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Abstract: Waste material classification is a challenging yet important task in waste management. The
realization of low-cost waste classification systems and methods is critical to meet the ever-increasing
demand for efficient waste management and recycling. In this paper, we demonstrate a simple,
compact and low-cost classification system based on optical reflectance measurements in the short-
wave infrared for the segregation of waste materials such as plastics, paper, glass, and aluminium.
The system comprises a small set of LEDs and one single broadband photodetector. All devices are
controlled through low-cost and low-power electronics, and data are gathered and managed via a
computer interface. The proposed system reaches accuracy levels as high as 94.3% when considering
seven distinct materials and 97.0% when excluding the most difficult to classify, thus representing a
valuable proof-of-concept for future system developments.

Keywords: discrete spectroscopy; feature selection; SWIR; material classification; optical sensor

1. Introduction

Material classification plays a crucial role in various industries such as manufacturing,
healthcare, environmental monitoring, and security. The ability to accurately identify and
classify different materials is essential for ensuring product quality, safety, and compliance
with industry standards. In recent years, the importance of material classification has
been further amplified by the growing emphasis on sustainability and environmental
conservation [1].

In this era of rapid technological advancements, sensors have emerged as indispens-
able tools for material classification. Unlike traditional methods that often rely on manual
inspection or chemical analysis, sensors offer real-time, non-destructive, and precise ma-
terial identification capabilities. For this aim, various technologies such as spectroscopy,
imaging, and X-ray analysis can be employed [2]. Among such approaches, those relying
on optical sensors stand out, due to their ability to use infrared light to gather information
about material characteristics that are often invisible to the human eye. Optical sensors
offer remarkable precision and speed in distinguishing materials, without the need for
extensive sample preparations or prolonged laboratory tests [3]. Moreover, these sensors
operate in non-contact mode, facilitating the analysis of moving materials.

The integration of optical sensors with cutting-edge technologies such as hyperspectral
imaging and Raman spectroscopy has further elevated their capabilities. Machine learn-
ing algorithms, fuelled by data collected from optical sensors, enable intelligent pattern
recognition, resulting in highly accurate material classification outcomes [4]. Industries
spanning pharmaceuticals, food processing, aerospace, and environmental monitoring
have significantly benefited from the advanced capabilities of optical sensors [5–7].

Optical sensors typically exploit spectral information to identify materials based
on their reflectance and/or transmittance fingerprint. Different spectral ranges can be
employed, depending on the materials of interest and on the morphological characteristics
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of the samples. Short-wave infrared (SWIR) spectroscopy stands out as a beacon of precision.
Operating within the wavelengths from 1000 to 2500 nm, SWIR spectroscopy offers an
unparalleled depth of analysis. Its ability to penetrate materials, coupled with its sensitivity
to various molecular vibrations, makes it indispensable in material classification [8]. SWIR
spectroscopy and SWIR-based hyperspectral imaging have been extensively employed in
the last decade for material classification purposes, when used together with classification
algorithms [9–11].

Spectral analysis and hyperspectral imaging can reach very high performance in
material classification, but, on the other hand, they rely on cumbersome and expensive
instrumentation, thus hampering their adoption for high-volume applications. Recently,
a simplified approach to spectral measurements has been proposed, employing imaging
systems and photodetectors with a large spectral response and quasi-monochromatic light
sources (LEDs), selected in order to investigate only those wavelengths where target mate-
rials express specific reflectance signatures [12–14]. The extension of such a discrete-light-
source spectroscopy approach to SWIR wavelengths can further enhance the achievable
performance, allowing for better material recognition.

In this study, we explore SWIR-based material classification using discrete LED sources
for spectral analysis. Our preliminary study utilized 10 carefully chosen LEDs, achieving
98% accuracy in classifying waste materials [15]. The current research aims to further
improve the proposed system by revisiting the initial set of LEDs and optimizing the
achievable accuracy while reducing the number of employed LEDs. The proposed system
measures the reflectance of solid samples at specific wavelengths, acquiring discrete re-
flectivity spectra while minimizing data redundancy. The goal is to create a cost-effective,
user-friendly instrument for material sorting, applicable in recycling and waste manage-
ment. Despite potential performance trade-offs, our approach ensures quick and efficient
implementation, making it ideal for distributed waste segregation, enabling the accurate
differentiation of waste materials.

