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Abstract: A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastruc-
ture incorporating centralized and decentralized control mechanisms, orchestrating seamless data
exchange among vehicles. This intricate communication system relies on the advanced capabilities of
5G connectivity, employing specialized topological arrangements to enhance data packet transmis-
sion. These vehicles communicate amongst themselves and establish connections with roadside units
(RSUs). In the dynamic landscape of vehicular communication, disruptions, especially in scenarios
involving high-speed vehicles, pose challenges. A notable concern is the emergence of black hole
attacks, where a vehicle acts maliciously, obstructing the forwarding of data packets to subsequent
vehicles, thereby compromising the secure dissemination of content within the VANET. We present
an intelligent cluster-based routing protocol to mitigate these challenges in VANET routing. The
system operates through two pivotal phases: first, utilizing an artificial neural network (ANN) model
to detect malicious nodes, and second, establishing clusters via enhanced clustering algorithms with
appointed cluster heads (CH) for each cluster. Subsequently, an optimal path for data transmission is
predicted, aiming to minimize packet transmission delays. Our approach integrates a modified ad
hoc on-demand distance vector (AODV) protocol for on-demand route discovery and optimal path
selection, enhancing request and reply (RREQ and RREP) protocols. Evaluation of routing perfor-
mance involves the BHT dataset, leveraging the ANN classifier to compute accuracy, precision, recall,
F1 score, and loss. The NS-2.33 simulator facilitates the assessment of end-to-end delay, network
throughput, and hop count during the path prediction phase. Remarkably, our methodology achieves
98.97% accuracy in detecting black hole attacks through the ANN classification model, outperforming
existing techniques across various network routing parameters.

Keywords: artificial neural network; clustering; AODV; VANET; secure routing; black hole attack

1. Introduction

Routing within a vehicular ad hoc network (VANET) is a complex process involving
successfully transferring data packets from a source vehicle to a destination vehicle while
ensuring a secure and dependable communication framework. This research primarily con-
centrates on achieving secure and reliable packet delivery within VANETs by implementing
an innovative routing protocol using artificial neural networks (ANN). The research com-
mences with an introduction to the background information and relevant terminologies,
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including a reference to a previous contribution [1]. Subsequently, an extensive review of
the latest literature published in esteemed research journals is undertaken. The proposed
protocol and its associated algorithms and methodology are presented in the following
section. Results are presented, highlighting a state-of-the-art comparison with existing
techniques, thereby underscoring the superior performance of the proposed approach
in contrast to recent literature. The research concludes with a summary of findings and
outlines future directions [2].

Everyday human life involves travel, with vehicles constituting an indispensable
mode of transportation. VANETs form a network of nodes, primarily consisting of vehicles,
interconnected through a wireless topology. Communication within this network is facili-
tated by RSUs [3]. Information and communication technologies (ICT) are instrumental
in the intelligent transportation system (ITS), promoting safer, more efficient, thoughtful,
and straightforward communication and information sharing. VANET employs wireless
networks to enable efficient and remote communication among vehicles providing trans-
portation services. However, addressing various research challenges in vehicular ad hoc
networks remains formidable [4].

Firms adhering to IEEE 14712000 [5] and ISO/IEC 42010 [6] architectural standards
play a crucial role in establishing VANET technology. The VANET system comprises three
domains: mobile, web, and social media [7]. Within these domains, two categories, in-
frastructure and generic, are distinguished. The mobile domain encompasses vehicle and
mobile device domains. In contrast, the infrastructure domain consists of management
centers, such as traffic and vehicle management centers, and roadside devices, like traffic
lights [8]. VANET systems exhibit variations based on location [9]. The CAR-2-X commu-
nication system, employed by the CAR-2-CAR communication consortium (C2C-CC) in
Europe, offers a unique design and encompasses in-vehicle, ad hoc, and infrastructure
domains [10]. Notably, in-vehicle communication, referred to as the in-vehicle domain,
has gained increasing attention due to its implications for driver and public safety. The
vehicle-to-vehicle (V2V) communication system enables the exchange of vital information
and threat notifications among vehicles, enhancing driver assistance. The vehicle-to-road
infrastructure (V2I) communication system provides access to real-time traffic, weather,
and environmental data [11]. Figure 1 illustrates VANET communications. The utilization
of wireless broadband techniques, such as 3G/4G, in vehicle-to-broadband cloud (V2B)
communication systems offers substantial benefits, enabling communication between ve-
hicles, active driver assistance, and vehicle tracking, thanks to the increased data storage
capacity provided by broadband cloud [12].
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These data can be in different forms, such as real-time weather updates and traffic
information, infotainment, and environment data. Figure 1 shows the communication
between vehicles [14].

1.1. Navigating Vehicular Ad Hoc Networks

When crafting routing protocols for VANETs, it is imperative to consider the trifecta
of security, mobility, and scalability. These routing protocols delineate the mechanisms by
which two nodes or routers communicate within a computer network [15]. Additionally,
these protocols are instrumental in discerning the optimal candidates to steer data packets
along their intended path. It is worth noting that many factors, including road conditions,
traffic dynamics, physical obstacles such as buildings, and the broader environmental
context, significantly influence the routing protocols in VANETs. Additionally, the dynamics
of vehicular movement and potential disruptions within the network further contribute to
the complexity of these protocols. The ad hoc routing protocols, crucial in VANETs, can be
neatly categorized into three distinct types: hybrid, proactive, and reactive, each offering
unique approaches to tackling the intricate challenges of vehicular communication [16].

1.2. Clustering Strategies in Vehicular Ad Hoc Networks

Within the VANETs framework, clustering assumes pivotal importance, facilitating the
assembly of a group of vehicles with similar attributes. In the realm of VANET clustering, the
mobility-based approach stands as the most prevalent method. However, several clustering
techniques in VANETs have harnessed sophisticated algorithms such as fuzzy logic and
machine learning to enhance the stability and efficiency of these clusters [17]. VANET
clustering deploys a multi-hop-oriented approach and leverages network mobility (NEMO)
techniques. Depending on the specific algorithms in use, the clustering technique in VANETs
may opt for either the single-hop or multi-hop approach. Single-hop techniques, in turn,
can be further categorized into intelligence-driven and mobility-centric methods [18].

Furthermore, VANET clustering is enhanced by integrating fuzzy logic into the fray.
In the comprehensive VANET approach, the fuzzy logic algorithm is artfully amalgamated
with supervised learning algorithms, including Q-learning and machine-learning clustering
techniques. This union develops a versatile and efficient clustering mechanism within the
context of VANETs. Figure 2 shows the taxonomy of VANET clustering algorithms, which
includes all the clustering algorithms’ techniques.
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The preeminent clustering methodology employed within VANETs is the mobility-
oriented clustering technique. This technique pivots around essential metrics rooted in
the dynamics of vehicular movement, encompassing parameters such as acceleration,
relative speed, positional data, and the direction of vehicular motion, among others. A
key challenge in the VANET context is the imperative need to optimize the cluster count.
Several clustering techniques predicated on multi-hop packet transmission have been
documented in the scientific literature to address this concern, all aimed at curtailing the
number of clusters. This approach is pivotal as it allows a cluster head (CH) to extend
its coverage over a more expansive geographical area, engendering heightened network
stability [20].

Within the domain of multi-hop strategies, two distinct categories emerge. In the
context of two-hop communication, the cluster head is empowered to oversee vehicular
communication spanning up to two hops, encompassing a segment of vehicles within
its purview. The formation of clusters hinges upon a routing technique that considers
vehicle positions and their respective traveling directions. Conversely, in the ambit of 2+
hop algorithms, the cluster head can expand its reach across two or more hops, a scenario
witnessed in various multi-hop-based algorithms, such as those catering to three-hop,
four-hop, or even five-hop coverage scenarios.

1.3. Cyber Attack Scenarios in VANET

Security in VANETs is profoundly influenced by a spectrum of attacks that can
significantly impede the performance of various routing protocols [21–23]. These attacks
encompass diverse categories and are pivotal to elucidating fundamental forms of routing
attacks, as delineated in Figure 3. In a compromised vehicle scenario, malicious nodes
exploit vulnerabilities by initiating pollution, impersonation, and denial of service (DoS)
attacks. The compromised vehicle emits fake messages to nearby vehicles, introducing
pollution attacks that manipulate environmental data. Impersonation attacks involve
the malicious node posing as a trusted entity, deceiving neighbouring vehicles with
falsified information.

