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Abstract: Human behaviour detection is relevant in many fields. During navigational tasks it is an
indicator for environmental conditions. Therefore, monitoring people while they move along the
street network provides insights on the environment. This is especially true for motorcyclists, who
have to observe aspects such as road surface conditions or traffic very careful. We thus performed
an experiment to check whether IMU data is sufficient to classify motorcyclist behaviour as a data
source for later spatial and temporal analysis. The classification was done using XGBoost and proved
successful for four out of originally five different types of behaviour. A classification accuracy of
approximately 80% was achieved. Only overtake manoeuvrers were not identified reliably.
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1. Introduction

Human behaviour recognition has been a research topic for decades. Behaviour
recognition requires a method to monitor the person of interest. This is often done by
observation, either directly by observers or by using cameras [1,2]. However, other sensors
have been adopted as well, e.g., Global Navigation Satellite Systems (GNSS) [3] or inertial
sensors [4–6]. The use of videos provides a lot of information but requires cameras covering
the whole area of interest. Such infrastructure can be installed inside a building or even
covering (at least parts of) a city, but this is challenging for an entire country. Additionally,
there is a potential privacy problems with using videos [7]. Cameras also have an advan-
tage. The monitored person does not need to carry devices, e.g., a smartphone, because
cameras are already installed. Khan et al. [7] attempted to overcome the problems of videos
by using the interaction between human bodies and signals from WiFi networks to detect
activities. In general, a large variety of sensors can be used to monitor human behaviour,
but the optimal choice in terms of efficiency, legality, and economy depends on the appli-
cation scenario. However, there is also a large variety of algorithms that can be applied.
Fayad et al. [8], for example, published an extensive lists of Kinect-based fall detection
approaches. Eye-trackers have also been investigated to monitor human behaviour, e.g., in
the context of personnel selection for pilots and air traffic controllers [9]. However, there
are only a few approaches that do not rely on dense infrastructure or sensors carried by the
monitored person or restricting the geographic area of observation.

The geographic area of observation is essential when dealing with human behaviour
recognition in the field of navigation. Navigation is a standard problem in everyday life
and thus there is a vast amount of scientific literature on the topic. Questions range from
geometrical modelling of road networks to computing optimal paths [10–12] and across
various modes of transportation such as pedestrians [13], bicyclists [14], car drivers [15],
or public transportation users [16]. However, each of these questions relies on data and
their quality determines the quality of the service. Some types of data such as geometry
are easy to determine, others such as driving restrictions have to be derived from legal
norms, and some such as the tarmac quality can only be determined by visual inspection.
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The computation of an optimal path or the navigational support requires knowledge on
the goal of the navigation. An optimal path for a tourist differs from the optimal path of a
commuter even in the case of identical start and end point. Thus, context is relevant in the
field of navigation. It can be determined by observing and classifying human behaviour.
Tourists move differently than computers, or people on a shopping trip. Even familiarity
with the environment has an impact on the behaviour. Alinaghi et al. [17], for example,
showed that head movement is an indication of spatial familiarity, which has an impact on
suitable routes and information demand [18].

Therefore, merging human behaviour assessment with research of navigation is rel-
evant to improve navigation systems and to adapt them to a larger variety of situations.
However, the limitations connected to the area of observation restrict the sensors used
in navigation. Vehicle navigation is typically is easier to solve because sensors such as
GNSS receivers, Inertial Measurement Units (IMUs), or wheel rotations sensors are already
built into the vehicle or can be easily attached. However, most of the systems used in
vehicles assess the movement of the vehicle only and ignore the human behaviour. An
Anti-lock Braking System (ABS), for example, only releases the break in case of a locked
wheel. Other systems have to deal with more complex dynamics. A motorcycle rider airbag
uses IMUs to activate the airbag. Early tests used an IMU on both the motorcycle and the
motorcyclist [19]. However, this study uses a simplified setup because it is track-based,
i.e., the motorcyclists are racers and the situation is race-like. A few years later, wearable
motorcyclist airbags were available for road usage as well and they only used sensors in
the airbag vest. Still, all these systems have a similar service limitation: They are intended
to identify a single situation, where the body of the motorcyclist is in danger of hitting
the ground. Assessing the intention and thus the behaviour of the motorcyclist is more
complex but it would also provide more information than a simple system such as an ABS.
Because the human behaviour is affected by environmental factors information on the road
condition, the visibility, or the traffic situation, can be derived from it.