Figure 1 presents a schematic overview of the principle of operation of the system.
In this configuration, LEDs function as light sources, sequentially controlled by electronic
drivers, while the photodetector measures the reflected intensities. These signals undergo
conditioning through a trans-impedance amplifier, before being acquired through a com-
mercial data acquisition interface. The MATLAB suite is employed for the classification of
the acquired data, corresponding to different materials.
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Figure 1. Schematic representation of the system working principle.

2. Materials and Methods
2.1. Materials

In our study, we analysed seven materials, including polyethylene terephthalate
(PET), polypropylene (PP, transparent and white), a composite polymer made of polylactic
acid (PLA) and polybutylene succinate (i.e., AB400L), glass, paper, and aluminium. It is
important to note that these samples represent only a subset of the materials found in
industrial and domestic waste, and they were utilized in the forms of flakes and pellets,
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which might not fully represent real waste materials in terms of physical properties. Hence,
our system serves as a proof of concept, demonstrating the potential of discrete spectroscopy
for waste segregation. We specifically selected transparent or white materials as reference
samples, except for light-grey PET, since SWIR spectroscopy still poses challenges in
analysing dark-coloured samples due to their high absorption levels [16]. In addition,
cutting the materials into macro-sized flakes provided several advantages, such as an
increased sample surface area, material homogenization, and reduced effects of extraneous
reflections like specular reflections.

2.2. SWIR Spectral Acquisition

The spectra for each material were collected using two distinct Ocean Insight compact
spectrometers (Orlando, FL, USA) operating in the VIS (450 nm to 1030 nm) and SWIR
(954 nm to 1710 nm) ranges, with a step size of 1 nm. Subsequently, the individual VIS
and NIR spectra were rescaled, merged, and presented as a unified spectrum spanning
the range from 450 nm to 1710 nm. A total of 50 spectra were recorded for each material.
Figure 2 illustrates the combined averaged reflectance spectra obtained from the two
compact spectrometers. The right side of the figure shows photographs of each material.
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Figure 2. Spectra of all materials using compact spectrometers. The numbers in the photographs
align with the labels provided in the plot legends.

The reflectance spectra reveal that glass distinguishes itself from other materials by
virtue of its exceptional transparency, characterized by a solitary peak in the 600 nm wave-
length range. The white PP material exhibits elevated reflectance values in comparison to
other materials, featuring two prominent peaks within the wavelength range of 1200 nm to
1600 nm. Transparent PP shares peaks with white PP, but its reflectance values are signifi-
cantly lower, and the peaks appear broader. The paper displays distinctive characteristics
with high reflectance values, featuring two notable troughs at 550 nm and 1550 nm in the
spectrum. Much like transparent PP, AB400L unveils distinct features solely in the SWIR
range, displaying two peaks, with one exhibiting a broader profile. Additionally, it shows
a nearly constant spectrum in the NIR and VIS ranges. In contrast, aluminium exhibits a
consistent spectrum in the SWIR range with high reflectance values, whereas in the NIR
range, it features a notable wide reduction between 800 nm to 950 nm. PET exhibits a low
reflectance level, akin to transparent PP, with closely aligned spectra. This similarity can be
attributed to the selected materials being both white and more transparent than the others.
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It is evident from Figure 2 that each material exhibits unique characteristics in the
SWIR range as opposed to the VIS range. Therefore, despite the available data in the
spectral range between 450 nm to 1710 nm, in our data analysis, we exclusively considered
the spectral values within the SWIR range from 810 nm to 1710 nm.

2.3. LED Selection Method

The LED selection was executed by simulating the system response for all the different
LEDs employing the spectral data reported in Figure 2 and the spectral emissions of the
LEDs as obtained from the datasheets.

Figure 3 illustrates the process of LED selection, encompassing data preparation
and optimization methods. Initially, fourteen commercially available LEDs ranging from
890 nm to 1700 nm (as shown in Figure 4) were selected, spanning the SWIR spectrum.
Subsequently, a hybrid approach was employed to narrow down the selection to the
top four LEDs. This hybrid method [17] was instrumental in ensuring that the eventual
experimental setup would be equipped with the most fitting and efficient LEDs to achieve
precise and reliable results.
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Figure 4. Spectral distribution of 14 LEDs with peak emission of wavelengths reported in the
legend (left), and accuracy achieved with different classifiers for an increasing number of LEDs (right).

