to carry out complex tasks for instance shown in Ref. [15]. The
identification or monitoring of specific safety features is required in industrial applications
as per ISO/TS 15066 [16]. The specific standard provides a series of safety guidelines
depending on the level of interaction and can be used complementarily to other ISO guide-
lines associated with robotic processes, such as ISO 10218-1:2011 [17], ISO 10218-2:2011 [18],
and ISO 13855 [19,20]. Yet, it should be noted that the maturity and readiness of vision sys-
tems in industrial environments are still under review, since in some specific scenarios the
detection of an operator may be prevented due to occlusions [21,22]. In these cases, using
various types of sensors in conjunction with sensor fusion algorithms has been reported as
a method to improve the overall perception of the process of human pose estimation for
collaborative robotic applications [23].

In the present study, the main focus is placed on applications where understanding
the complete body pose is crucial for effective human-robot cooperation. Three widely
used vision sensors with high-depth accuracy were applied to detect human skeleton
joints in two different poses, i.e., Azure Kinect (AK), Stereolabs ZED2, and Inter RealSense
D455. Instead of detecting the pose of a perfectly planar object [24], the benchmarking
in the present study involved the tracking of a human skeleton, aiming to investigate
the performance of the sensors in a collaborative workspace in terms of accuracy and
repeatability. The study estimates the coordinates of an operator’s joints at various depth
levels from the cameras and compares them with the ground truth, calculating the average
RMSE of the depth data. Furthermore, the position of the pelvis joint is tracked (being the
parent joint of the skeleton data) to find its accuracy and RMSE with respect to the global
frame. In addition, the RMSE of the position of the operator’s wrist is tracked to provide the
error estimation with respect to the same global frame of reference. Finally, Kalman-based
filtering is applied to fuse the data from the vision sensors at distinct collaborative zones
assigned based on the analysed RMSE result. The authors also proposed a feasible control
strategy of human motion tracking for Human Robot Collaboration (HRC) applications in
a collaborative workspace.

2. State of the Art Review

This section presents recent publications that use human tracking systems based on
vision sensors in collaborative environments. In most cases, the robot was fixed, and
the human operator worked in proximity to complete independent tasks or interact with
it. However, applications involving collaborative mobile robot and dual-arm mobile
robots [25] exhibited a significantly increased complexity of the tracking strategy using
vision systems due to occlusion, and various other hindrances.

A widespread application of such systems is ensuring that there is no collision between
the end effector and a human or object and, to a lesser extent, between a human or
object and the other joints of the robot. Bonci et al. [26] presented a proof of concept,



Sensors 2024, 24, 578 3 of 27

dealing with the human-obstacle collision avoidance involving a collaborative fixed-base
manipulator, utilising an Acusense RGB-D (Red Green Blue-Depth) camera. The collision
avoidance strategy depended on the distance between the fixed robot and the operator.
For short distances, it relied on the data collected from the depth sensor, while for longer
distances (out of the range of the depth sensor) on the processing of the RGB frames
using a You Only Look Once (YOLO)-based Convolutional Neural Network (CNN). Their
proposed methodology claimed to reduce the amount of processed data while enhancing
the operator’s safety. Scimmi et al. [27] approached the same problem using two Kinect v2
RGB-D cameras to acquire the position of the operator and avoid problems related to the
occlusions of the sensors. Each camera extracted 25 joints of a human skeleton. The data
collected from the two sets of coordinates were fused using a fusion algorithm developed to
obtain the optimal skeleton poses. It was found that the proposed strategy could effectively
alter the planned trajectory and prevent human–robot collisions in two case studies. Chen
and Song [28] also used two Kinect V2 RGB-D cameras to develop a collision-free motion
planning algorithm applied to a robotic arm. Initially, the acquired depth images were
used to generate point cloud segmented objects, which were subsequently merged into a
single cloud using a K-Nearest Neighbour (KNN) algorithm, aiming to identify the closest
point from an obstacle to the robot. Moreover, a Kalman filter was applied in the process
of estimating the obstacle motion parameters (velocity, position). It was found that the
robotic manipulator managed to avoid collision with an obstacle and preserve the desired
trajectory of the effector while following the proposed control design during a Cartesian
hexagon task. Furthermore, Pupa et al. [29] applied an effective two-layered strategy for
trajectory planning and velocity scaling in a six-DoF manipulator, aiming to enhance a
safe HRC. The first layer planned dynamically the initial nominal trajectory, examined its
feasibility at maximum velocity, and amended it based on human tracking information
captured by six OptiTrack Prime cameras. The second layer adjusted the robot velocity
to ensure that its limits adhered to ISO safety constraints. The system architecture was
validated experimentally in two scenarios: when the operator hinders the motion or path
of the robot and when the two agents are in proximity.