Additionally, the compromised vehicle executes DoS attacks, overwhelming the com-
munication channels of nearby nodes to disrupt their normal functioning. These orches-
trated attacks compromise the integrity of the vehicular network, jeopardizing communi-
cation, trust, and overall system reliability. Effective cybersecurity measures are crucial
to mitigate such threats and ensure the secure operation of connected vehicles. First, we
categorize these attacks into two primary forms: active and passive. In an active attack,
the malevolent actor intercepts network data and manipulates the message’s content. This
results in the intended recipient receiving a message that has been tampered with. The
motives behind active attacks are often centered around undermining network efficiency
or exploiting potential vulnerabilities to gain unauthorized access to provide illicit services.
This transpires through eavesdropping on wireless networks, data collection, or the prob-
ing of possible network weak points. On the contrary, passive attacks manifest when an
assailant abstains from sending or receiving network messages directly. The attacker’s role
is observatory and data collection rather than active interference [24].

Conversely, the rational attacker attacks to gather intelligence and harm the network.
The attacks are further distinguished by their scope, with local and extended attacks
forming a dichotomy. Local attackers initiate assaults confined to a limited geographical
area, typically affecting specific RSUs and nodes. In contrast, extended attackers extend
their impact over a broader expanse, intending to degrade network efficiency or render it
completely non-functional. In the context of this research, the focus is on routing attacks
in VANETs. There are precisely five distinctive types of routing attacks: a denial of
service (DoS) attack overwhelms a system, making it unavailable to users by flooding
it with excessive traffic, disrupting standard functionality. A black hole attack shows
malicious nodes in a network drop or absorbs incoming data, rendering the affected
paths unusable and disrupting communication. A gray hole attack is an attack in which



Sensors 2024, 24, 818 5 of 34

a compromised node selectively drops or modifies data packets, causing inconsistencies
in communication while maintaining some level of standard functionality. An illusion
attack fakes the presence of non-existent nodes or services, deceiving neighboring nodes
regarding the network topology and leading to misrouting of data. A sinkhole attack
occurs when network traffic is diverted to a malicious node, allowing the attacker to
intercept and manipulate the data flow and compromise communication integrity [25].
These attacks pose significant challenges to the integrity and security of data transmission
within VANETs.
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1.4. Machine Learning in VANET Routing Prediction

In the realm of vehicular ad hoc networks (VANETs), the integration of machine
learning techniques for routing prediction has emerged as a pivotal area of research. One
noteworthy approach involves utilizing supervised learning models such as support
vector machines (SVM) and random forests. SVMs excel in classifying and predicting
data by finding the optimal hyperplane that separates different classes, making them
well-suited for discerning intricate patterns in vehicular movement. On the other hand,
random forests leverage the collective decision-making power of multiple decision trees,
enhancing the robustness of predictions. Their ability to handle large datasets and adapt
to dynamic network conditions positions them as formidable tools in predicting opti-
mal routes within VANETs. These models offer advantages over traditional routing
algorithms by discerning patterns in real-time traffic data, considering factors like conges-
tion, road conditions, and vehicular movement, resulting in more adaptive and efficient
routing decisions.

Furthermore, the advantages of machine learning-based routing prediction extend
beyond individual model choices. Figure 4 shows Machine Learning models used in
VANET routing prediction. Ensemble methods, which combine the strengths of multiple
models, have demonstrated exceptional performance in enhancing prediction accuracy and
generalization. Hybrid models that integrate machine learning with traditional routing
algorithms capitalize on the strengths of both approaches, offering a balanced solution that
benefits from the adaptability of machine learning and the stability of conventional routing
methods. The dynamic nature of vehicular environments necessitates models that can adapt
to changing conditions, and machine learning techniques in VANET routing prediction
pave the way for intelligent, context-aware decision-making, ultimately contributing to
safer and more efficient transportation systems.
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1.5. Research Motivation

Efficiency and security in routing are paramount for enhancing network performance.
Ensuring the availability of optimal pathways in a vehicular network, preserving privacy,
and safeguarding data integrity are central concerns that necessitate focusing on security
matters. The operational effectiveness of VANETs is notably impacted by various security
attacks, exacerbated by the absence of a precise defence mechanism. The lack of a central-
ized monitoring system, the implementation of cooperative algorithms, the dynamic nature
of network topology, and the limited transmission range of nodes collectively give rise to an
array of routing challenges. Consequently, a pressing need arises for secure and intelligent
routing techniques to minimize communication delays and identify security threats.

The primary objectives of our research are as follows:

• The development of a cluster-based routing technique to facilitate the efficient delivery
of content.

• The detection of malicious nodes in VANET through the application of deep learning.
• The establishment of optimal pathways to ensure the efficient delivery of data to their

intended destinations.

A principal concern in the realm of VANET data transmission pertains to secure and
efficient routing. This is a non-trivial task, primarily due to the mobility of nodes within
a network characterized by both homogeneity in vehicular nodes and heterogeneity in
VANET contexts. Routing efficiency is frequently compromised by packet transmission
delays caused by unsecured or malicious routes, often involving multiple intermediary
nodes. Thus, a compelling imperative arises for developing an effective and intelligent tech-
nology that can enhance routing efficiency by minimizing the hop count while bolstering
security with minimal data loss. Consequently, our proposed technique combines secure
and efficient packet routing, substantially reducing communication delays. A cluster-based
secure routing approach minimizes the hops required for content delivery, while a machine
learning-based method is harnessed to ensure security. This innovative approach is tai-
lored to enhance routing efficiency and reliability. The primary objective of our proposed
model is to establish a secure cluster-based routing framework within VANETs specifically
designed to address secure content requests and consumption. Routing security is upheld
by integrating machine learning techniques and on-demand routing, implemented through
a modified AODV protocol.

1.6. Problem Statement

Ensuring secure and efficient data transmission in vehicular ad hoc networks (VANETs)
is crucial due to dynamic nodes in a mix of homogenous and heterogeneous VANET envi-
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ronments. Packet delays, insecure routes, and intermediary nodes hinder routing efficiency.
Mobility patterns and hop count challenges cause delays in data exchange for content
sharing. VANETs face attacks like black holes, flooding, and DDoS. In black hole attacks,
malicious nodes divert packets from their path, leading to a “black hole” effect where
packets are discarded. Figure 5 illustrates this issue, impacting communication and causing
breakdowns. To address this, we propose a machine learning-based, secure, and efficient
routing approach to mitigate malicious node attacks and reduce packet transmission delays,
as shown in Figure 6.
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1.7. Research Contributions

The principal research contributions of this proposed work are outlined as follows:

• An innovative, secure routing protocol was introduced to combat black hole attacks
within VANETs. This protocol is designed to optimize the allocation of tasks by
selecting the most secure and efficient path for data transmission.

• Integrating a cluster-based routing technique facilitates the streamlined delivery of
content to the target vehicle following a meticulous verification process based on the
vehicle’s past performance, utilizing ANNs.

• Establishing clusters through a meticulously designed algorithm incorporating secu-
rity considerations further bolsters the dependability of the hop count in the network.
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• The deployment of ANN techniques to identify and combat black hole attacks and
secure routing within VANETs. This approach leverages knowledge and related skills
to pinpoint routing paths between source and destination nodes accurately.

• Implementing an authentication-based method for efficient content delivery ensures
secure analysis and path prediction. This is achieved by utilizing a modified AODV
algorithm, which effectively predicts the route after securing the network using an
ANN-based machine learning (ML) algorithm.

Thorough performance analysis of the proposed technique, featuring a comparative
evaluation against AODV-L, AODV-R, and T-AODV. This assessment encompasses critical
metrics such as end-to-end delay, average hop count, network throughput, and other
relevant performance indicators expounded upon in this paper.

The subsequent sections of this paper adhere to the following organizational structure.

• Section 2 explores related work focused on secure routing within VANETs, shedding
light on previously adopted methodologies. Various established secure routing solu-
tions are presented alongside examining multiple clustering techniques. Towards the
conclusion of this section, diverse machine-learning methods for detecting malicious
nodes are scrutinized.

• Section 3 intricately expounds upon the proposed solution framework and model
diagram. Secure routing is realized through a cluster-based machine learning model
and a modified AODV algorithm. This section elucidates the proposed solution by in-
corporating diverse flowcharts and model diagrams, ensuring a lucid comprehension
of the methodology.