The data preparation process initiated with the collection of reflectance spectra for
each material using compact spectrometers, as explained in Section 2.2. Subsequently,
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the 14 LED spectral irradiance data were gathered from datasheets and normalized based
on the intensity at the peak wavelength. The normalized irradiance spectra were then
interpolated to be aligned with the wavelength range and step of the materials’ reflectance
datasets. The theoretical amount of light reflected by each sample, when illuminated with a
single LED, was calculated as the overlap integral of the LED irradiance spectrum and the
material reflectance spectrum measured using the compact spectrometers. The coefficients
derived from this process indicated the ratio of reflected light from the sample to the
total incident light from the LED. This produced, for each measurement, a reduced set
with 14 features that captured essential information from the reflectivity spectrum of each
material. For each of the seven considered materials, the 50 collected reflectance spectra
were employed for feature (i.e., LED) selection purposes.

In our hybrid approach, we adhered to a standard methodology for effective feature
selection and classification model construction. We started by splitting the dataset into
distinct training (80%) and testing subsets (20%). The training set became the focal point for
employing the Correlation-based Feature Selection (CFS) algorithm [18], which carefully
evaluates features to identify their relevance. The algorithm scores features based on their
relevance, assigning priorities. Subsequently, the top 10 features with the highest scores
were preselected. This subset then served as input for a Sequential Forward Selection
(SFS) wrapper method [19]. Resorting to a 5-fold cross-validation, this wrapper-based
optimization ensured the selection of a focused and informative feature subset comprising
only 4 LEDs. Subsequently, the chosen features were utilized to construct a classification
model. For a proper performance assessment, the model underwent evaluation using the
untouched testing data, offering insights into its accuracy and generalization capabilities.
To perform a comprehensive analysis, our methodology was applied by considering widely
used classification algorithms such as Support Vector Machine (SVM) [20], K-Nearest
Neighbours (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF) [21].
This standardized approach ensured a thorough exploration of feature relevance and
model efficacy across diverse classifiers, contributing to the reliability and versatility of our
mixed method.

After thorough evaluation, each method consistently achieved high accuracy, exceed-
ing 95% with the set of the four selected LEDs. Notably, LDA achieved an accuracy of
99.70%, closely followed by SVM at 99.60%. We strategically selected LEDs at wavelengths
of 1085 nm, 1600 nm, 1300 nm, and 910 nm due to their significant and consistent accuracy
across the LDA, SVM, KNN, and RF classifiers. This choice was based on the selection of
each of these LEDs within the set of the best four, for at least three classifiers out of the
four considered ones, as shown in Table 1, highlighting the robustness of these LEDs in the
optimization approach. Figure 4 visually presents the spectra of all 14 selected LEDs on the
left side, with the filled area representing the spectra of the LEDs chosen after optimization.
On the right side, the graph illustrates the LEDs alongside their corresponding accuracies at
each step of the selection process for the four classification methods. Notably, as additional
features were introduced, the accuracy levelled off and remained stable after selecting
6 LEDs in each method, confirming the chosen 4 LEDs were sufficient to guarantee the
desired classification performance.

Table 1. Ranked list of LEDs (expressed in terms of emission peak wavelength, in nm) selected for
each classifier.

Methods LED 1 LED 2 LED 3 LED 4

SVM 1085 nm 1600 nm 910 nm 1300 nm

KNN 1085 nm 910 nm 1600 nm 1300 nm

LDA 1085 nm 1600 nm 1450 nm 930 nm

RF 1085 nm 910 nm 1450 nm 1300 nm
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2.4. Simulation Results

To provide further details on the performed analysis, and to assess the robustness
of our proposed spectral acquisition and classification analysis using the selected four
features (LEDs), we report in Figure 5 the confusion matrix obtained considering the
LDA classifier, which demonstrated superior performance compared to the SVM, KNN,
and RF algorithms. Notably, the overall accuracy rate reached 98.6%, with only a minor
misclassification observed for aluminium, glass, and paper.
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2.5. Methodology

Following the analysis performed to select the best four LEDs, an experimental setup
was built, as depicted in the schematic block diagram shown in Figure 6. This system
was composed of three main components: a sensor head, an analogue front-end, and a
multifunction interface connected with a computer. The sensor head was housed in a 3D-
printed case with dimensions of 5 cm in diameter and 1.5 cm in height. Within this casing,
there was a germanium photodetector surrounded by four strategically positioned LEDs.
To prevent direct illumination, the LEDs were evenly spaced. These LED light sources
are commercially available and come equipped with epoxy and glass lenses, measuring
4 mm in diameter, and have a maximum current of 25 mA. All the LEDs were biased with
a custom circuit in order to provide a mean optical power of 2 mW ± 10%. The germanium
photodiode operated within the spectral range of 700–1800 nm, with a peak responsivity of
0.85 A/W at 1550 nm.