As already stated, behaviour of navigating persons should be potentially monitored
on all roads all the time. This also applies for the assessment of motorcyclist behaviour.
Cameras will not cover all urban and rural roads. Therefore, sensors that the motorcyclist
carries or sensors that are already attached to the motorcycle should be used as data sources.
Typical sensors carried by humans include mobile phones. Modern phones support GNSS
positioning and are frequently used to navigate. GNSS has, for example, already been used
to cluster bend-taking practices of motorcyclists [20]. However, urban canyons or forest
areas restrict the quality of positioning and the method provides mainly information on
the roads used and the speed of travel. This is sufficient to distinguish between modes of
transportation (walking, cycling, and riding a motorcycle) or to identify vehicle stops [21],
but analysis beyond that is challenging. Thus, sensors on the motorcycle should be used but
not all available sensors are equally well-suited. Shahverdy et al. [22] used driving signals
such as acceleration, throttle, speed, and Revolutions Per Minute (RPM) to recognize the
state of car drivers (including the categories aggressive, distracted, and drunk). These
driving signals might be misleading for motorcycles due to the drive-by-wire approach.
Throttle input by the motorcyclist, for example, might be adapted by the engine electronics
due to other sensor readings and system settings. Thus, this paper focuses on sensors
that observe the movement of the motorcycle itself since they should be less affected
by corrections. Modern motorcycles do have an ABS and many of them even have a
cornering ABS. The latter one includes the lean angle in the assessment of the adequate
response. Other support systems, such as the anti-spin system for the rear wheel or the
wheelie control, need additional information, e.g., lateral acceleration or pitch and the
height difference between the front and back wheel. Therefore, these motorcycles have a
built-in IMU. Maceira et al. [23], for example, use such a sensor to estimate the roll angle of
a motorcycle. However, the sensor can also provide more data for behaviour assessment.

Humans adapt their behaviour in response to the environment. Heavy rain, for
example, often changes the behaviour of pedestrians. They may walk faster, select other



Sensors 2024, 24, 1042 3 of 17

paths, or simply keep more space to other pedestrians because the umbrellas need space.
The same is true for motorcyclists because the water on the road poses a potential hazard
that they must consider. However, there are more aspects that are relevant, such as road
quality, traffic density, motorcyclist training, or trip purpose. This paper analyses if an
assessment of the motorcyclist behaviour is possible such that in a follow-up step the data
can be used to collect information on current traffic situation and road status. To the best
knowledge of the authors, this issue has not been sufficiently addressed by previous works.

The contributions of the paper are manifold. Based on a set of different types of
motorcyclist behaviour, the paper covers the following:

• Define a process to collect and analyze IMU data;
• Show the quality of a model created with XGBoost to classify motorcyclist behaviour;
• Use feature importance analysis to identify the most relevant features for each type of

behaviour;
• Discuss application scenarios for such a classification.

The corresponding research questions are as follows:

• Are the differences between the various types of riding behaviour significant enough
to distinguish between them?

• Is it possible to train XGBoost to classify collected data?
• What accuracy can be achieved?

The advantage of a classification model purely based on an IMU is that once the built-
in IMU is accessible, the data can be collected directly at the motorcycle. No additional
hardware is required and therefore, the data could be collected by a large number of
motorcyclists. However, the design must also consider ethical concerns. It is essential that
data are only collected if the motorcyclist consents. In addition, only classified data and
no original IMU data should be provided. This has some advantages. In the context of
privacy, the classified data contain less information than the original data, which could, for
example, allow assessment of the driving speed. In the context of scalability, the amount of
data transferred to a central storage is reduced. In addition, the necessary computational
power is required on the vehicle and not on the storage facility. The last two aspects are
relevant if a large number of motorcyclists contribute data.

This work focuses on the behaviour of the motorcyclist, which is influenced by the
motorcyclist himself and external factors such as the traffic situation or road conditions.
It does not deal with the road safety of motorcycles. This would include aspects such as
speeding [24], visibility [25], and fatigue [26], and these topics have already been addressed
in literature. Yousif et al. [27] provide an overview and propose a framework to analyse
motorcycle accidents. This is in line with what was achieved 20 years ago [28], and only
some classes are missing, e.g., stunts (high-risk manoeuvrers).

The remainder of the article is structured as follows: Section 2 contains the set of
assumptions used for the experiment, the setup for data collection, and the procedure
for data analysis. Section 3 shows the results obtained. The discussion of these results is
documented in Section 4. A summary of the results and a discussion of open questions
concludes this work.

2. Materials and Methods
2.1. Assumptions of the Paper

Similar to cars, modern motorcycles do have a number of different sensors that are
attached to them. These sensors not only enable optimal combustion in the engine but also
avoid blocking of wheels during braking, ensure that both wheels have contact with the
road, or restrict wheel-spin during acceleration. These sensors observe, for example, the
rotation speed of both wheels and the acceleration of the motorcycle along the three axes,
i.e., modern motorcycles have a built-in IMU. To the authors’ knowledge, there is currently
no method to access the data stream of these sensors without losing the warranty for the
vehicle. The authors contacted the producer of the motorcycle used for the experiment.
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Although the producer recorded sensor data in the model development and testing phase,
the production motorcycles do not provide this possibility. Therefore, an external IMU was
attached to the motorcycle, and the data was recorded on a laptop computer.