Several researchers have also investigated the use of cameras in conjunction with other
sensors to implement dynamic obstacle avoidance strategies. For instance, Gatesichapakorn
et al. [30] combined a laser localisation sensor with an RGB-D camera to navigate an
autonomous mobile robot. The generation of the static map was implemented in the
Robot Operating System (ROS) using a 2D laser-based Simultaneous Localisation and
Mapping (SLAM) package. The experimentation in an indoor public space demonstrated
the ability of the robot to adapt its motion to the appearance of a human obstacle and
subsequently recover its trajectory. Another system that enabled the operation of an
anthropomorphic robot through multiple sensors was proposed by Cherubini et al. [31]
aiming to implement smart logistic tasks transporting automotive parts. It involved one
RGB-D and four RGB cameras, two laser scanners, two force sensors, ten tactile sensors,
and two stereo vision sensors where the individual tasks, including the target detection
and obstacle mapping, were performed by different sensors. The robotic system was
significantly accurate in recognising hand gestures, and therefore the authors proposed a
real-time programming strategy based on sign language for intuitive robot control. It should
be considered though that the use of such a high number of sensors increased the cost of
the infrastructure significantly. Gradolewski et al. [32] presented a real-time safety system
that proposes actions to a collaborative robot based on human detection and localisation.
An HD vision camera was used for motion detection, together with an ultrasound sensor
for proximity estimation. These devices, along with the controller, constituted the detection
unit. Moreover, the authors estimated and compared three machine learning algorithms in
terms of detection efficiency and maximum latency, concluding that YOLO outperformed
Histogram of Oriented Gradients (HOGs) and Viola-Jones.

The improvement of the computational capabilities of Graphical Processing Unit
(GPU) technology has significantly facilitated the integration of parallel computation into
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motion planning algorithms over the last years. Cefalo et al. [33] proposed an algorithm
for collision detection to solve a Task-Constrained Motion planning problem [34], and
applied it to a robotic arm. The proposed algorithm utilised two real-time images that
presented the obstacle mapping (real depth image) and the future robot configuration
(virtual depth image) obtained from a Kinect camera and the robot CAD model, respectively.
The possibility of the collision scenario was processed in parallel by comparing the two
images. Tölgyessy et al. [35] evaluated the Azure Kinect with its predecessors, namely,
Kinect V1 and Kinect V2, focusing on precision and noise generation. Their study reported
that the performance indicators of Azure Kinect lie within the range indicated in the official
documentation. The study concluded that the Azure Kinect may not be suitable for outdoor
applications due to limitations of the time-of-flight technology and requires a warm-up
time of at least 40–50 min to give stable results.

Human pose detection with vision sensors is another key feature towards the enhance-
ment of HRC activities. Johnson et al. utilised a vision-inertial-based fusion algorithm to
initialise and calibrate a forward kinematic model of an arm, which tracks the position and
orientation of the arm: the combination of using vision- and IMU-based sensors overcomes
the drifts thereby improving the accuracy of tracking the pose of the human arm [36].
Similarly, a visual-inertial sensor-based approach with three sensor modules with each
module comprising IMU and ArUco marker attached to three parts of the body mainly,
to the trunk, upper arm, and forearm provides a simpler solution for the assessment of
movement during robot-assisted training; the ArUco marker, which can be captured by
the camera and the driftless orientation of the modules is computed via the visual-inertial
sensor fusion algorithm [37]. An HRI framework using a vision-based system together with
a three-axis accelerometer, trained on activity classification with a library of 22 gestures
and six behaviours, demonstrated a 95% success in the recognition of gesture and 97% in
the recognition of behaviour. The intelligent system integrates static and dynamic gestures
using ANN and hidden Markov models [38]. Furthermore, a similar approach applied
to a case study involving online robot teleoperation to assemble pins in car doors has
been demonstrated [39]. An activity recognition strategy using Gaussian mixed HMM,
using Microsoft Kinect, was able to detect the human activity with a recall accuracy of
84% with previously seen models and 78% with unseen models [40]. Also, Hernández
et al. [41] compared the estimation of shoulder and elbow angles as captured by a webcam
in rehabilitation exercises using markerless pose estimators from two CNN frameworks,
OpenPose and Detectron2. The data collected from two Kinect V2 RGB-D cameras were
fused to generate the ground truth for the upper body joint. OpenPose was found to
identify the angles of the limbs more accurately than Detectron2 in all different scenarios.
The tracking of the human body orientation with depth cameras, namely, Kinect V2, Azure
Kinect, and ZED2i, for the detection of socially occupied space while interacting with
people was investigated by Sosa-León et al. [42]. Related approaches that identify the
orientation of human body poses may be used in cases of Human–Robot Collaboration
for real-time decision making and path planning to carry out tasks. Similarly, De Feudis
et al. [43] assessed four different vision systems for hand tool pose estimation: ArUco,
OpenPose, Azure Kinect Body Tracking, and YOLO network were used with HTC Vive
as a benchmarking system. Further, in a study presented in [44], Azure Kinect and Intel
RealSense D435i were compared where the Intel RealSense was reported to show poorer
performance in the estimation after 2 m, while the Azure Kinect performed better. Further-
more, the study reported that the depth accuracy of Azure Kinect largely depends on the
emissivity of the object, while the RealSense remained unaffected.

The experimentation involved three different motion scenarios of a human opera-
tor handling a cordless drill with its mandrel considered as the point of interest to be
tracked [43]. The mean square point-to-point distance (D.RMS) and the multivariate R2

were used as the accuracy evaluation criteria. The authors found that the Azure Kinect
Body Tracking attained the overall lowest performance, being particularly inaccurate to
track the right- and left-hand joints. On the other hand, ArUco generated the most accurate
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results with the lowest standard deviation of D.RMS for all three scenarios. Similarly,
another study [45] uses RGB data for task predictions within a collaborative workspace
to manage an assembly process, which is validated by a demonstrator used to assemble a
mechanical component. On evaluating four different frameworks, namely, Faster R-CNN,
ResNet-50, and ResNet-101, YOLOv2 and YOLOv3, the YOLOv3 framework performed
the best with an average mean performance of 72.26% when completing the assembly task.