The analogue front-end of the system consisted of a 4-channel current amplifier
responsible for driving the LEDs and a variable-gain transimpedance amplifier designed
for the photodiode. This analogue front-end was connected to a computer through a
multifunction input/output interface, leveraging the National Instruments DAQ USB6009
(Austin, TX, USA). The USB6009 facilitated the sequential activation of the LED current
drivers and performed analogue-to-digital conversion of the output from the photodiode
amplifier. This conversion was achieved at a precision of 14 bits with a sample rate of 1 kS/s.
To streamline the measurement process, a user-friendly graphic interface, developed using
LabVIEW (version 2023.Q1), was employed. This interface allowed for the management
of measurements, the real-time monitoring of each light source’s status, the configuration
of measurement parameters (such as sampling rate, number of readings to be averaged,
duration of LED illumination, and measurement timing), and the display and storage of
sensor readings.
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Figure 6. Schematic representation of the system set-up.

Each material sample was placed and stored in a separate black box. The samples
underwent exposure to each LED light source for a duration of 10 ms. During this time,
reflectance values were captured and used to calculate the ratio of reflected light to incident
light. The total incident light amount was pre-calibrated and stored in a look-up table. The
system output was presented graphically in LabVIEW. Maintaining a uniform illumination
of the sample was ensured by placing the sensor at a fixed distance of 7 cm. A 5 V
power supply was utilized to power the entire system which, along with the sample under
measurement, was enclosed in a dark box. To enhance measurement accuracy, each sample
was measured 10 times and averaged. Before each reading, the sample box was shaken to
minimize artifacts associated with preferential reflection angles from the grains.

Upon exposure to each LED, the sample material underwent partial reflection of
the incident optical radiation. The diffused reflection was captured by the photodiode,
generating a photocurrent that was proportional to the optical power. This photocurrent
was then amplified and converted to a voltage using the trans-impedance amplifier before
being acquired by the DAQ. This acquisition process was repeated for all the different
LEDs, resulting in a set of 4 values. To account for variations in the emission intensity of
the 4 LEDs, all measurements were normalized with respect to a calibration dataset. This
dataset was obtained by substituting the sample with a metal mirror during the calibration
process. The sample’s reflectivity was calculated using Equation (1), where V0(λ) represents
the voltage value obtained during the calibration with a flat mirror (proportional to the
incident light intensity), and Vs(λ) is the voltage acquired while illuminating the sample
under analysis (proportional to the reflected light intensity).

R(λ) = Vs(λ)/V0(λ) (1)

The measurements were conducted on the seven considered materials over a period
of three days. Specifically, 50 spectra were collected from each material daily, amounting to
a total of 350 spectra per day. Across the entire study, 1050 spectra were gathered, creating
a comprehensive dataset that encompassed a broad range of variations and measurements
for subsequent analysis. This extensive dataset enabled the consideration of the potential
impact of environmental conditions on the proposed setup. In the subsequent section,
various classifiers were employed on the collected data. The objective was to identify the
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most effective approach and to explore the relationship between achievable performance
and the intra-class variability observed in the conducted measurements.

3. Results

The collected data were classified using various methods through a MATLAB (version
2022a) script. Table 2 below presents the classification accuracy achieved on each of the three
days, employing an 80%–20% division for training and test data, and the four considered
classification methods. Better results are typically obtained when using an SVM classifier,
which provides the best average performance when considering data from all the three
different acquisition sessions.

Table 2. Classification accuracies achieved using four optimized LEDs across four different classifica-
tion methods over the considered three-day dataset. Values in bold indicate the best results obtained
for each acquisition session.