2.2. Experimental Design and Workflow

The experiment consisted of several steps:

1. In the first step, the first author mounted an IMU and a camera on his motorcycle and
drove along a predefined route on 11 different days. IMU data were recorded on a
laptop and the camera recorded on an internal memory card. The synchronization
between IMU data and camera data was coarsely performed by filming the notebook
clock and fine-tuned by a set of motions after mounting IMU and camera on the
motorcycle. The motions were sharp rolls of the standing motorcycle to the left and
right, which could easily be identified in the video as well as in the IMU data;

2. The video was classified manually according to the selected types of behaviour and
the time-codes of the mode changes were written in a text file;

3. The text file with time-codes was used to identify segments in the IMU data that
describe a specific behaviour;

4. The segments were split into equal intervals to get IMU sequences with equal infor-
mation content for the statistical parameter calculation;

5. The interval data were described by a set of statistical parameters (the features), which
were then inserted into XGBoost. A split of 70% and 30% was used for training and
validation and a 10-fold cross validation was used for the quality assessment;

6. SHAP was applied to identify the most important features.

Figure 1 shows the different steps graphically.

Figure 1. Workflow of the experiment.

The goal of this design is to collect data that allows to answer the question concerning
the potential of IMU data to identify the different types of behaviour and to provide
information on the quality of the evaluation. Variations of the weather condition were
minimized by the selection of test days based on the weather condition.
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2.3. Collection of Training Data Set

Two slightly different motorcycles were used:

• KTM Duke 790 in Summer/Fall 2021;
• KTM Duke 890 in Spring 2022.

The change of motorcycle was necessary due to theft and the Duke 790 (KTM Sport-
motorcycle GmbH, Mattighofen, Austria) was not in production at the time of replacement.
The technical specifications are almost identical (see Table 1). The main difference is the
slightly larger engine, resulting in more power and torque and slightly more weight. The
overall setup, however, is almost unchanged and thus the driving behaviour of both
motorcycles is identical.

Table 1. Technical specifications of the two motorcycles used for the experiment.

Duke 790 Duke 890

Power 105 BHP 115 BHP
Torque 86 n m 92 n m

Dry Weight 169 kg 175 kg
Wheelbase 1475 mm 1482 mm

The IMU used for the experiment was an XSENS MTi (Movella Inc, Henderson, NV,
USA) [29]. The IMU was attached to the fuel tank cap using hook-and-loop tape. The
data from the IMU was recorded on a Microsoft Surface Book 2 (Microsoft Corporation,
Redmond, WA, USA) using the software provided with the IMU. The computer was stored
in a backpack during the tests.

The route to collect the data is 93 km long (see Figure 2). The route consists of different
types of road: urban, rural primary roads, and rural secondary roads. Table 2 shows
the dates when the test rides took place, the motorcycle used, and the person riding the
motorcycle. The weather conditions on all days were sunny and the road surface was dry.
Temperatures were always above 25 °C.

'  OpenStreetMap (and) contributors, CC-BY-SA

0 5 102,5 Kilometers

Start

End

1

2

36

4

5

Route
Route

Route used twice

Figure 2. Route of the test rides: Start-1-2-3-4-5-6-3-4-1-End. Background: OpenStreetMap.
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Table 2. Data collection information.

Date Motorcycle Motorcyclist

3 May 2021 KTM Duke 790 Motorcyclist 1
16 May 2021 KTM Duke 790 Motorcyclist 1
4 June 2021 KTM Duke 790 Motorcyclist 1
6 June 2021 KTM Duke 790 Motorcyclist 1
15 July 2021 KTM Duke 790 Motorcyclist 1
20 July 2021 KTM Duke 790 Motorcyclist 1
19 May 2022 KTM Duke 890 Motorcyclist 1
20 May 2022 KTM Duke 890 Motorcyclist 1
4 June 2022 KTM Duke 890 Motorcyclist 1
5 June 2022 KTM Duke 890 Motorcyclist 2
6 June 2022 KTM Duke 890 Motorcyclist 1

Only two different motorcyclists of similar experience participated in the experiment
and two similar motorcycles were used. In addition, the total distance is approximately
1000 km. The sample is therefore quite small and homogeneous. This might weaken the
reliability of the experiment. However, the approach is still realistic because the raw data
should be processed on the motorcycle to prevent privacy issues. This would usually
prevent that too many different motorcyclists are involved in the classification process.

The data collection process was recorded with a front-mounted GoPro (see Figure 3).
These videos allowed for a visual inspection of the various situations along the route and
thus a manual classification of the collected data from the motorcyclist.

Figure 3. Snapshot from one of the videos.