3. Models and Methods

This paper proposes a new approach for comparing the performance of different vision
systems, while taking advantage of the diverse capabilities of the associated hardware and
software components, thus leading to the better human pose detection.

3.1. Experimental Setup

The skeleton pose detection was carried out using three depth-based vision sensors:
Azure Kinect, Stereolabs ZED2, and Intel RealSense D455. Their key features are extensively
presented in Table 1. The sensors were connected to a desktop computer with Intel i7-11th
Gen 8 Core processor, 32 GB RAM, and 8 GB NVIDIA RTX 3070 graphic card. Each sensor
uses a different depth-sensing technology. More specifically, AK utilises time of flight,
i.e., emits and detects backscattered modulated light, translating the phase difference into
depth distance for each pixel [46]. ZED2 uses a Convolutional Neural Network (CNN)
algorithm for stereo matching [47], while Intel RealSense 455 [48] interprets the scene by
comparing images acquired from two known and slightly different positions.

Table 1. Comparison of the depth sensor specifications.

Azure Kinect ZED2 RealSense D455

Released date June 2019 October 2020 October 2020

Price EUR 370 EUR 463 EUR 432

Depth sensing technology Time of flight Neural Stereo Depth Sensing Stereoscopic

Body tracking SDK Azure Kinect Body
Tracking SDK ZED Body tracking SDK OpenPose v1.7.0 Framework

Field of view (depth image) NFOV unbinned
75◦ × 65◦ 110◦ × 70◦ 87◦ × 58◦

Specified measuring distance NFOV unbinned
0.5–3.86 m 0.3–20 m 0.6–6 m

The markerless approach for skeleton tracking is primarily based on CNN approaches.
Firstly, in the case of Azure Kinect, the Infrared Sensor (IR) data are fed into a Neural
Network, which extracts a silhouette of users and 2D joint coordinates. Combining 2D joint
pixel values with the depth data provides the 3D joint information of the skeleton joints [49].
Secondly, the ZED2 body tracking SDK uses neural networks to detect keypoints or the
skeleton joints, which are combined with the depth and positional tracking provided by the
SDK of ZED2 to obtain a 3D pose estimate of the persons in the scene. Finally, OpenPose,
a popular pose estimation model [50] coupled with the Intel Realsense D455, is used to
detect keypoints or parts to identify the human joints. Therefore, three sensors that are
capable of skeleton-based tracking as well as of providing human key points [51–53] in 3D
are used in this study.

A 2D pose estimation uses multi-stage CNN to predict Part Affinity Fields (PAFs)
and confidence maps. The 2D joint pose estimation is converted into 3D information
using depth data, if available [54]. The body tracking SDKs of Azure and ZED2 provide
information about the individual joint positions and orientations, while in the case of the
OpenPose framework [54] used in conjunction with the Intel D455, the skeleton information
comprises exclusively 3D joint positions. Depending on the number of keypoints (joints)
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required, BODY_25 or COCO format could be chosen as the output of the OpenPose
framework [55]. BODY_25 was preferred in this study as it attained faster detection by
approximately 30% and higher accuracy by 3% compared to COCO [56]. In the case of
the other two vision sensors, the default outputs of the SDK’s skeleton joint data were
retained for the study. The authors individually compared the performances of the three
body-tracking SDKs for the evaluation of the pose accuracy at different depths from the
camera in order to find a suitable device that has the potential to be used in collaborative
mobile robotic applications.

The options that the three depth cameras offer in terms of colour and depth resolution
are presented in Table 2, along with the modes used in the current study. The experi-
ments were performed within the ROS framework using the respective drivers of each
sensor [57–59]. The joints information was acquired in the ROS network at a frequency of
18.5, 12, and 18 Hz for AK, ZED2, and Intel D455, respectively. In the case of AK, the NFOV
(Narrow Field of View) mode with a range of 0.5–3.86 m was chosen for comparison with
other vision sensors as NFOV covers more depth compared to WFOV (Wide Field of View)
and attains superior pixel overlap as indicated by the manufacturer [60]. Furthermore,
Tölgyessy et al. [9] tested various modes of AK body tracking SDK and reported that the
data acquired using NFOV data were more stable than the WFOV mode. The resolution
parameters selected for ZED2 and Intel D455 were based on the available computation
power of the desktop computer and the requirement for the simultaneous operation of the
three vision systems [61].

Table 2. The colour and depth resolution of the cameras used in the experiments.

Azure Kinect ZED2 Intel RealSense D455

SDK Version 1.1.0 3.7.1 v2.50.0

Colour resolution 640 × 576 @ 30 fps 720p @ 30 fps 640 × 480 @ 30 fps

Depth resolution/mode NFOV unbinned
640 × 576 @ 30 fps Ultra 640 × 480 @ 30 fps

The experiments were carried out in a confined laboratory environment (7.8 × 3.4 ×
4.5 m3) under physical lighting conditions involving natural sunlight and artificial roof
light (Figure 1a). The various distance levels from the cameras (i.e., 1.5, 2.0, 3.0, 4.0, 5.0,
6.0 m) were marked on the reference line using a Bosch Laser Measure device (BLM) with
±1.5 mm (0.0015 m) accuracy to guide the operator. Moreover, two poles with a height of
1.274 m (Figure 1b) were placed on both sides of the reference line, serving as a guide for
pose estimation involving the wrist joint.