Data Set SVM LDA KNN RF

1st day 95.7% 96.0% 94.3% 92.9%

2nd day 94.6% 93.4% 92.6% 88.6%

3rd day 93.4% 92.9% 89.7% 90.0%

Overall, classification performances were similar for the different days, but some slight
differences could be observed, with data from day 3 providing the worst classification
results irrespective of the classification algorithm. This behaviour was expected, since we
purposely did not control environmental conditions (e.g., temperature, room illumination,
relative humidity) during measurements. It is therefore evident that the specific acquisition
conditions may have had a non-negligible impact on the reliability of the measurements
and on the resulting classification performance.

For a better assessment of the actual capabilities of the proposed system and to
enhance its generalization capabilities, additional data analysis was conducted by splitting
the collected samples according to two distinct modalities, that is, day-wise split and
random split. The day-wise split means that data from one specific day were exclusively
assigned for training, and data from another day were reserved for testing. This approach
allowed for a targeted assessment of the model’s performance on unseen data from a
different day, providing insights into its ability to generalize and handle variations specific
to distinct timeframes. Evaluating the model under such day-wise conditions helps gauge
its adaptability to changing circumstances and ensures a comprehensive understanding of
its performance across different temporal contexts. The random split modality implies that
the data obtained during the 3 days are mixed and then randomly divided into training
(80%) and test (20%) samples in a 5-fold cross validation. Random split helps ensure a
representative distribution of data across training and test sets, reducing bias and enhancing
the model’s generalization to unseen data.

Figure 7a–d show the confusion matrices associated with four out of the seven consid-
ered scenarios, that is, 1st vs. 2nd day (with LDA classifier), 1st vs. 3rd day (with SVM), 3rd
vs. 2nd day (SVM), and shuffled data (SVM). The accuracies achieved in all considered tests
are detailed in Table 3, where the results related to the conditions considered in Figure 7
are marked in bold. When checking the reported confusion matrices, certain noteworthy
misclassifications are evident. Figure 7a reveals a significant error rate, i.e., 62%, in classify-
ing aluminium with other materials. AB400L follows with a 40% misclassification, and PP
(transparent) exhibits a 22% error rate. In Figure 7b, a persistent 62% misclassification is
observed between aluminium and other materials, accompanied by a 16% misclassification
between PP (transparent) and AB400L, emphasizing the complexity of accurate classifi-
cation for these material pairs. Figure 7c,d continue to show a consistent trend of high
misclassification for aluminium materials with other substances. Notably, in Figure 7c,
there is a 38.0% misclassification with other materials, and in the shuffled dataset, a similar
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pattern is observed with a 23% misclassification rate. These findings highlight the difficulty
in accurately categorizing aluminium using classification models applied to training/test
data collected in different scenarios, which significantly impacts the overall accuracy. On
the other hand, consistently high accuracy, close to 100%, is achieved for both glass and PP
(white) across all the considered situations. These results suggest that these two materials
have highly characterizing spectral signatures that allow effective differentiation within a
classification framework.
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The misclassification of aluminium in comparison to other materials can be attributed
to the distinct surface characteristics of the materials, where one side exhibits a shiny
appearance while the other is coloured. Notably, these aluminium samples were sourced
from used soft drink cans obtained from the environment. To address this challenge, we
opted to exclude aluminium from our dataset and focused on classifying the remaining
materials. The results revealed a promising improvement in our data analysis. Actually,
Table 3 outlines a comparison of the performance obtained when employing SVM and
LDA classifiers, and both with and without aluminium, for all the considered data divi-
sions. The findings from Table 3 clearly indicate that the dataset excluding aluminium
exhibits substantial improvements across all scenarios. Particularly noteworthy is the fact
that, out of the seven considered scenarios, five of them consistently provided overall
classification accuracy above 90% without aluminium. Figure 8a–d show the confusion
matrices obtained when excluding aluminium for the four scenarios considered in Figure 7.
Actually, the considered scenarios, with the associated classifiers, are those showing the
largest differences between considering or excluding aluminium.
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Table 3. Comparative analysis of classification accuracy using SVM and LDA methods in different
data sets. Values in bold indicate the scenarios considered in Figures 7 and 8.