2.4. Data Preparation for Further Analysis

The following attributes were collected with a sample frequency of 50 Hz during
the rides:

• PacketCounter;
• SampleTimeFine;
• Acc_X, Acc_Y, Acc_Z: Accelerations along the sensor/motorcycle axes;
• Gyr_X, Gyr_Y, Gyr_Z: Angular accelerations based on the sensor/motorcycle axes;
• Mag_X, Mag_Y, Mag_Z: Magnetic field values;
• VelInc_X, VelInc_Y, VelInc_Z: Incremental accelerations along the senor/motorcycle axes;
• OriInc_q0, OriInc_q1, OriInc_q2, OriInc_q3: Quaternion description of the incremental

rotations in the sensor/motorcycle coordinate system;
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• Roll, Pitch, Yaw: Euler angles of the sensor/motorcycle coordinate system in the
earth-fixed coordinate system;

• Motorcyclist: Name of the person moving the motorcycle.

A problem that can occur in the data is the interference between engine vibrations and
sampling frequency. The engine vibrations vary with the Rotations Per Minute (RPM) in
the range of approximately 1000 to 6000 RPM. We tried to minimize the effect by loosely
mounting the IMU to the motorcycle using a hook-and-loop fastener. Thus, the IMU moved
with the motorcycle but had some freedom to dampen vibrations.

The first task of the analysis is that the identification of relevant behaviour needs to
be identified. Optimal riding conditions in terms of weather, grip level, and traffic allow
motorcyclists to select the driving speed according to their personal preference. This can
be rather quick, which requires deceleration before corners and acceleration afterward, or
in a more relaxed driving speed with less or no acceleration or deceleration. The latter
style may also be relevant when the legal speed limit severely restricts driving speed. The
first style is labelled as “fun” in this work, the second one as “cruise”. However, external
factors such as the grip level or traffic can restrict the driving speed even further and can
affect the breaking behaviour, resulting in slower deceleration than usual. Situations, where
the motorcyclist is following cars, might require breaking manoeuvrers in corners or on
straight roads, a behaviour that is rather untypical for motorcyclists. This kind of behaviour
will occur not only in urban areas but also on rural and winding roads in case of traffic.
Similar to other traffic participants, motorcyclists have to stop at red traffic lights or at
intersections with stop signs. In the case of a stop sign, a long waiting time indicates dense
traffic. Finally, overtaking another vehicle is a frequent behaviour also related to traffic.
Our assumption is that different kinds of behaviour lead to different patterns in the IMU
data. The identified classes are the following:

• “fun”: This behaviour is characterized by strong acceleration and deceleration, large
lean angles, and a high frequency of change in all parameters. Typically, roads have a
large number of different bends, and this leads to frequent changes in lean angle and
driving speed;

• “cruise”: This behaviour is similar to “fun” but it is smoother. Deceleration, for example,
may be achieved by throttling back instead of applying the brakes, resulting in weaker
deceleration. Usually, the lean angles are also lower than in the behaviour “fun”.

• “traffic”: This behaviour is heavily affected by other vehicles. Therefore, deceleration
and acceleration do not necessarily correlate with corners. Strong deceleration might
be necessary on straight road segments or in the middle of a corner and in both cases,
this is a behaviour that motorcyclists typically try to avoid;

• “wait”: Waiting for a stop sign or a red traffic sign means that the motorcyclist main-
tains balance by putting at least one foot on the road. This stabilizes the motorcycle
and the lean angle variations will be quite small. Acceleration and deceleration will
be close to zero since no significant forward movement occurs;

• “overtake”: Overtakes constitute a series of movements. In right-hand traffic, the start
of the overtake requires leaning to the left followed by leaning to the right. Before,
during, or after this lateral offset of the driving path, the motorcyclist will accelerate
the motorcycle. At the end of the overtake, the lateral offset is undone by leaning
to the right followed by leaning to the left. Whether there is a deceleration or not
depends on the traffic situation.

Table 3 summarizes these properties. Although there will be some variation within
each of the behaviours, the differences between the classes were expected to be distinguish-
able by a machine learning algorithm.
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Table 3. Summary of sensor readings expected for different riding modes.

Mode Acceleration/Deceleration Lean Angle Lean Angle Changes

fun strong high frequent
cruise medium medium frequent
traffic soft to strong low to medium medium
wait almost zero almost zero almost none

overtake medium to strong small specific pattern

In order to prepare the raw data, the following statistical parameters were calculated
for each of the attributes: mean, median, standard deviation, maximum, and minimum.
This results in 96 features (5 different statistical parameters for each of the 19 attributes and
the result of the manual classification).

Each of these statistical parameters was calculated for a small slice of the IMU data.
The length of the slices was set to 10 s (sliding window and step size). The time was
determined based on the driving school rule that overtake manoeuvrers take 10 s. The use
of the 10 s also led to

• Enough data in each slice to calculate reasonable estimates for the statistical parameters;
• Equal size of the slices;
• A sufficient number of slices for the training.