The three cameras and the BLM were clamped on a desk camera mount, as seen in
(Figure 2a), ensuring that they were aligned to the XY plane. The data were acquired with
respect to the global frame (Reference Frame), as shown in Figure 2b. According to the ROS
conventions, the coordinate frames X, Y, and Z were represented in red, green, and blue,
respectively. The global frame from RViz (visualisation tool in ROS) with the individual
coordinates of Azure, Intel D455, and the ZED2 camera is shown in Figure 2b. The position
of the coordinate frames of the cameras was measured using the BLM and was configured
in the ROS launch files of each vision sensor to ensure the setup is similar in the real and
the virtual world, i.e., by measuring the offset from the Reference Frame to AK, AK to Intel,
and AK to ZED2.

After the initialisation of the cameras, the operator moved on each marked point,
standing with the hands down (Figure 3, Pose A) and subsequently repeated the same
with the wrist on top of the pole (Figure 3, Pose B). Next, the BLM device (Figure 2a) is
connected to a smartphone via Bluetooth to estimate the distance between the camera and
the operator (ground truth) and calculate the RMSE values.
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Figure 1. (a) Panoramic view of the laboratory with markings of discreet interval for estimating the
pose of the operator at various depths, (b) the poles used for the pose estimation.

Figure 2. (a) Setup of the vision sensors on the desk camera mount, (b) the global reference frame
and the frames of the vision sensors as depicted in RViz.

Figure 3. Experimental setup and procedure implemented to capture the poses of the operator at
different depths.



Sensors 2024, 24, 578 8 of 27

Then, the cameras started to provide the skeleton joint coordinates published as ROS
messages. Overall, 50 samples were collected for each camera, pose, and distance level.

The sequence of data collection was carried out as follows:

1. The vision sensor initialised, and the operator moved to the floor marker.
2. The operator recorded the ground truth depth using the BLM device.
3. The operator moved to Pose A, and the camera started to record the data. First,

50 samples of joint coordinates were collected (XYZ) from each device with respect to
the global frame of reference.

4. The process was repeated for Pose B.

3.2. Skeleton Tracking Information

The skeleton joints available for tracking are shown in Figure 4, along with the corre-
sponding names reported in Table 3 based on the documentation of the respective SDKs.
Overall, AK, ZED2, and OpenPose provide skeleton data for 32, 34, and 25 joints, respec-
tively. The joints that pertain to the eyes, ears, nose, the tip of the thumbs, and toes were
not considered in the evaluation process as they do not affect or contribute to the operator’s
pose (see Table 3).

Figure 4. The skeleton joints with joint numbers shown in Table 3 below that can be tracked by
(a) Azure Kinect, (b) ZED2, (c) Intel D455.

Initially, the datatype acquired from the SDKs via the ROS drivers of AK, ZED2, and
Intel D455 was analysed. It was noted that the data of joints belonged to two different types,
i.e., MarkerArray in the case of AK and List in the case of ZED2 and Intel D455. Therefore,
it was processed and published as TF frames, as shown in Figure 5, for the calculation of
translation (X, Y, Z) and rotation (quaternion or roll, pitch, and yaw) of various joints with
respect to the reference frame (Figure 2b). Each of the joints used for evaluation in this
study is shown in Figure 6.

At a distance of 1.5 m, the Intel D455 camera could capture only the upper body joints
(pelvis included) (Table 1) due to the restricted field of view of the captured image data.
However, in the case of AK and ZED2, the body tracking algorithm could predict the
position of the lower joints of the operator and provide information with low accuracy.
Furthermore, as the operator moved further away from the cameras (>1.5 m), the joints
below the pelvis were also visible.

Apart from tracking the overall skeleton, particular focus was given to the tracking
accuracy of the pelvis and wrist (right and left) joints. The reason is that the pelvis is the
first parent joint of the skeleton pose; therefore, its accuracy and stability are critical. In
addition, the tracking stability of the wrist joints is important, especially in the case of
extension of the limbs (e.g., Pose B), and should be primarily considered when the HRC’s
effectiveness is assessed.
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Table 3. The skeleton joints are tracked from various cameras.

Joint No. Azure Kinect ZED2 Intel RealSense D455

0 Pelvis ′,′′ Pelvis Nose *
1 Spine Naval Naval Spine Neck
2 Spine Chest Chest Spine Right Shoulder ′,′′

3 Neck Neck Right Elbow ′,′′

4 Clavicle Left Left Clavicle Right Wrist ′,′′

5 Shoulder Left ′,′′ Left Shoulder Left Shoulder ′,′′

6 Elbow Left ′,′′ Left Elbow Left Elbow ′,′′

7 Wrist Left ′,′′ Left wrist Left Wrist ′,′′

8 Hand Left Left Hand Mid Hip (Pelvis) ′,′′

9 Handtip Left Left Handtip Right Hip ′,′′

10 Thumb Left * Left Thumb * Right Knee ′′

11 Clavicle Right Right Clavicle Right Ankle ′′

12 Shoulder Right ′,′′ Right Shoulder Left Hip ′,′′

13 Elbow Right ′,′′ Right Elbow Left Knee ′′

14 Wrist Right ′,′′ Right Wrist Left Ankle ′′

15 Hand Right Right Hand Right Eye
16 Handtip Right Right Handtip Left Eye
17 Thumb Right * Right Thumb * Right Ear
18 Hip Left ′,′′ Left Hip Left Ear
19 Knee Left ′′ Left Knee Left Big Toe
20 Ankle Left ′′ Left Ankle Left Small Toe *
21 Foot Left ′′ Left Foot Left Heel ′′