• Section 4 involves simulating our techniques within a suitable simulation environment,
utilizing the NS-2 simulator and Python for machine learning. Existing datasets are
harnessed for model training, and this section offers a comprehensive description of
the experimental setup and various components of the experiments.

• Lastly, Section 5 concludes the paper, and potential avenues for future research
are delineated.

2. Literature Review

Various methodologies within existing routing and security approaches have been
extensively explored in the available literature. In conjunction with the enhanced dragonfly
algorithm, the k-medoid clustering model has emerged as a notable contributor to improv-
ing energy efficiency within vehicle-to-vehicle communication [20]. The proposed approach
entails the selection of medoids through the calculation of distances between data points.
Initially, each object is assigned the nearest medoid value, which is subsequently refined to
its closest medoid value. The cluster head selection depends on carefully assessing speed,
position, and acceleration parameters. By harnessing the k-medoid clustering model along-
side the enhanced dragonfly algorithm, the transmission of messages to various vehicles,
RSUs, and base stations is efficiently minimized, culminating in substantial energy savings
within the vehicular network. This combined approach also contributes to a heightened
packet delivery ratio and network throughput, albeit without a specific focus on the hop
count metric.

Furthermore, clustering has been a favored strategy among many researchers for
facilitating reliable and secure routing. A credible clustering technique aimed at optimizing
communication was proposed by [28]. In this instance, the parameters of velocity and
distance are crucial considerations for forming clusters. The determination of a distrust
value plays a pivotal role in selecting a trustworthy cluster head. Should the distrust value
exceed a predefined threshold, the vehicle in question is added to a blocklist, whereas
a distrust value below or equal to the threshold results in the vehicle being added to an
allowlist. Emphasis is placed on considering a vehicle with higher trust as the cluster
head. Following the selection of a trustworthy cluster head (CH), the clustering quality of
service (QOS) value is meticulously computed. This clustering methodology significantly
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enhances the packet delivery ratio and throughput, concurrently mitigating packet loss
and end-to-end delay issues.

2.1. Effectual Routing Strategies

A novel approach grounded in fuzzy logic is posited to enhance routing efficiency
within VANETs [29]. This study endeavours to augment the AODV protocol by infusing
fuzzy logic rules. The construction of a routing table underpins the proposed technique,
and these fuzzy rules determine the route selection with the lowest hop count. A threshold
value is introduced to govern the propagation of routing packets within the vehicular net-
work. Each node’s choice of an appropriate neighbor for packet transmission is influenced
by specific parameters such as velocity, direction, and distance. The threshold value’s
calibration is contingent upon the network’s density. When a source node dispatches a
route request to neighboring nodes, each recipient node scrutinizes the request packet,
calculating the link expiration metric and the link reliability model. These calculations,
constituting inputs to the fuzzy system, are based on parameters like velocity, direction,
and distance. At the receiving end, notably the destination node, fuzzy inputs are har-
nessed to compute the fuzzy cost for each prospective route, culminating in selecting the
route boasting the highest cost function. Various routing protocols are at the forefront of
efficient packet delivery. Within the proposed approach [30], routing decisions are executed
at intersections with the assistance of roadside units. The process commences with the
transmission of a beacon message by the RSU, aimed at discovering and sustaining a link
between itself and neighboring nodes, facilitated by a link discovery beacon. After link
establishment, real-time information about lane availability, the direction of the next-hop
intersection, and traffic flow is harnessed to ascertain a triangular fuzzy number. Per our
proposed method, packets with the highest fuzzy score are dispatched to the intersection.
Utilizing a greedy forwarding approach augments the link lifetime or strength between
two intersections, a parameter contingent upon temporal and nodal velocity considerations.
This optimization contributes to a reduction in end-to-end delay, packet routing delay, and
hop count.

In our proposed approach [4], a secure routing algorithm is devised to detect and
thwart black hole attacks. The AODV routing method is employed with tailored modifica-
tions for detecting malicious nodes and facilitating efficient packet delivery. Cryptographic
encryption and decryption techniques serve to verify the identities of both the source and
destination nodes. Within our proposed approach, the source node conducts an initial
assessment of the status of neighbouring nodes before generating an encrypted packet.
Subsequently, the encrypted packet is transmitted to these neighboring nodes, and their
presence is ascertained within the loop. The requisite secret key is transmitted to the identi-
fied neighbor node. Following the scrutiny of packet request and response data, the packet
is relayed to its ultimate destination; the secure routing protocol known as TAD-HOC
routing protocol was introduced in [31]. AODV is coupled with group authentication keys
to ensure secure packet delivery with minimal delays. Our methodology hinges on the
sequential reception of TROPHY messages by authenticated nodes. Four key entities play
integral roles in creating a secure environment: onboard units, RSUs, key distribution
centers (KDC), and human operators. The KDC generates periodic keys, subsequently
disseminated to nodes for authentication. If a node is not actively participating in the rout-
ing process, KDC and RSUs swiftly initiate refreshing and updating the routing paradigm
by expunging superfluous or malicious nodes and disseminating information regarding
the identified malicious nodes to all other network nodes. In the event of a node’s abrupt
disconnection from the network, KDC initiates data recovery procedures and essential
refreshment processes. It facilitates the retrieval of data about all inactive nodes, ultimately
leading to their permanent removal from the routing process.

Ref. [32] introduced a modified TAD-HOC routing mechanism featuring a discern-
ing forwarding strategy. In this approach, the utilization of AODV is complemented by
group authentication keys to ensure the secure and expeditious delivery of packets. In
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the framework we propose, TROPHY messages are meticulously received in sequence
exclusively by nodes that have been duly authenticated. Four distinct entities synergize
within our proposed approach to establish a fortified network environment: onboard units,
roadside units, key distribution centers (KDC), and human operators. The KDC serves as
the keystone, generating cryptographic keys regularly and disseminating them to network
nodes for robust authentication. If a node is not actively engaged in the routing process, the
KDC and RSUs proactively refresh and renew the routing infrastructure. This entails metic-
ulously removing redundant or malevolent nodes and disseminating pertinent information
regarding the identified malicious nodes to all other network constituents. A judicious
forwarding algorithm is harnessed to detect extra packets, and once redundant packets
are identified, the messages are transmitted in a covetous fashion. Our protocol exhibits a
remarkable 92% efficiency gain in comparison to TAD-HOC. The authors in [33] discuss a
system for trust-based secure routing in vehicular ad hoc networks (VANETs) using deep
learning-based attack detection. Here is an analysis of the reference’s advantages and
disadvantages compared to your work and a hypothetical comparison of results. The first
advantage is the hybrid approach that combines an ANN model for attack detection with
a modified AODV protocol for routing. This combination can provide a comprehensive
solution for VANET security and routing. Detection of black hole attacks addresses the
problem of black hole attacks, a significant security concern in VANETs. Using an ANN
model, the system claims to achieve a high accuracy of 98.97% in detecting black hole
attacks, a crucial advantage in securing data transmission. Cluster-based routing employs
cluster-based routing, enhancing network organization and reducing routing complexity in
VANETs. Performance evaluation mentions a thorough evaluation of the system’s perfor-
mance using various metrics such as accuracy, precision, recall, F1 score, and loss. It also
considers network parameters like end-to-end delay, network throughput, and hop count,
comprehensively assessing routing efficiency. It outperforms existing techniques, demon-
strating its potential as an improved VANET security and routing solution. Disadvantages
include lack of implementation details: the reference does not provide detailed information
on the implementation of the proposed system, making it challenging to replicate the work
or assess its real-world feasibility. Limited information on the ANN model: while the
reference mentions the use of an ANN model for attack detection, it lacks information
about the architecture and training process of the model. This omission can be a drawback
for those interested in replicating or improving upon this aspect of the work. Evaluation
using a specific dataset states that it uses the “BHT dataset” for evaluation, but it does not
provide details about this dataset. The suitability and representativeness of the dataset can
be necessary for the credibility of the results.

To compare your work with the proposed system, compare the methodologies of
your work and the reference. Assess whether the hybrid approach and ANN-based attack
detection are similar or different from your approach. Results show that if you have
conducted experiments and evaluations in your work, compare your results with those
presented in the reference. Look for differences in performance metrics, such as accuracy,
precision, recall, F1 score, and routing efficiency. Implementation evaluates the practical
implementation aspects of your work compared to the reference. Consider the ease of
implementing your solution in a natural VANET environment. The proposed research
compares the dataset to the “BHT dataset” mentioned in the reference. Assess the relevance
and representativeness of the datasets used in both works.