In order to avoid mixed slices (e.g., 5 s “wait”, then 5 s “fun”), the data stream was
segmented manually using the video recordings. One problem that could not be eliminated
was the length of overtake manoeuvrers since they rarely took 10 s or more. Overall,
2150 slices of class “fun”, 3900 slices of class “cruise”, 3550 slices of class “traffic”, 550 slices
of class “wait”, and 100 slices of class “overtake” were produced.

2.5. Classification

We utilized the powerful gradient boosting technique to build predictive models,
which uses the strength of several weak learners (that is, trees) to produce a strong one. Our
implementation of this technique, XGBoost [30], is highly efficient and scalable, making
it an ideal choice for our purposes. We selected XGBoost due to our own experience
and experiences published by colleagues. Rehrl et al. [21], for example, reported that
XGBoost and Random Forests showed the best performance during the analysis of track
data. A comparison with other approaches was not performed in this study because the
focus is testing the applicability of the approach and not the optimization of the machine
learning methodology.

The data were split in 70/30 training and validation sets. We fine-tuned our models’
hyperparameters using a randomized search approach with 10-fold cross-validation. The
classification of the data was achieved using trained models, with mlogloss plotted to assess
for under- or overfitting (with negative log-likelihood serving as our scoring function).

To better understand the results of our models, we utilized the Tree SHapley Additive
exPlanations (SHAP) method to calculate the importance of each feature [31]. This approach
provides a more comprehensive interpretation of the results, allowing for greater insight
and understanding of the underlying data. This is the second task of the analysis.

3. Results

The first classification attempt resulted in an overall classification accuracy of 80.97%.
Figure 4 shows the confusion matrix and loss function of the classification. The loss
function (Figure 4b) shows a regular pattern, i.e., there is a slow but regular decrease of
the logarithmic loss both for the training and the test data. Thus, no problem of overfitting
occurred during training. The confusion matrix (Figure 4a) indicates that some classes are
identified with higher accuracy than others. The class “wait” has the highest accuracy with
92%. This might be due to the fact that it is the only class that does not involve movement.
The worst class is “overtake”, which is often confused with “fun”. Only 13% of the cases
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are correctly classified as overtake and 48% as “fun”. The reason might be that an overtake
requires a quick change of leaning angles and acceleration, something that is also associated
with “fun”. The presumed pattern mentioned in Table 3 was not sufficient to distinguish
between the two classes. Another problem might be the different interval lengths of the
data in class “fun” and in class “overtake”. Overtake manoeuvrers are usually finished
after a few seconds, but the interval for the classification was set to 10 s. Thus, the samples
in class “overtake” are shorter than in all other classes, and this might make it even more
difficult to identify overtake manoeuvrers.

(a) (b)

Figure 4. Confusion Matrix (a) and Loss (b) with negative log-likelihood as a scoring function for all
classes: Cruise (0), Traffic (1), Fun (2), Overtake (3), and Wait (4) using all available features.

In order to eliminate the problem of overtake manoeuvrers from the analysis, a second
classification attempt was performed where the class “overtake” was excluded. Figure 5a
shows the confusion matrix of the classification. The percentage of correctly classified data
for each class is slightly worse than in the previous case except for the class “fun”, which
was recognized slightly better than before. However, the overall accuracy increased to
81.56%. Again, the loss function showed a regular behaviour (see Figure 5b).

(a) (b)

Figure 5. Confusion Matrix (a) and Loss (b) with negative log-likelihood as a scoring function for the
classes Cruise (0), Traffic (1), Fun (2), and Wait (3) using all available features.

The SHAP feature importance (Figure 6) shows the effect of the different features in
the classification. However, explanations are necessary, which is why the different features
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are relevant. If no explanation can be found it might just be a pattern inherent in only the
training data and thus not representative for the class.

Figure 6. SHAP feature importance.

The easiest pattern to explain is class 3 “wait” (the purple bars). The most relevant
features are the standard deviation of the vertical acceleration and the standard deviation
of yaw. Since the motorcycle is not moving while waiting, it is reasonable that these
two values differ from the values for all other features:

• Vertical acceleration: While driving, the vertical acceleration will be influenced by the
elevation profile of the road height and by road bumps, e.g., from potholes. Thus,
the recorded vertical acceleration contains some variation. This is not the case while
standing. The only variation in the vertical acceleration might be a result of driver
movement and thus the standard deviation is much smaller during waiting than
during driving.

• Yaw: The orientation of the motorcycle (yaw) is determined by the position of the
wheels. As long as their position does not change, the orientation does not change
either. This is reflected in the IMU data if the sensor is attached to the body of the
motorcycle. This was the case in the experiment. The result will be different if the
sensor is attached to the front wheel, e.g., as a part of the braking system.