22 Hip Right ′,′′ Right Hip Right Big Toe
23 Knee Right ′′ Right Knee Right Small Toe *
24 Ankle Right ′′ Right Ankle Right Heel ′′

25 Foot Right ′′ Right Foot Background *
26 Head Head -
27 Nose * Nose * -
28 Eye Left * Left Eye * -
29 Ear Left * Left Ear * -
30 Eye Right * Right Eye * -
31 Ear Right * Right Ear * -
32 - Left Heel * -
33 - Right Heel * -

′ Common joints in Zone 1 fused using Kalman filter; ′′ common joints in Zone 2 fused using Kalman filter; * joints
excluded from the overall experiment as they do not affect the skeleton pose.

Figure 5. Transformation frames (TFs) of individual joints information in Rviz from vision sensor.
(a) Azure Kinect, (b) Intel D455, (c) ZED2.
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Figure 6. Illustration of the joints used for the evaluation of the three cameras.

3.3. Preliminary Test—Evaluation of Raw Data

After the camera setup, a preliminary procedure was devised to test the raw data.
It was observed that during the tracking of joints in RViz, as the operator moved away
from the camera, the skeleton gradually levitated from the ground in the case of AK (see
Figure 7).

Figure 7. (a) Relation between the height (Z) and depth (Y) of pelvis joint, (b) corresponding skeleton
joint data from each camera at a distance level of 3 m (plot view−upper elevated angle).
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To investigate this further, additional tests were performed with the pelvis joint
being tracked while the operator was moving along the reference line, starting from a
distance of 1.5 m. In this way, the height (Z)–depth (Y) plot was defined (Figure 7a) with a
noticeable slope to be observed exclusively in the case of AK. The skeleton poses are shown
indicatively in Figure 7b for a distance level of 3 m. It can be observed that the skeleton
coordinates acquired by AK are higher than the respective ZED2 and Intel D455.

The corresponding slope was analytically estimated at −0.110417. As a result, the
final height (Z′) obtained by the AK coordinated data was calculated based on the real-time
values of Z and Y as updated within the published TF data using Equation (1):

Z′ = Z − slope × Y (1)

In addition, a moving average filter with a window size of 30 data was applied to the
real-time data to minimise the noise. The obtained results are shown in Figure 8a, where
the slope of Azure Kinect is significantly reduced, while the respective skeleton poses are
shown in Figure 8b, with the pelvis joint of AK closely aligned with the pelvis joints of the
other vision sensors.

Figure 8. (a) Relation between the height (Z) and depth (Y) of the pelvis joint after the slope
compensation, (b) corresponding skeleton joint data from each camera at a distance level of 3 m.

4. Results and Discussion

This section assesses the accuracy of the depth (Y) estimation for the three cameras
resulting from the tracked skeleton joint and evaluates their performance while capturing
the two poses at various depths (distance levels from the camera). Two data sets are
presented: (i) the raw skeleton data from the cameras in Section 4.1 and (ii) the filtered
data (after applying the moving average filter) in Section 4.2. In both cases, the AK slope
was compensated to minimise the levitation from the ground, as previously explained
(Section 3.3). For the further evaluation of Pose B, the left and right wrists were selected
as the common joints of all three cameras (see Table 3, joint numbers: Azure Kinect: 7, 14,
ZED2: 7, 14, and Intel D455: 4, 7).

4.1. Accuracy Estimation of the Raw Data
4.1.1. Evaluation of the Depth Accuracy

The average RMSE values of the operator’s depth (Y) in Pose A for 50 iterations are
shown in Figure 9a, while Figure 10a presents the results for the operator in Pose B.
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Figure 9. The unfiltered joint data of the three vision sensors capturing the human skeleton in Pose
A: (a) average RMSE values of unfiltered joint data with a 3D skeleton at different depths, (b) the
tracked skeleton joints of the operator at the various depth values.

Figure 10. The unfiltered joint data of the three vision sensors capturing the human skeleton in Pose
B: (a) average RMSE values of unfiltered joint data with a 3D skeleton at different depths, (b) the
tracked skeleton joints of the operator at the various depth values.

The box plots showed that the AK body tracking attained the lowest RMSE, followed
by Intel D455 and ZED2 (Figures 9a and 10a). This increase in the average RMSE may
be due to the inverse relationship between the disparity-depth pixel information [62].
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Furthermore, the perspective foreshortening effect may have affected the accuracy of the
skeleton poses in the case of stereo cameras [63–65]. Moreover, as the operator moved
further away from the camera, the AK and Intel D455 joint data became unstable, and the
deviation of the acquired skeletons from the original poses became significant at distances
higher than 4 m (Figures 9b and 10b). On the other hand, in the case of ZED2, the acquired
skeleton was relatively consistent for both poses and all distance levels.

4.1.2. Overall Performance of the Skeleton Pose Estimation—Pose A and Pose B

The tracking of the overall skeleton joints obtained from the three sensors is depicted
in Figure 11.