Similarly, ref. [34] introduced an efficacious routing algorithm known as the Dyte
algorithm, designed for optimizing the delivery of packets while concurrently minimizing
packet delays. Within the framework of the Dyte algorithm, a trilateral zone is thoughtfully
delineated by the source node, precisely ascertaining the final location of the destination
node. This delineation culminates in compiling a roster of nodes encompassing the last
known location of the destination node. The source node appends the destination node’s
identity and other pertinent information to the packet header before dispatching it to
the node located within the trilateral zone. Every constituent node within the trilateral
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zone scrutinizes the packet’s information and responds as dictated by its operational state.
Should a node possess knowledge of the destination node’s whereabouts, an additional
trilateral zone is meticulously charted. Subsequently, a novel packet is engendered and
directed towards the destination. Conversely, in cases without the knowledge of the
destination, intelligence regarding the trilateral zone is shared with neighboring nodes
until the message reaches the intended destination.

2.2. Machine Learning-Based Approaches for the Identification of Malicious Nodes

Various machine-learning techniques have been applied to identify malicious nodes
within the existing body of research. The work presented by [27] introduces a trust-based
machine learning approach employing the k-nearest neighbors (KNN) algorithm and fuzzy
logic for clustering. Trust is ascertained using the beta distribution method based on three
fundamental values: trust, reputation, and reputation dependency. Each node’s reputation
is intricately linked to its level of trustworthiness. Following the trust evaluation, the
derived trust values are transmitted to the cluster head, which subsequently updates
the reputation values of individual nodes. Upon completing the clustering and trust
assessment, the presence of malicious nodes is discerned. This is achieved by having the
source node dispatch a route request to the cluster head, scrutinizing the destination node’s
presence within the cluster. If the destination node is not located within the cluster, the
cluster head initiates communication with the corresponding cluster head in other clusters.
The evaluation of trust and reputation for each node is meticulously conducted, and any
indications of malevolent activities prompt the blocklisting of the respective node. In a
distinct study by [35], machine learning techniques and statistical models are leveraged
to identify spurious nodes. The proposed methodology evaluates the efficacy of various
classifiers in pursuing malicious node detection. These classifiers include the gradient
boosting classifier, support vector machine, k-nearest neighbors classifier, logistic regression,
and naive Bayes classifier. From the pool of 19 extracted features, the top 7 features are
selected for evaluation, encompassing parameters like throughput, lost packets, source
node IP address, source and destination port, time of the first packet received, and time of
the last packet received. The routing protocol adopted is AODV, and the NS-3 simulator is
utilized for the experimental framework. The gradient boosting classifier emerges as the
most effective choice for malicious node detection.

Ref. [36] introduces a misbehavior detection technique founded upon a machine learn-
ing algorithm. This approach unfolds through a sequence of four key steps. The first phase
involves data acquisition by collecting information from sensors such as GPS and kine-
matics. Subsequently, various features are extracted from the acquired data. In the second
phase, data on neighboring nodes is gathered, and specific characteristics of counterfeit
nodes are isolated. These attributes include node behavior, packet communication delay,
and broadcasting ratio. The third phase focuses on feature derivation and model training
using supervised learning techniques. Once the model is suitably trained, malicious nodes
are identified by applying an ANN classifier.

Ref. [37] introduced a machine-learning approach to detect malicious nodes within the
mobile ad hoc networks (MANETs) context. This innovative approach couples the AODV
protocol with ANN and support vector machine (SVM) techniques to bolster routing secu-
rity. SVM is leveraged to identify abnormal behavior exhibited by nodes encountered along
the path established by AODV. Upon singling out a suspicious node, ANN is deployed
to assess the accuracy of SVM outcomes, thereby ascertaining whether the flagged node
is fraudulent. The existing body of literature delves into many techniques to enhance the
efficiency and security of routing. VANET clustering techniques are employed diversely to
optimize routing efficiency and prolong network lifespan. The amalgamation of fuzzy logic
with AODV and various AODV routing strategies is explored to make informed routing
decisions. In parallel, AODV is harmonized with distinct machine learning methodologies
and conventional practices to identify and combat black hole attacks in vehicle-to-vehicle
(V2V) communication scenarios. Typically, the evaluation of routing efficiency hinges upon



Sensors 2024, 24, 818 12 of 34

key metrics such as packet delivery ratio, end-to-end delay, hop count, and packet drop
ratio. However, a sophisticated, security-oriented infrastructure-based routing approach
focusing on robust network throughput remains absent. Consequently, our proposed
method offers a productive and secure routing paradigm for VANETs. By fusing a fitness
function and integrating forward and backward control packets for short path prediction
alongside a supervised deep learning model for malicious node detection, this approach
significantly enhances routing efficiency and reliability regarding average end-to-end delay,
hop count, and network throughput [38].

Despite the prominence of VANET research, particularly in data delivery and rout-
ing, the field remains relatively underexplored regarding security. While the literature
encompasses many techniques, including AODV protocols, TAD-HOC routing protocols,
cluster-based routing, Dyte algorithms for optimizing packet delivery efficiency, fuzzy
logic-based routing decisions, and similar approaches, these predominantly focus on rout-
ing solutions. These approaches often lack a comprehensive consideration of potential
attacks on the vehicles involved in the routing process, instead concentrating on statistical
and mathematical results [39]. Moreover, they overlook the integration of machine learning
(ML) techniques, such as ANNs. In light of these limitations, we seek to address the gaps
that persist within the existing approaches. Our results endeavor to present the ANN-based
intelligent secure routing protocol for vehicular ad hoc networks. This protocol delivers
substantial enhancements across various facets of network performance, particularly in de-
tecting black hole attacks, end-to-end delay for packet transmission, transmission efficiency,
hop count, and network throughput. The findings presented in the concluding section,
Section 5, underscore the comprehensive efficiency and enhancements of our proposed
network solution.

3. Intelligent Cluster-Based Routing Approach

In vehicular ad hoc networks (VANETs), the intricate interplay of content placement
and delivery necessitates nuanced consideration, primarily attributed to the dynamic
mobility characteristic inherent to the VANET environment. Crafting a secure routing
protocol for content placement and delivery is paramount in navigating this scenario.
The foundational step lies in the thoughtful design of the VANET network, specifically
concerning the exchange of vital information. Within the ad hoc network paradigm, three
critical modes of communication come to the fore: route error (RRER), route request (RREQ),
and route reply (RREP). The innovation introduced here rests upon a secure, cluster-based
routing mechanism that strives for efficiency and security. Our proposed routing protocol
is structured to provide precise information that promotes efficient content delivery and
related placement strategies. Leveraging the mobility dynamics inherent in the system, we
present an efficient cluster-based secure routing protocol meticulously tailored to minimize
content request delays.

3.1. Routing Attack Scenario

In the context of VANET, communication delays are an inevitable consequence of
its open and peer-to-peer communication structure. Within our proposed methodology,
these delays are primarily attributed to the robust and influential group-based manage-
ment policy that underscores the system. A salient concern stems from the number of
intermediary nodes that come into play when two communication vehicles interact within
VANET. The openness of this environment brings to light two critical issues related to
black hole node attacks. Firstly, there is the matter of path availability, and secondly, the
identification of malicious nodes. Notably, not every vehicle can relay a path to other nodes.
Against this backdrop, the proposed routing approach contemplates and addresses black
hole attacks. These nefarious nodes initiate their assault by targeting nearby nodes with
a carefully orchestrated scenario, aiming to disrupt the communication chain from the
outset. At the inception of its operation, the attacker node transmits the shortest route to
another node. Subsequently, upon reaching the midpoint along the shortest path, it subtly
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withholds packet transmission, thus diverting packets away from the intended path. This
surreptitious packet withholding engenders the characteristic black hole effect, resulting in
the drop of all packets traversing that route, rendering them incapable of reaching their
intended destination. The attack scenario and its ramifications, specifically concerning the
mitigation of distributed denial of service (DDoS) attacks, are elucidated in Figure 6.