The blue bars represent the weight for assessment of class 2 “fun”. The most important
feature is the variation of roll, expressed by the standard deviation. Other important
aspects are the minimum roll angle and median q0 component of the quaternion. While the
first represents the maximum lean angle, the component of the quaternion is slightly more
difficult to explain. The quaternion describes the rotation in space not by the Euler angles
(roll, pitch, yaw), but by providing a rotation axis in 3D space and an angle to rotate around
this axis. q0 is this angle. Thus, the parameter describes how much the system is rotated
over time. The use of the median indicates that the time is relevant when no significant
change in the angles occur.

For “traffic” (the red bars) the variation of roll and the vertical component of the
magnetic field are most important. However, the variation in pitch is also relevant, reflecting
the sharp break manoeuvrers that can occur while driving in dense traffic. However, it is
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obvious that it requires a lot more different parameters to identify the class “traffic” than to
identify the classes “fun” or “wait”.

The class “cruise” (green bars) has no obviously important feature. Some features get
higher importance (e.g., Mag_z_std. VelInc_X_min, Acc_X_std, or Gyr_Z_min) than others
(e.g., OriInc_q0_median). However, the class seems to be described by the breadth of its
features rather than by a single aspect.

4. Discussion
4.1. Classification Results and Their Improvement

The experiment was initiated under the assumption that motorcyclist’s behaviour can
be identified by analysis of data from an IMU. We expected that the differences between the
five classes “cruise”, “traffic”, “fun”, “overtake”, and “wait” are large enough to separate
them. The results of this work suggest that this is feasible, allowing to utilize such models
to reveal the motorcyclists behaviour.

The experiment showed that there are classes that are easy to recognize and classes that
might be more difficult due to similarities in the driving behaviour, e.g., overtake and fun
exhibit similar behaviour (one could say that overtakes are also fun). Important differences
that occur on longer sections such as riding in traffic or having fun were detected with
an accuracy of 80%. This already allows specific classifications for trip segments. When
adding the position of the vehicle (which is always known through the navigation device),
the classification can be attached to a specific road segment or a part thereof. This provides
a spatial distribution of the collected classifications.

Obviously, the classification results depend on the road situation. In a country with
similar quality of road surface, the hyperparameters might be similar. However, in countries
with bumpy tarmac or primarily dirt roads, the hyperparameters might be completely
different. However, this does not stipulate a major restriction of the classification since only
few motorcyclists do extensive tours that could face dramatic differences. However, there is
a simple solution for even this case: Geofencing [32] could be used to stop the classification
if the motorcyclist leaves a specific area, e.g., by travelling from one continent to another.

The classification of the overtake manoeuvrers did not work as expected, as only
13% of these manoeuvrers were correctly identified. The problem might be the duration
of the event, which usually only takes 2–3 s whereas all other classes were segmented
into 10 s intervals. In general, short events might be much more difficult to detect than
long-lasting behaviour. This leads to the conclusion that other types of short events might
also be difficult to detect, e.g., the avoidance of oil-polluted patches or wet leaves on the
tarmac in a curve. A potential method to identify overtakes could be the correlation of
roll with the curvature of the road. An overtake manoeuvrer will not follow the changes
of curvature. On a straight road, for example, the described pattern will be independent
of the road. The same pattern in roll on a street segment that turns left, then right, and
then left again would indicate fun and not overtake. This, however, would require detailed
knowledge of the road geometry and accurate positioning.

Given enough observations by different motorcyclists at different times will allow
to assess, for example, the amount of traffic on a specific road segment or the quality of
the road surface. A winding road might be a good choice for riding, but if there is too
much traffic, the stress level increases due to the different driving mechanics of cars and
motorcycles. Some motorcyclists might be lucky and have no traffic, so their behaviour
will be classified as fun. However, most motorcyclists will be blocked by cars that they
cannot overtake on the winding road and thus their behaviour will be classified as traffic.
Thos is an indication of high traffic density if the second group is much larger than the
first one. The classification result might even indicate more than that. If there are ongoing
construction works, then traffic lights might stop vehicles temporarily and the speed limit
and road condition in the working area will lead to a different classification than suggested
by the pure geometry or traffic density information. The same happens for roads with a
low-grip surface, e.g., paving stone. However, the availability of positional information is a
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fundamental prerequisite for merging the classifications collected by different motorcyclists
and/or at a different time. This study only used IMU data. The positioning technique must
be adopted in a second step to connect the classification result to a specific segment of a
road network. The information could for example be delivered by a device containing a
GNSS sensor such as a smartphone or a navigation system. Only this step would allow for
statistical analysis of the results.

4.2. Potential Application Areas

What are the application scenarios for such a classification? The assessed behaviour is
connected to locomotion, which is a part of navigation. Thus, the general field of navigation
is a realistic application area. Navigation is an essential part of everyday life and many
services have been created to support it. Regardless of the implementation, the quality of
such a service depends on the quality of the underlying data. Geometrical data are collected
by governmental agencies, private parties, or in form of Volunteered Geographic Infor-
mation (VGI) [33] (for example, OpenStreetMap; www.openstreetmap.org). Additional
information includes restrictions such as one-way streets or weight limits and parameters
required for the assessment of routing costs. The restrictions are documented by traffic
signs, are easy to identify, and are typically valid for extended periods. The parameters
required to assess routing costs on the other hand can change rapidly, e.g., the actual
driving speed in a narrow road in a city centre (compare Ref. [34]).