Scenario All Materials
(SVM)

Without
Aluminium

(SVM)

All Materials
(LDA)

Without
Aluminium

(LDA)

1st (Training) vs.
2nd (Testing) 79.4% 87.3% 79.0% 92.0%

1st (Training) vs.
3rd (Testing) 83.0% 91.3% 67.7% 88.7%

2nd (Training)
vs. 1st (Testing) 76.3% 82.7% 66.6% 83.0%

2nd (Training)
vs. 3rd (Testing) 80.0% 91.7% 81.4% 88.0%

3rd (Training) vs.
1st (Testing) 86.0% 95.3% 73.0% 87.7%

3rd (Training) vs.
2nd (Testing) 82.6% 90.0% 74.0% 89.7%

Shuffled data 94.3% 97.0% 93.0% 96.0%
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The observed improvement underscores the positive impact of excluding aluminium
on the model’s ability to accurately classify materials in various scenarios. Likewise, data
shuffling facilitates improved the training of the classifier, enhancing its generalization
capability and resulting in an overall higher accuracy of 94.3% when considering all materi-
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als, with a further improvement to 97.0% when excluding aluminium, further highlighting
the positive impact of data shuffling on the model’s performance. Finally, it can be seen
that the performance of the SVM classifier is consistently higher than that attained by LDA.

Despite removing aluminium from the dataset, the confusion matrices in Figure 8
highlight significant misclassifications, particularly among AB400L, PP (transparent), and
paper. The classification models encounter challenges in distinguishing these three ma-
terials, particularly in the case of PP (transparent), which consistently experiences minor
misclassifications with PP (white) due to their shared material properties. Glass, on the
other hand, proves to be the easiest material to classify, achieving almost 100% accuracy
across all cases, thanks to its distinctively low reflectance values. Furthermore, PP (white)
stands out as another material with high accuracy within this system setup, attributed to
its distinctive high reflectance characteristics, as evident in Figure 1, which depicts the
continuous spectra of the materials. While our current system setup with 4 LEDs has
demonstrated good performance in material classification, our previous analysis using
a larger number of LEDs revealed superior classification for “critical” materials. This
underscores the significance of achieving finer spectral discrimination for enhanced results
in material classification. The utilization of a more extensive set of LEDs seems to boost
the model’s capacity to differentiate and classify materials, highlighting the importance of
spectral precision in achieving accurate results, particularly for critical materials.

4. Conclusions

This paper introduces a cost-effective approach for waste material classification
through discrete optical analysis in the short-wave infrared (SWIR) range. The system
integrates four LEDs and a single photodetector, controlled by basic electronic drivers
and a transimpedance amplifier, respectively. The conditioned photodetector signal is
acquired via a commercial data acquisition interface. With respect to our previous work
using 10 LEDs and a 98% accuracy rate, our new feature selection method focuses on four
LEDs, attaining 97% accuracy with support vector machines. The system is applied to
classify diverse materials, including glass, paper, and three types of plastic. Challenges
arise in classifying aluminium due to its reflective properties and the presence of plastic
coatings on the samples.

The proposed system should be interpreted as a proof-of-concept and has been tested
with a small number of samples and in a reduced complexity framework. More specifically,
no coloured plastics were employed, and all the samples shared similar surface characteris-
tics in terms of roughness. In order to assess the real extent of the proposed classification
approach, further systematic analyses including samples with different colours and surface
characteristics should be executed. However, it should be considered that, apart from black
pigments, plastic colourings do not typically show any peculiar absorption or reflection in
the SWIR range. In addition, the scattering characteristics of a certain material depend both
on its surface roughness and on its complex refractive index; thus, different finishes can act
as confounding parameters in the classification system, but this issue could be addressed
by increasing the amount of samples and data employed for the training.

It may also be noted that, due to the employment of a single photodetector, our system
may fail in the classification of samples made of mixed materials (e.g., glass bottles with
plastic or metallic caps) or when dealing with very small samples with respect to the
field of view of the detector. A straightforward approach to improve the performance of
the system consists of the implementation of an imaging sensor as a replacement for the
single photodetector, thus allowing for the acquisition of images with embedded spectral
data. However, this performance enhancement would come at the cost of a more expensive
measurement set-up. Despite such constraints, our research demonstrates that the proposed
system is promising and highlights the potentialities of discrete spectrometric analysis for
material recognition.

In summary, our research contributes to the development of an affordable and reliable
system for material classification. While refining the accuracy of aluminium classifica-
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tion remains a challenge, our system demonstrates significant potential for accurately
categorizing plastic, paper, and glass waste materials.
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