Figure 11. Evaluation of RMSE of pelvis joint data in Poses A and B with deviation of pelvis joint
along the depth axis from the vision sensors in the range from 1.5 m to 6.0 m.
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In Figure 11, as obtained from all vision sensors, it was noted that the overall skeleton
poses of the operator presented gradual deviation along the X-axis with respect to the
global frame, as indicated by the red rectangle on the pelvis joint. This trend was obtained
for Pose A (Figure 11a–f) and Pose B (Figure 11g–l).

In the case of ZED2 and for both poses, the X-RMSE reduced as the operator moved
away from the camera, as depicted in Figure 12 indicatively for Pose A. More specifically,
the RMSE of the unfiltered pelvis joint data from AK and Intel D455 was lower than ZED2
by approximately 43% and 74%, respectively, at depth ranges of less than 2.5 m. However,
at higher depths (>3 m), ZED2 demonstrated superior tracking performance in this distance
range especially considering the tendency of AK and Intel D455 to deform the tracked
skeleton significantly (Figures 9 and 10).

Figure 12. RMSE of the unfiltered pelvis joint position along the X-axis for the three vision sensors in
Pose A.

4.1.3. Pose Accuracy Estimation by Tracking Wrist Joint—Pose B

Following the evaluation of the overall skeleton of the operator in Poses A and B,
an additional evaluation was performed to estimate the position of the wrist joint using
the poles as fixed objects, i.e., with known positions with respect to the reference line.
As a result, the RMSE of the Y and Z for the discrete distance levels is presented in
Figures 13 and 14 for the left and right wrist, respectively.

Overall, an increase in the average RMSE of the wrist joint was observed as the
operator–sensor distance increased. The deterioration of the tracking accuracy of the limbs
with the tracking distance has also been confirmed by Romeo et al. [66] who reported
that the acquired data of AK that pertained to the limbs (wrist, hands) were less accurate
compared to the data of the upper body joints such as the pelvis, chest, and neck.

As the vision sensors utilise similar AI-based body tracking approaches to train
their data, the results of ZED2 and Intel D455 resemble AK data. Training AI-based pose
estimation neural networks with synthetic data in realistic conditions accounting for various
extrinsic factors, image disparity, occlusion, and foreshortening may improve the overall
accuracy of pose estimation.
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Figure 13. RMSE of left wrist joint of the operator in Pose B. (a) Y-axis (depth) data, (b) Z-axis
(height) data.

Figure 14. RMSE of right wrist joint of the operator in Pose B. (a) Y-axis data, (b) Z-axis data.

4.2. Accuracy Estimation of the Filtered Data

This section shows the results of the second data set, filtered in real time using a
moving average filter to minimise noise, jitter, and outliers.

4.2.1. Evaluation of the Depth Accuracy

The average RMSE values of the operator’s depth (Y) in Poses A and B after data
filtering are presented in Figures 15a and 16a. Figures 15b and 16b present the overall
posture of the skeleton in the two poses. In general, RMSE follows the same trend with
the unfiltered data, i.e., increases as the camera–operator distance increases. Moreover, the
filter had an overall positive effect on the capturing of Pose B in the case of Intel D455 and
a negative in the case of AK, especially at longer distances. ZED2 had consistent skeleton
tracking in most cases.
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Figure 15. The filtered joint data of the three vision sensors capturing the human skeleton in Pose A:
(a) average RMSE values of unfiltered joint data with 3D skeleton at different depths, (b) the tracked
skeleton joints of the operator at the various depth values.

Figure 16. The filtered joint data of the three vision sensors capturing the human skeleton in Pose B:
(a) average RMSE values of unfiltered joint data with 3D skeleton at different depths, (b) the tracked
skeleton joints of the operator at the various depth values.
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4.2.2. Overall Performance of the Skeleton Pose Estimation—Pose A and Pose B

The 3D plots of the overall skeleton poses are presented in Figure 17.

Figure 17. Evaluation of RMSE of pelvis joint in Poses A and B with deviation of pelvis data along
the depth axis from vision sensors in the range from 1.5 m to 6.0 m.
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It can be deduced that the operator’s pose shifts gradually toward the positive X as it
moves further away from the camera, similar to the results of unfiltered pelvis joint data as
presented in Figure 11. Nevertheless, in the case of filtered data, the skeleton shift appears
to take place more gradually. This effect may occur due to the minor standard deviation in
the filtered data explained in the following section, which compares the raw and filtered
data results.

The X-RMSE curve of the pelvis joints (Pose A) for Intel D455 was higher than AK
and ZED2 (see Figure 18). Therefore, it can be stated that applying a real-time filter to Intel
D455 data did not contribute to the reduction in its X-RSME values, while it lowered the
error in the case of AK (see also Figure 12). Also, beyond 4 m, the tracking of the pelvis
joint became unstable in the case of AK and Intel D455. In the case of AK, this may happen
due to the limitations of the hardware’s tracking capabilities. The significant increase in
the filtered X-RMSE of Intel D455 may have been caused due to an external disturbance
that pertains to the extrinsic conditions of the laboratory, leading to poor accuracy. For
instance, certain settings of the Intel D455 camera were not modified, e.g., the exposure was
set to auto mode. However, this does not impact the tracked depth but affects the quality
of the output image [67]. Furthermore, since OpenPose is primarily a 2D pose estimation
algorithm, which uses colour images, this may have impacted the X-RMSE value.