Routing applications minimize the costs, typically expressed as travel distance or travel
time. However, any other parameter is possible if it can be derived from the attributes of
the underlying data. This works well for pedestrians, public transport users, bicyclists,
or car drivers. However, when trying to produce reasonable routes for motorcyclists, the
available data is insufficient because optimal routes depend on a combination of different
parameters such as the following: [35]

• Curviness of the route;
• Inclinations and declination along the route;
• Legal speed limit;
• Landscape around the route;
• Grip level;
• Traffic density, especially trucks.

Only the first two aspects can be derived directly from the geometry of the road and
the speed limit is usually part of the additional data.

Traffic density is an important feature also for other user groups. Traffic regulators
typically have a general idea on traffic density. Traditionally, they used direct observation,
either by human traffic counters or traffic counting infrastructure, or video cameras. The
widespread availability of smartphones would theoretically allow the use of these to
identify traffic jams but privacy laws typically restrict the methods significantly. Only
providers of used operating systems (mainly Google and Apple) have the amount of data
necessary to statistically identify traffic density. It is a based on the idea of floating car data,
which was already implemented using taxis [36]. A problem with taxis is that they mainly
drive in cities. Rural areas are therefore not covered. Motorcycles are used both within
cities and in rural areas. Thus, they would provide better spatial coverage. This would
help traffic regulators to analyse the traffic situation and work on measures to improve
the situation.

Traffic density is also relevant for motorcyclists because the majority of accidents and
especially of motorcycle accidents are collisions with other vehicles. The German umbrella
organization of insurance companies (Gesamtverband der Deutschen Versicherungswirtschaft
e.V., GDV) reports that 76% of the accidents in rural areas are collisions with vehicles such
as cars or trucks [37]. They analysed 2345 accidents with motorcycles in Germany before
2020. A total of 85% of the accidents (1988 accidents) included motorcyclists not riding
in a group. Additionally, 44% of these accidents (867 accidents) occurred in rural areas.
Table 4 shows the statistics and the numbers suggest that riding roads with little traffic
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creates safety for motorcyclists. However, monitoring traffic density is costly. Jain et al. [38]
list three methods to measure traffic density: In situ traffic detector technologies, image or
video processing, and finally, vehicular sensor networks (VSN), e.g., probe vehicles (PVs)
or floating cars (FCs). The first two require the installation of technical equipment and are
therefore only suitable for sensible points. The last can theoretically cover the entire road
network, but depends heavily on the distribution of contributing vehicles and only uses
the average driving speed to assess traffic density.

Table 4. Accidents and the type of collision associated with them.

Collision with Number of Accidents Relative Number of Accidents

Motorcycle 49 6%
Car or Truck 660 76%

Pedestrian or Cyclist 60 7%
Other 4 0%
None 94 11%

Sum 867 100%

Grip level is not available for all kinds of roads because it can change quickly, e.g.,
due to rain, construction work, falling leaves, dirt patches, etc. However, motorcyclists
continuously scan the surface and adapt their riding behaviour, and the differences can be
seen in data collected by a motorcycle-mounted IMU [39]. This topic is more relevant for
motorcycles than it is for four-wheeled vehicles because a single wheel exceeding the limit
of adhesion leads to critical a situation that can result in an accident. Although there are
technical systems that can help in such a situation, their potential impact is limited because
they can only control the breaking and the propulsion system but have no impact on lateral
forces that the friction between wheel and surface has to absorb. Thus, raising awareness
of the motorcyclist is an important safety feature.

The beneficiaries of such applications are many-fold. First and foremost, the motorcy-
clists will benefit because route planning can be improved. When selecting a route, priority
can be given to routes where most of the other motorcyclists showed the behaviour “fun”
and routes where “traffic” was most common can be circumvented. This increases the safety
for motorcyclists and reduces the stress that traffic usually causes. In addition, live updates
of collected behaviour along the route currently planned can warn motorcyclists of spots
where everybody slowed down significantly, maybe due to an oil spill. Traffic planners
and road maintenance organizations can also benefit. Their task is to find problems in the
traffic network. Traffic density and waiting times are indicators for planners that a specific
part of the network has a capacity problem. In addition, local problems such as the above-
mentioned oil spill could be relevant information for maintenance workers because they
can concentrate on identified spots with “unusual” motorcyclist behaviour. Finally, motor-
cycle vendors might also benefit because some companies have already started creating
their own smartphone apps that can use the dashboard of the motorcycle for navigational
instructions. Better route determination can be an argument for a specific brand.