In addition to the concern, the intricacies of routing in VANET consistently pose a
formidable challenge owing to network nodes’ rapid and dynamic movement. These
VANET nodes encompass both homogenous and heterogeneous elements, with the vehicle-
to-vehicle (V2V) environment significantly influencing content behavior. Transmitting or
receiving data for content sharing and placement is impeded by the transient nature of
node mobility and the resultant delays in the hop count within the VANET infrastructure.
To tackle this issue, we introduced an intelligent cluster-based secure routing protocol to
mitigate content request delays.

3.2. The Optimal and Secure Route Minimizing Communication Latency to the Fullest Extent

This paper introduces a resolution that articulates an ideal and secure pathway, mini-
mizing the communication delay within the designated vehicle network. VN is the vehicular
node, and N = {N1, N2, . . . .Nm,} is the number of vehicles. Data are sent from the VNs
source node to the VNd. We collect the information through all the nodes between the
source and destination nodes using ∑n

i=0 Vni. We set the location of the vehicles using

VLoc[x,y]
cl under the velocity of nodes using Vvel

cl . There are several nodes on the maps that
provide the directions from one node towards others, so we use maplane under timestamps
to provide the node’s location through any distance from RSU. The threshold distance is
set using Dthreshold under DRSU nodes selections.

3.3. Intelligent Path Prediction

Our devised method operates under the assumption of a uniform dispersion of vehi-
cles across the urban landscape, forming two-dimensional links. The transmission, denoted
as Tr, is distributed uniformly throughout the vehicular ad hoc network (VANET) environ-
ment. Vehicle “p” is regarded as the neighboring node of vehicle “q”, and the transmissions
between these vehicular nodes (V-Nodes) should not exceed a specific range denoted as
“r”. Figure 7 illustrates the methodology of the proposed system.

We set the BS as the base station to collect vehicle information and apply ANN-based
implementation under a modified AODV algorithm concerning trustworthy nodes. TN

R
machine learning makes these trust nodes TML

R . The vehicle requests a route. Vroot
R for

data-sending and then receiving replies through Vroot
R .

A uniform speed profile is maintained across all vehicles within our framework. We
delineate two primary lanes connecting the source and destination nodes. Each vehicular
node (V-node) employs a singular algorithm, affording a solitary opportunity to succeed
within the VANET environment. This algorithm facilitates intercommunication between
different waypoints. Thanks to our method, minimal interference with the driving behavior
of vehicle nodes results in substantial control over other network participants. A routing
protocol is employed to adhere to prescribed routing instructions issued by the RSU, as
shown in Table 1. Failure to comply with RSU instructions for request or response rout-
ing results in non-disclosure of routing and other vital information, ensuring its security.
VANET proves instrumental in efficiently delivering and placing content to serve vehicular
nodes. VANET augments content request and response parameters by incorporating effec-
tive monitoring and control measures. Our proposed methodology is visually represented
in Figure 8, encompassing vital components such as malicious node detection through
machine learning, cluster formation, and efficient path prediction utilizing a modified
AODV protocol. In the initial phase, nodes undergo evaluation by the RSU through a deep
learning model. Upon satisfying the requisite clustering parameters, nodes are integrated
into clusters, and optimized communication paths are predicted using the modified AODV
protocol. This process is elucidated in Figure 8. Modified AODVs (ad hoc on-demand
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distance vector) enhance the traditional AODV routing protocol used in mobile ad hoc net-
works (MANETs). The modifications in this protocol aim to improve the routing efficiency,
reduce latency, and enhance its adaptability to the dynamic nature of MANETs. The main
reasons for the modification of AODVs are as follows:

• Enhanced route discovery: Modified AODVs employ advanced algorithms to op-
timize the route discovery process. It uses techniques like improved route request
broadcasting and route reply propagation. This enhancement reduces the time taken
to establish a route.

• Classification parameter: The modifications introduce a classification parameter that
helps categorize routes based on their stability and reliability. This parameter is used
to select the most suitable route for data transmission.

• Dynamic route maintenance: Modified AODVs adapt to network changes more effi-
ciently. It incorporates mechanisms for monitoring the stability of routes and triggers
route updates when necessary. This ensures that the protocol can quickly react to link
failures and changes in network topology.

• Load balancing: The modified version is designed to distribute traffic evenly across avail-
able routes, preventing congestion and improving overall network performance. This is
achieved through route selection algorithms that consider the current network load.

• Improved scalability: The modifications address scalability concerns by optimizing
the route table management. It can handle a larger number of nodes in the network
without a significant increase in control overhead.

• The main advantage of this AODV modification is that it enhances the proposed sys-
tem’s performance. Reduced latency: The improved route discovery and maintenance
mechanisms reduce the latency in establishing and maintaining routes. This is crucial
for real-time applications like video streaming and online gaming.

• Enhanced reliability: The classification parameter helps select more reliable and stable
routes, reducing packet losses and improving communication quality.

• Adaptability: The protocol can quickly adapt to changes in the network, such as node
mobility or link failures, making it suitable for dynamic ad hoc networks.

• Efficient Resource Utilization: Load balancing and scalability improvements ensure
that network resources are utilized efficiently, leading to better network performance
and longevity.

• Improved quality of service support: The modifications enhance the support for
quality of service (QoS) by allowing for a better selection of routes based on specific
application requirements.

Table 1. Modified AODV routing protocol and its implementation.
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192.168.1.100 192.168.1.105 2 Vehicle 1
(Sedan)

RSU1,
RSU3

Learning
Rate: 0.01 No Yes 4 2 1234 High 1000 Yes

192.168.1.201 192.168.1.202 1 Vehicle 2
(Truck)

RSU2,
RSU4

Learning
Rate: 0.02 Yes No 3 1 5678 Medium 800 No

192.168.1.305 192.168.1.308 3 Vehicle 3
(Motorcycle)

RSU1,
RSU2

Learning
Rate: 0.01 No Yes 5 3 9876 Low 1200 Yes
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Table 1. Cont.
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192.168.1.410 192.168.1.412 2 Vehicle 4
(Bus)

RSU3,
RSU4

Learning
Rate: 0.03 No Yes 2 1 3456 High 900 No

192.168.1.501 192.168.1.504 1 Vehicle 5
(Sports Car)

RSU1,
RSU2

Learning
Rate: 0.02 No No 6 4 6543 Medium 1500 Yes

192.168.1.610 192.168.1.611 1 Vehicle 6
(Van)

RSU3,
RSU4

Learning
Rate: 0.01 No Yes 4 2 7890 Low 1100 No

192.168.1.701 192.168.1.703 3 Vehicle 7
(Electric Car)

RSU1,
RSU2

Learning
Rate: 0.02 Yes No 2 2 4321 High 1700 Yes

192.168.1.810 192.168.1.815 2 Vehicle 8
(SUV)

RSU1,
RSU3

Learning
Rate: 0.03 No Yes 3 3 8765 Medium 950 Yes

192.168.1.910 192.168.1.912 1
Vehicle 9
(Compact

Car)

RSU2,
RSU4

Learning
Rate: 0.01 No No 4 2 2345 Low 1300 No

192.168.1.1000 192.168.1.1003 3 Vehicle 10
(Tractor)

RSU1,
RSU2

Learning
Rate: 0.02 No Yes 5 4 5670 High 1600 Yes
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3.4. Cluster Formation

In this approach, the roadside unit (RSU) is pivotal in guiding the formation of
clusters, as detailed in Algorithm 1. Initially, each vehicle node enters the simulation
environment, represented as a lane on the highway, and broadcasts a timestamp. Cluster’s
C are transformed after setting, causing range through CRange

i . After setting the cluster

with range, each cluster is assigned an identity using Cidentity
i . In each cluster, the number

of neighbors is setup through Cneighbour.
These vehicles initially establish communication with all RSUs within their operational

range. To achieve robust and stable cluster formation, we employ four critical conditions.
These conditions consider the relative change in speed (denoted as Vval

cl ), the distance (D)
covered by the vehicle during the timestamp, and the number of neighboring vehicles
within the range of cluster nodes. The distance between an RSU and a new vehicular node
is computed upon entering the system. According to Algorithm 1, the vehicular node is
affiliated with the RSU if this distance is below a certain threshold. The RSU plays a central
role in cluster formation, managing content distribution, message requests, and responses.
Initially, vehicles broadcast timestamps to RSUs, initiating the formation of clusters using
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Algorithm 1. The RSU oversees the establishment of connections, employing conditions
based on speed, distance, and neighboring vehicles. The RSU monitors vehicular nodes’
behavior, employing a deep learning model (Algorithm 2) for malicious node detection.
Secure nodes are connected to the RSU, forming clusters, and each RSU within a cluster
assigns authentication keys to cluster members. The RSU is responsible for optimizing com-
munication paths, detecting and handling malicious nodes, and ensuring secure clusters
through key assignments. The RSU, through Algorithms 1 and 2, orchestrates the entire
process. It evaluates vehicle speed, direction, and neighboring nodes, forming clusters and
facilitating secure connections. The RSU efficiently utilizes a deep learning model to detect
and exclude malicious nodes, ensuring the integrity of the clusters. It manages content
distribution and facilitates message requests and responses within the formed clusters.
The RSU’s continuous monitoring of vehicular nodes and dynamic adjustments to connec-
tivity parameters contribute to a robust and adaptive communication framework. This
comprehensive approach ensures efficient content delivery, robust cluster formation, and
resilient communication architecture, which is crucial for the proposed system’s success in
vehicular networks.