Figure 18. RMSE of the filtered pelvis joint position along the X-axis for the three vision sensors in
Pose A.

4.2.3. Pose Accuracy Estimation by Tracking Wrist Joint—Pose B

The RMSE of the operator’s left and right wrist joints after the data filtering is shown
in Figures 19 and 20, respectively. The application of a low pass filter, such as a moving
average filter, reduced the error of the wrist joints with respect to the Y- and Z-axis by
lowering the random noises that affect the acquired data in the case of AK and ZED2.
However, in the case of Intel D455, the overall RMSE is much higher than AK and ZED2,
which indicates a minor effect of the applied filter, which extrinsic factors may cause during
the tests. In addition, the postprocessing filter, namely, the temporal filter, was applied to
the RealSense data configured in the camera’s ROS initialisation file. Therefore, the extrinsic
factors and the postprocessing filter may have had no effect on reducing the overall RMSE
value in the case of Intel D455. However, fine tuning the postprocessing filters under
controlled light settings may reduce the RMSE error of the Intel D455 camera.
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Figure 19. RMSE of left wrist joint of the operator in Pose B (filtered). (a) Y-axis (depth) data,
(b) Z-axis (height) data.

Figure 20. RMSE of right wrist joint of the operator in Pose B (filtered). (a) Y-axis (depth) data,
(b) Z-axis (height) data.

4.3. Unfiltered vs. Filtered Data

This section presents a comparison of the raw and filtered data. For example, the X and
Y values of the operator’s pelvis joint at a depth of 3 m are presented in Figure 21, before
and after applying a filter. The significance of its application is indicated by the conversion
of the raw (noisy) data curve to a smooth (filtered) curve in the case of all vision sensors.

Figure 21. Differences in filtered and unfiltered data of pelvis joint at 3 m: (a) X-axis data, (b) Y-axis data.

The authors also estimated the percent error (δ) of the depth (Y) at all distance levels
in Pose A. The obtained results are reported in Figure 22. For Intel D455 and ZED2, δ was
estimated at less than 2% at 4 m (Figure 22a), indicating its compliance with the respective
values reported by the product specification [68,69]. In the case of ZED2, at short distances,
the estimated δ was slightly higher than the one reported by the manufacturer.
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Figure 22. (a) Absolute percent error (δ) of average depth measurement of joints in Pose A, (b) stan-
dard deviation (σ) of the average depth data of skeleton joints in Pose A.

Although data filtering has slightly increased the RMSE in the estimation of overall
poses, its application in HRC scenarios may be preferable due to the resulting reduction in
the Standard Deviation (σ) (Figure 22b).

The average RMSE values of the overall joint depth data of the operator in Poses A
and B are depicted in Figure 23.

Figure 23. Average RMSE of joint depth values of two poses before and after applying moving
average filter. (a) Pose A, (b) Pose B.

Similarly, the average Z-RMSE values of the wrist joints before and after filtering are
shown in Figure 24. In this case, as the operator–camera distance increased, there was an
increase in the overall average RSME data. The applied filter significantly improved the
AK data compared to the rest of the output of the sensor, followed by ZED2.

Figure 24. Average RMSE of joint height values of the wrist data before and after applying moving
average filter. (a) Left wrist, (b) right wrist.
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4.4. Data Fusion in the Collaborative Zones

Based on the results obtained from the assessment of the performance of the cameras,
the authors defined three collaborative zones and proposed a Kalman-based sensor fusion
approach to combine the joint data and reconstruct the skeleton pose of the operator. The
proposed approach was tested with the operator in Pose A.

4.4.1. Classification of Collaborative Zones and Sensor Fusion

The design of collaborative zones aimed to minimise the error of the joints and facilitate
a safer HRC. Therefore, they were classified as Zone I (1.5 m to 2.0 m), Zone 2 (2.0 to 3.5),
and Zone 3 (3.5 m and beyond), depending on the distance from the vision sensors, as
presented in Figure 25. These limitations were defined considering the capabilities of the
vision sensors as reported by the manufacturers (see also Table 1).

Figure 25. (a) Classification of zones for HRC tasks using multiple vision-based tracking systems,
(b) example of fused output—Zone 1 at 1.8 m.

In Zones 1 and 2 (Figure 25a), 23 joints were available to reconstruct the skeleton
pose using the data obtained from both AK and Intel D455, as they demonstrated a better
performance in depths of this range (see Figures 9 and 15). The common joints (indicated in
brown) were fused using a Kalman filter, while the rest (shown in blue in Figure 25) were
used as obtained from the AK. In Zone 3, ZED2 was explicitly used to track the skeleton
pose (shown in red in Figure 25) due to its capability to track accurately at far distances, as
explained in Sections 4.1 and 4.2.

4.4.2. Pose Accuracy Estimation of Fused Data in the Collaborative Zone

This section provides the box plot of the results after the Kalman-based fusion of
joints in the collaborative workspace. Figure 26a illustrates the average RMSE of the joint
data derived from AK and Intel D455 and the RMSE of nine fused joints in Zone 1, which
appears to be the lowest. The fused average RMSE of the joint depth values was estimated at
0.0389 m, with AK and Intel D455 values at 0.0472 m and 0.0649 m, respectively. Figure 26b
shows the skeleton pose of the operator at approximately 1.826 m from the camera with
AK, Intel D455, and fused joints to be depicted in blue, black, and brown, respectively.
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Figure 26. (a) RMSE of fused joint depth values in Zone 1 with the corresponding skeleton pose from
AK (blue), Intel (black), and combined skeleton (brown), (b) fused and reconstructed skeleton joints.