4.3. Open Questions

There is still a lot of work to be done. The sample size is sufficient for machine
learning models but not sufficient for more elaborate deep learning approaches. This
could be difficult to achieve with the setup used in this work. Since large amounts of data
should be collected, an automated method is necessary to collect the IMU data and store
them in a central location. The motorcyclist community could contribute to this effort by
actively agreeing to provide the data. However, since almost no one owns an external
IMU, cooperation of motorcycle manufacturers is necessary to provide access to the data
stream of the onboard IMUs. In order to enable checks of the IMU data, videos would be
necessary, but presumably, not many motorcyclists would be willing to record and upload
videos of their motorcycle trips. A solution to provide limited test capabilities would be to
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add positional information. Whenever a navigational device is used, this information is
available. Thus, the data collection could be done through the navigation device, which
obviously needs to be capable of accessing the IMU data stream.

Not only the amount of data needs to be increased, but coverage of more types of
motorcycles and different motorcyclists is also necessary. A general model should be able
to cover more than just one motorcycle type. It is necessary to investigate whether such a
general model can classify with reasonable quality. It might be necessary to train different
models based on different motorcycle types and engine specifications because motorcycles
such as choppers, touring bikes, or sports bikes might require a different riding style, and
this could have an effect on the sensor data. The same is most likely true for the different
experiences of motorcyclists. Lean angles, for example, will increase with experience when
there is no restriction by dense traffic, and the IMU data should show this. In general, it
needs to be tested how much the results of novice motorcyclists or (semi-)professional
motorcyclists deviate from the results presented here.

A question to be further analysed is the data segmentation. In this paper, 10 s intervals
were used to segment the data. The reason was to avoid a high fragmentation of the results.
A road segment where the class “fun” would apply could have straight sections that could
be classified as “cruise” if the intervals are too short. A problem of this approach was the
identification of overtake manoeuvrers, which are usually much shorter than 10 s. Further
experiments are necessary to find a solution for this issue.

The same applies to the output of the IMU data. In this experiment, a data rate of
50 Hz was used. This is most likely too high not only because of the amount of data
collected, but also because there might be some engine-related noise in the data. Vibrations
from a high-revving engine might have an impact on the data. Variation of the sampling
frequency could indicate where the best balance between data size and quality of the
behaviour classification lies.

Another issue is the reduction of data channels. The IMU used in the experiment
provided a wide variety of values, each in a different channel. Specialized IMUs like those
in cornering anti-lock braking systems might not provide this wealth of data. This raises
the question, which channels can be eliminated without significant deterioration of the
classification quality.

One goal of the experiment was the identification of the motorcyclist’s behaviour.
Only some basic classes were used as a starting point. However, it would be useful to
identify unusual behaviour. If a number of experienced motorcyclists, for example, avoid
lean angles in the same corner, this behaviour might be affected by the condition of the
pavement in this specific place, for example, if there is an oil spill. Thus, unusual behaviour
with spatial and temporal correlation could indicate specific situations that could then be
communicated to other motorcyclists approaching the spot via their navigational device.
This could be a feature to improve motorcyclist safety. This could even be relevant for other
road users, such as car drivers or bicyclists. However, it needs to be tested first what kind
of situations could be identified and how accurate that would be.

Depending on the spatial resolution, even more safety-related applications would be
possible. Data could reveal that there is a security risk, for example, spilled oil in a corner
or an accident behind a corner. This information could be distributed via the navigation
device. However, this kind of service would require many motorcyclists to contribute
VGI in form of class data to a web-based platform with as little delay as possible. The
integration in a navigational device that can access the motorcycle’s IMU data would be a
plausible approach but this requires cooperation by at least the major motorcycle vendors.

5. Conclusions and Future Work

The experiment carried out aimed to observe the behaviour of motorcyclists. The
results show that some kinds of behaviour or some types of action are quite well identified.
The sample size is rather small and does not allow for deep learning approaches; however,
it is large enough to provide valuable results with XGBoost, the method chosen for the
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classification. Although the sample was collected using two different motorcycles, their
similar characteristics should result in a coherent sample. The research questions can be
answered as follows:

• Are the differences between the various types of riding behaviour significant enough
to distinguish between them? They are—partially. Overtake manoeuvrers are often
mixed with the class “fun”. A suggested solution for this problem is the combination
of IMU data and road geometry;

• Is it possible to train XGBoost to classify collected data? After excluding overtake
manoeuvrers the training was successful. The parameters used to identify a class that
can be logically explained;

• What accuracy can be achieved? The remaining classes were identified with good
quality (80%).

We also presented a list of open questions at the end of the discussion. The used
parameters such as interval length, sample rate, and behaviour classes should be analysed.
It should also be tested if the concept works with other motorcycles and other motorcyclists
as well. In addition, XGBoost might not be the best option for analysis and other approaches
should be compared to the results presented here. Finally, merging the IMU data with
positional information opens a whole new set of opportunities for analysis.
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