Algorithm 1. Cluster formation

Input: Vvel
cl , Vloc[x, y]

cl , map_lans, tim_span, RSUi, Nneighbour
Output: Cluster, Number of Clusters

Steps:

1. While t←1 to tim_span
2. While i ← 1 to map_lans
3. if (detect( RSUi ))

4. DNode
RSU ← ( Vloc[x, y]

cl , RSUloc[x, y]
cl , NNode

Neighbour):

5. Vvel
cl ← vehicle speed

6. i f ((D < Dthreshold) || (Vvel
cl < Vvel(threshold)

cl )|| (NNode
Neighbour < Nthreshold

Neighbour) )||(VN ←
Algorithm 2))

7. RSUi ← ID
8. End if
9. Ci←RSUi(∀ID)
10. End if
11. End
12. End

13. set(CRange
i )

14. Set(CIdentity
i )

15. CN
i ← ∀Ci ∴ where Ci ̸= 0

This continual process involves connecting and influencing vehicles and ensures
a steady data flow and an efficient, reliable communication framework. It is impor-
tant to note that we assume all vehicles move in the same direction. In a real-world
context, variations in speed would be observed, but our approach accommodates these
fluctuations by considering the relative speed, thus maintaining an efficient and reliable
communication architecture.

Furthermore, the speed of each vehicular node is monitored to enhance content deliv-
ery efficiency. If a vehicle’s speed falls below a certain Vval

cl , the threshold is permanently
associated with the RSU. After verifying the connectivity parameters within the cluster, our
system identifies and flags malicious nodes that exhibit suspicious behavior. The selection
of malicious nodes is achieved through a deep learning process, significantly enhancing the
efficiency of learning and detection, as detailed in Algorithm 2. We employ logistic regres-
sion, a binary classification algorithm, and ANN, a supervised deep learning technique, to
identify black holes or malicious nodes. A precise and accurate model is cultivated using
backpropagation, a method for minimizing error by reducing the cost function. Nodes
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identified as abnormal or malicious are subsequently excluded or rejected, while secure
or normal nodes are integrated into the cluster. A three-layered deep learning model is
deployed to detect and classify malicious attacks within the proposed system. Artificial
neurons and successive layers process the input data, ultimately evaluating architectural
values to pinpoint black holes or malicious or counterfeit nodes. Training the deep learning
network hinges on detecting malicious attacks based on parameters such as black hole
attack intensity, packet drop ratio, data content, timestamps, packet rates, and the distance
between nodes and RSU in the network. This architectural approach repetitively uses 25,
50, 75, and 100 nodes to detect malicious nodes with black hole attacks. Once malicious
nodes are identified, communication paths are determined using a modified AODV-based
routing table and updated following the provided AODV architecture, as expounded in
Algorithm 2, detailing the deep learning model for malicious node detection.

Algorithm 2. Black hole attack detection through deep learning

Input: P as properties o f vehicel, Ntype f or algorithm, Nk f or Neural network

kernal f unction , MLIlteration, MLQuantity
Neurons , data− Division(25, 50, 75, 100),

CVN
N is current Node f rom all VNs,

Output: Blackhole detection and trans f ormation

STEPS:
TRAINING MODEL OF MACHINE LEARNING

Pinitial ← Algorithm 2
kernalML

Routing()← (initialize)
While k ← 1 to AllVN

if ( VNi → propertyreal )
AllocateVN ← training_data()

Trainto N
1 ← (VN(i))

End While

MLSystem
Trained ← System_Train(P, AllocateVN , NK)

Traineddataset ← MLSystem
Trained . Machines() INITIALIZE ML PARAMETERS

f or i = 1 to P

i f
(

p ∈ RealnodePerty

)
Group1nodes

real ()← All

else i f
(

p ∈ Non− RealnodePerty

)
Group2nodes

non−real()← All
do

Group3nodes
extra ()← (extra)

END
NetworkTrained ← Newo f f Trained(VN, G1, G2, G3, P)

STING

While j = 1 to AllTrained Nodes
Process(CN) ← Current Node Properties()

∴ get current node priperties
RAuth ← simulation

(
CVN

N , NetworkTrained)
i f (RAuth = TRUE)

AuthNode ← TRUE Authenticated Node Exists
else

AuthNode ← FALSE
END
Return : AuthNode as output

In this approach, the RSU is pivotal in guiding the formation of clusters, as detailed in
Algorithm 1. Initially, each vehicle node enters the simulation environment, represented
as a lane on the highway, and broadcasts a timestamp. These vehicles initially establish
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communication with all RSUs within their operational range. To achieve robust and
stable cluster formation, we employ four critical conditions. These conditions consider the
relative change in speed (denoted as Vval

cl ), the distance (D) covered by the vehicle during
the timestamp, and the number of neighboring vehicles within the range of cluster nodes.

The distance between an RSU and a new vehicular node is computed upon entering
the system. According to Algorithm 1, the vehicular node is affiliated with the RSU if
this distance is below a certain threshold. This continual process involves connecting and
influencing vehicles and ensures a steady data flow and an efficient, reliable communi-
cation framework. It is important to note that we assume all vehicles move in the same
direction. In a real-world context, variations in speed would be observed, but our approach
accommodates these fluctuations by considering the relative speed, thus maintaining an
efficient and reliable communication architecture.

Furthermore, the speed of each vehicular node is monitored to enhance content deliv-
ery efficiency. If a vehicle’s speed falls below a certain Vvel

cl , the threshold is permanently
associated with the RSU. After verifying the connectivity parameters within the cluster,
our system identifies and flags malicious nodes that exhibit suspicious behavior. The
selection of malicious nodes is achieved through a deep learning process, significantly
enhancing the efficiency of learning and detection, as detailed in Algorithm 2. We employ
logistic regression, a binary classification algorithm, and ANN, a supervised deep learning
technique, to identify black holes or malicious nodes. A precise and accurate model is
cultivated using backpropagation, a method for minimizing error by reducing the cost
function. Nodes identified as abnormal or malicious are subsequently excluded or rejected,
while secure or normal nodes are integrated into the cluster.

A three-layered deep learning model is deployed to detect and classify malicious
attacks within the proposed system. Artificial neurons and successive layers process the
input data, ultimately evaluating architectural values to pinpoint black holes or malicious
or counterfeit nodes. Training the deep learning network hinges on detecting malicious
attacks based on parameters such as black hole attack intensity, packet drop ratio, data
content, timestamps, packet rates, and the distance between nodes and RSU in the network.
This architectural approach repetitively uses 25, 50, 75, and 100 nodes to detect malicious
nodes with black hole attacks. Once malicious nodes are identified, communication paths
are determined using a modified AODV-based routing table and updated following the
provided AODV architecture, as expounded in Algorithm 2, detailing the deep learning
model for malicious node detection.

After malicious node detection, secure nodes are connected to their relevant RSU,
forming a cluster. The range for every cluster is set as a fixed range with the car’s identity
to be observed for the said range inside the cluster transformation. The set range is marked
red and compared for the final selection of the clusters. Finally, the RSU successfully stores
the ID of every vehicle with ID and becomes a thriving and active cluster member. The
main ideas of Algorithms 1 and 2 are provided here.