Similarly, Figure 27 illustrates the RMSE of the skeleton joints in Zone 2 with 15 joint
data fused in the case of Pose A. The common joints were analytically listed in Table 3.

Figure 27. (a) RMSE of fused joint depth values in Zone 2 with the corresponding skeleton pose from
AK (blue), Intel (black), and combined skeleton (brown), (b) fused and reconstructed skeleton joints.

At a distance of 2.699 m (Zone 2), the average RMSE values from AK and Intel D455
were 0.0784 m and 0.1078 m, respectively, while the RMSE corresponding to the fused joints
was 0.08721 m (see Figure 27). This increase in the error of the fused joints may be caused
due to extrinsic conditions. However, with further tuning of the sensors’ parameters, such
as exposure, resolution, and noise filtering, as well as with the application of available
postprocessing techniques, this error may be further reduced.
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5. Conclusions

This study aimed to determine the accuracy of skeleton pose estimation at various
depths using three different commercial vision systems and frameworks of skeleton pose
tracking. One of the goals of the study was to compare various spatial computation kits,
which differ in terms of hardware devices and associated software frameworks for tracking
human operators. The comparison focused on evaluating the devices and frameworks
leading in terms of human operator pose accuracy.

Based on the obtained results, the performance of the sensors from highest to lowest
(in the order depth tracking: closer to far distance range) was assessed as follows: AK, Intel
D455, and ZED2. The initial evaluation of the raw pelvis data demonstrated that AK data
showed a linear levitation trend in height (Z) of the skeleton pose as the operator–camera
distance increased. An analytical approach was used to minimise this slope. The obtained
results showed that as the operator–camera distance increases, the skeleton pose gradually
transitions with respect to the global frame. This phenomenon may affect safety and may
be crucial in HRC applications. The deployment of multi-vision-based tracking systems
can contribute to the minimisation of such an error.

Comparing the depth accuracy of raw and filtered data, it can be inferred that at a
range shorter than 3 m, the AK and Intel D455 demonstrated better performance than
ZED2, with the latter providing better tracking results beyond this range. However, at a
distance approximately higher than 3.5 m, the tracking of AK becomes unstable due to
the constraints of the NFOV mode, which has an operating range of 3.86 m. Therefore,
when it comes to detecting entire skeleton poses beyond the range of 3.5 m, it is safer to
utilise ZED2 to track entire human body poses and use bounding boxes. Further, with
the additional functional tracking features, such as the velocity of the human operators,
provided by the SDK of ZED2, this information can be easily used for collaborative mobile
robotic applications for long-range tracking in shopfloor environments.

The tracking accuracy relies on various extrinsic parameters, such as the lighting
conditions, the colour of the dress or jackets worn by the operator, the background colour,
the resolution of the cameras, and the available computational power. Also, more variable
parameters of the vision sensor are involved when multiple sensors are present in a scene.
In addition, installing different SDKs and dependencies packages can be tedious and may
lead to longer building time and runtime errors. Hence, extra attention should be given
while performing these tasks involving different configurations of CMake flags, CUDA,
and cuDNN versions. Furthermore, as more operators may be present in the scene, the
computer requires more processing power to detect the operators’ skeleton joints without
compromising the FPS rate.

Finally, developing such sophisticated algorithms utilises different software libraries
(open source or commercially licensed), software packages, tools, etc., that contain thou-
sands of lines of codes that have been independently tested. Hence, in the cases of de-
ployment of various spatial computation frameworks, a constant tracking of updates is
required in order to keep up to date with the latest features and functionalities provided by
the SDKs. For instance, Sterolabs (ZED2) provided more frequent software updates with
features and bug fixes, which in turn enhances the performance of the vision sensors.

When deployed, the capabilities of AI-based tracking of the human operator, on the
whole, may vary in each scenario; this can be a risk and one of the significant challenges
to consider when deploying similar tracking solutions, especially when compared against
more conventional, safety-certified solutions.

As AI markerless tracking demonstrates moderate results regarding accuracy, its use
on the workspace of a shop floor and its adoption by manufacturing companies is still
limited. Their deployment in HRC scenarios in conjunction with additional ISO-certified
safety sensors is still preferred in industry. Along with the skeleton tracking, additional
features of SDKs, such as the object detection module of ZED2 SDK, may be used to
determine the bounding box, the absolute velocity, and the operator’s position. The data
collected could be used in conjunction with a sensor data processing or fusion algorithm,
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such as the Kalman filter or the particle filter algorithm to localise the operator’s position
within a collaborative workplace. In addition, the position and velocity information could
be used to sync the movements of a collaborative mobile robot with the movement of a
human operator. As the pelvis is the parent joint that connects the rest of the skeleton
joints, additional work in this area could involve its marker-based tracking in order to
improve the overall skeleton accuracy. Future work includes the setup of a controlled
lighting condition with LED and testing the performance of the vision sensor under various
settings such as resolution, FPS, and brightness. Other classical or machine learning-based
methods of determining the position of the human body, including, for instance the use of
the pictorial structure framework approach or deep learning methods, could also be tested
and benchmarked in the future using diverse hardware or software configurations.
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