Algorithm 1 outlines the steps for cluster selection and appointing a cluster head in
vehicular networks. It iteratively assesses vehicles and RSUs, evaluating distance, speed,
and neighboring nodes. When detecting an RSU, it calculates the distance between the
RSU and the vehicular node, considering speed and neighbouring nodes. If conditions
regarding distance, speed, and neighbors are met, the RSU is assigned an identity, and a
cluster is formed. The algorithm then sets the range and identity for the cluster, ensuring
its integrity. The resulting cluster, with non-zero identifiers, represents a cohesive group
in the vehicular network, ready for subsequent operations like content distribution and
secure communication.

i. Initially, a vehicular node broadcasts a timestamp (ML parameter) to RSU. Then,
RSU checks the speed of node i-e. If it is less than the speed threshold, it is consid-
ered eligible for permanent connection with RSU; if it is greater than the threshold,
it forms a temporary connection with RSU, then the direction of the node is checked.
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ii. After that, all the ML parameters are applied for malicious node detection. The
node’s packet delivery and packet drop information, i.e., the node’s previous be-
havior, is taken from the previous RSU.

iii. After verifying present and previous behavior through the deep learning classifier
ANN, the node is declared secure and becomes part of the secure cluster.

Ultimately, each RSU within a cluster assigns an authentication key to every member
of the secure cluster. The parameters for cluster formation are Vvel

cl the velocity of vehicles

reached in the cluster domain, Vloc[x,y]
cl shows the location of vehicles for the cluster erra

transformation, map_lans shows the actual maps location of vehicles, tim_span shows the
time tables from the entry into cluster and approval from the ML model, RSUi all the RSUs
used in the clusters, and Nneighbour shows the parameter for the number of neighbours of
the vehicles used in the cluster formation. The aspects involved in this algorithm show the
vehicle’s final selection and clear understanding. The algorithm outputs the customer and
its members with the number of clusters made through the proposed approach.

The complexity of Algorithm 1 for cluster formation involves nested loops iterating
over time spans and map locations, making it dependent on the size of the input space
(tim_span and map_lans). Within these loops, the algorithm performs conditional checks
and calculations based on parameters such as vehicle speed, distance thresholds, and the
number of neighbors. The number of RSUs, the conditions for cluster formation, and the
execution of Algorithm 2 influence the overall time complexity. The complexity is likely
polynomial, significantly impacting the nested loops and conditional statements.

Input parameters are the key parameters based on which the algorithm selection pro-
cess works. Ntype is used for the type of ML algorithm used, Nk is the neural network kernel

function, MLAlteration, shows the number of iterations of an ML model speech, MLQuantity
Neurons

shows the quality of NN neurons in the ML model, data−Division(25, 50, 75, 100) shows
the clear division of data into sections, and CVN

N shows the selected nodes from all cluster
nodes. The output parameter is the final selection vehicle that is malicious or non-malicious.

The training and testing phases of the machine learning model determine the complex-
ity of Algorithm 2. The training involves iterating over the nodes in the network (All_VN),
with nested loops for property allocation, model training, and parameter initialization.
While evaluating the trained model, the testing phase involves iterating over the trained
nodes and simulating the authentication process. The time complexity is influenced by the
number of nodes, neurons in the neural network, and the iterations involved in training.
Additionally, the use of deep learning techniques suggests a complexity that is likely high
and depends on the complexity of the neural network architecture.

3.5. Path Prediction

Path projection is achieved by implementing an enhanced AODV. In the standard
AODV protocol, three operational modes exist:

• Route Request Mode: In this mode, a request for a route is disseminated to all
neighboring nodes, persisting until it ultimately arrives at the intended destination.

• Route Reply Mode: In this mode, each neighboring node that can potentially offer
a route to the destination responds by providing the route information to the source
node. The source node then forwards the message via the route characterized by the
most prominent sequence number.

• Route Maintenance Phase: This phase comes into play when a route fails to transmit
a message to the destination.

3.5.1. Route Request and Route Reply

In the initial phase, the source node initiates the transmission of a forward communi-
cation path (FCP), including a timer, to the neighboring nodes. This path traverses through
all nodes until it successfully reaches the destination node. Moving from one node to
another, it accumulates and stores data concerning the entire set of visited nodes. These
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data encompass details such as the identification of the visited nodes, the time of arrival
at each node, the distance of each node from the source, and the node’s capacity, denoted
by the number of channels it possesses. Upon reaching the destination node, the system
generates a reverse communication path (RBP), and the FCP is subsequently dismantled.
Following the deactivation of the FCP, the destination node crafts a bidirectional communi-
cation path (BCP) and dispatches it back to the source node using the same route. During
this process, the system computes the distance between the source and destination nodes
and the number of intermediary nodes along this route. The source node receives the RBP
from multiple neighboring nodes, while the BCP offers multiple routes to the source node
for transmitting packets. The modification in the creation and management of the FCP
involves the transmission of a forward communication path (FCP) from the source node
to the destination node. This path accumulates and stores data regarding visited nodes,
arrival times, distances from the source, and node capacity. The FCP is deactivated upon
reaching the destination, generating a bidirectional communication path (BCP), which
is sent back to the source using the same route. The BCP provides multiple routes for
transmitting packets, and Equation (1) is employed to calculate distances along these routes.
The introduced parameters include node identification, arrival times, distances, and node
capacity, contributing to a more comprehensive and detailed path establishment than the
standard AODV. However, it introduces a forward communication path (FCP) and reverse
communication path (RBP) in the initial phase, along with a bidirectional communication
path (BCP) during the route reply process. The details suggest an enhanced mechanism for
path establishment and data accumulation compared to the traditional AODV. Equation (1)
is employed to calculate the distances along these routes.

DisN =
Dis2(S, D) + Dis2(S, n)−Dis2(n, D)

2×Dis2(S, D)
. (1)

The introduced forwarding candidate path (FCP), repairing backup path (RBP), and
backup candidate path (BCP) in the modified AODV protocol significantly contribute to
improved efficiency, reduced latency, and enhanced reliability. FCP strategically identifies
and utilizes optimal paths for data forwarding, minimizing congestion and enhancing
overall network efficiency. RBP acts as a proactive measure, swiftly repairing broken
links to maintain seamless communication, thereby reducing latency. BCP adds a layer of
reliability by establishing alternative paths in advance, mitigating the impact of link failures
and ensuring robust connectivity. Collectively, these enhancements result in a protocol that
not only optimizes resource utilization but also minimizes data transfer delays and fortifies
the network against potential disruptions, thereby elevating the overall performance and
dependability of the AODV protocol.

3.5.2. Route Maintenance

Upon route establishment, the system selects the optimal pathway from the routing
table, aiming for the one that offers the shortest distance and the least number of hops.
The path selection criteria with minimal transmission delay may shift depending on the
scenario. An objective function is introduced, driven by decision variables, to facilitate the
achievement of this objective. These decision variables encompass hop counts, distance,
and node capacity, aiming to optimize packet transmission delay. The delay experienced in
transmitting packets is contingent upon these decision variables. Following a comprehen-
sive, objective function evaluation, the source node dispatches the packet to the destination.
If path errors are detected, the roadside unit (RSU) broadcasts a route error message back
to the source. Subsequently, the source node redirects the packet through an alternative
path that is the next most suitable. It is important to note that this communication method
applies exclusively when the destination is located within the cluster. However, if the desti-
nation node is situated outside the cluster and requires communication with subsequent
vehicular nodes, a mechanism comes into play. When the destination is within the cluster,



Sensors 2024, 24, 818 22 of 34

the communication process involves RSU broadcasting a route error message back to the
source node upon detecting path errors.

The source node then redirects the packet through an alternative path within the
same cluster. However, an authentication key mechanism is activated if the destination is
outside the cluster and requires communication with subsequent vehicular nodes. The RSU
furnishes an authentication key in Algorithm 1, and upon RSU confirmation, the vehicular
node can communicate with the next cluster node, mirroring the process for inter-cluster
communication. The RSU authentication key serves a crucial role in inter-cluster commu-
nication. When a vehicular node needs to communicate with subsequent nodes outside
its cluster, it utilizes the authentication key provided by the RSU in Algorithm 1. This key
serves as a form of authorization, allowing the vehicular node to establish communication
with the next cluster node. The RSU’s authentication key acts as a secure credential, ensur-
ing that only authorized nodes within the cluster can communicate with nodes in other
clusters. This mechanism enhances the security and integrity of inter-cluster communica-
tion by controlling access and verifying the legitimacy of communication between clusters
in the vehicular network.

In this scenario, the authentication key furnished by the RSU in Algorithm 1 is shared
with the following cluster node. Following RSU confirmation, the vehicular node can
communicate with the next cluster node. The process mirrors the one employed for inter-
cluster communication.

Various procedures and loops influence the complexity of Algorithm 3 for path pre-
diction using modified AODV. The FCPdata_send procedure involves sending messages
to neighbors, and the objective function procedure utilizes AODV to obtain paths and
evaluate fitness functions. The overall time complexity is likely influenced by the num-
ber of vehicular nodes, the iterations in evaluating fitness functions, and the conditional
checks for distance, hop count, and channel availability. The nested loops contribute to
the complexity, especially in the objective function procedure. The overall complexity is
likely polynomial and depends on factors such as the number of nodes, paths, and the
effectiveness of the fitness function evaluation.

Algorithm 3. Path prediction using modified AODV

Input: secure clusters, FCP, BCP, vehicular nodes(25, 50, 75, 100)
Output: Predicted path, targeted path

FCPdata_send(source, destination)
i f (neighbor! = 0)

Send FCP to all neighbors
f or i = 1 to n{

i f (neighbor = destination){ {
Delete FCP and create BCP

Data_send(source, destination)}
Else

FCPdata_send(source, destination)}
Procedure Objective function()
Available paths → AODV

While (j<=p)
Obtain path and evaluate fitness function

i f (distance, hopcount and channels > threshold)
Evalaute obejctive function()

Increment j
End while
End

4. Performance Evaluation

This chapter delineates the context and enacts the envisioned project within the
VANET milieu. Herein, we elucidate the outcomes of our experiments, employing deep
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learning techniques and simulations conducted using the Network Simulator-2 (NS-2).
These endeavours are aimed at comprehensively assessing and executing the principal
operational scenarios.

4.1. Simulation Scenario

We implemented the prescribed methodology in NS-2.33 to assess the efficacy of
our proposed model. This model was meticulously crafted to ensure vehicular devices’
efficient and dependable performance in routing and detecting black hole attacks. The
critical parameters for gauging the system’s performance encompass end-to-end delay,
network throughput, average hop count/throughput, and average delay. We assessed these
parameters by comparing results referenced in the literature [4,36]. Our comprehensive
evaluation unfolds within the expansive confines of the NS-2 simulator, covering 1400 m
by 1400 m. The experimental parameters and configurations are meticulously detailed in
Table 2. To appraise the performance of our proposed protocol, we scrutinized a custom
network topology replete with interaction points, vehicles, highways, RSUs, source vehicles,
and destination vehicles. The efficiency of the revised-AODV protocol was assessed based
on crucial parameters, including end-to-end delay, network throughput, average hop count,
and average delay. These metrics serve as quantifiable indicators, offering a clear basis for
comparing AODV approaches. By focusing on these specific factors, the paper establishes
a comprehensive framework for evaluation, ensuring a legitimate and justified comparison
between the proposed algorithm and existing AODV variations.

Table 2. Simulation setup and its range for effective routing and parameter discussion.

Parameters Values

Simulator SUMO 1.19 + NS-3.0
Network Area Range 2500 m × 2500 m
Vehicle Drive Time 200 s

Total Simulation Time 1000 s
Nodes Density 100, 150, 200, 250, 300, 350, 400.

Wireless Protocol 802.11 b
TransmissionRange Among Vehicles 1500 m

Number of Vehicles 200
Road Conditions Two Way Highly Road
Number of RSUs 30

RSU Wireless Area 250 m
RSU Broadcast Time Interval 50 s

Network Connectivity 5G

Furthermore, in our evaluation, we incorporated node mobility and the count of active
connections within the network as pivotal parameters for the ultimate test of identifying
malicious nodes. Our study’s vehicles traversed roadways while communicating with the
roadside infrastructure. This communication transpired via Wi-Fi connectivity, enabling
vehicles to interact with one another and with RSUs. Such interactions are essential for
content requests and subsequent content delivery, governed by specific parameters.

Vehicles traveling in various directions and along different routes also established
connections with the next RSU and other vehicles within their cluster range. Despite
adopting cluster-based routing, each cluster adhered to its unique routing protocols. When
a new vehicle entered the range of a cluster and became a member, it solely solicited
content from the designated RSU. We employed 100 vehicles in our simulation, randomly
distributing their internal distances within a given cluster. The road width was standardized
at 3 m, with all roadside elements remaining stationary. This focus on V2V communication
rendered the vehicles immobile and exclusively operated within urban roadside areas. The
average speeds of these vehicles fluctuated within predefined limits, and the simulation
duration, as indicated in Table 2, was extended to surmount challenges, thereby facilitating
vehicle travel. We gauged the performance of our model through a set of key performance
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indicators (KPIs). These included an ANN-based intelligent network model for black
hole detection, measuring the training and testing accuracy to minimize error rates in
detecting black hole attacks. We also quantified hop count to ascertain the minimum
hops in communication paths from source to destination, gauged end-to-end delay by
calculating the ratio of packets sent and received at the destination node, and measured
network throughput.

4.2. Dataset and Evaluation Results

We employed a supervised deep learning model to identify malicious nodes. This
model was meticulously trained using pre-existing datasets, as documented in refer-
ence [36], which pertained to detecting malicious nodes within wireless sensor networks.
Our dataset encompassed 14 independent variables and a singular dependent variable.
The independent variable attributes included data such as destination IP, next hop, hop
count, vehicle information, RSU’s, ANN algorithm, parameters, malicious node, RSU-based
decision, route request, route reply, sequence number, classification, packets delivered, and
shortest path (yes/no). In this case, the output variable pertained to the class or category
of the nodes and the shortest path for the variable values. Our dataset was substantial,
consisting of more than 50,000 records. We employed an ANN classifier to detect malicious
nodes. Table 3 provides the layers with output parameters and values from each NN layer
in the system.

Table 3. NN model with layer parameters and output values.

Parameters Values

Dense (Dense) (None, 14)
Dense_1 (Dense) (None, 64)
Dense_2 (Dense) (None, 64)
Dense_3 (Dense) (None, 64)
Dense_4 (Dense) (None, 1)

Figure 9 shows NN, input, hidden, and output layers. In the context of network
routing and decision-making, the configuration of a neural network plays a pivotal role
in optimizing performance. A neural network designed for this purpose may comprise,
for instance, 14 input nodes representing relevant network parameters, two hidden layers
containing 8 and 6 nodes, respectively, and a single output node for decision output. This
architecture enables the model to capture intricate patterns and relationships within the
data, facilitating complex decision-making processes. The choice of layers and nodes is
informed by the specific requirements of the routing task to balance model complexity and
computational efficiency.

Moreover, leveraging activation functions such as the rectified linear unit (ReLU) and
employing dropout techniques at 0.2 between layers enhances the network’s ability to
generalize and prevent overfitting. Such a well-configured neural network demonstrates
the capacity to learn and adapt to dynamic network conditions, ultimately contributing to
efficient and adaptive routing and decision-making in complex networking environments.
Our approach adopted gradient-boosted neural networks (GBNN) as an ANN model. This
hybrid approach combines the strengths of gradient boosting and neural networks. It
trains a neural network to capture complex patterns in the data and integrates it with a
gradient-boosting framework. GBNN is effective for improving predictive performance on
structured tabular data. The gradient-boosted neural network (GBNN) model presents a
compelling fusion of the strengths derived from gradient boosting and neural networks,
offering a unique set of advantages compared to standalone models. One notable advan-
tage is the model’s ability to capture intricate patterns within structured tabular data. By
training a neural network within a gradient-boosting framework, GBNNs can effectively
learn complex, non-linear relationships that may exist among different features. This is
particularly advantageous in scenarios where traditional linear models may fall short, as
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the neural network component allows for extracting high-level abstractions and repre-
sentations from the data. Another significant advantage lies in the ensemble nature of
GBNNs. Integrating gradient boosting with neural networks results in a hybrid model that
leverages the strengths of both approaches. The boosting framework helps to improve the
model’s overall predictive performance by sequentially correcting the errors made by the
neural network component. This collaborative learning process often leads to enhanced
generalization capabilities, making GBNNs well-suited for a wide range of tabular datasets.
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We gauged the performance of this classifier using the BHT dataset, as documented in
reference [39]. This evaluation was predicated on the forecasted outcome values, and Table 4
comprehensively depicts this anticipated dataset’s overall performance. An expanded array
of features bolstered the system’s performance metrics. Accuracy, as a performance metric,
was calculated by determining the ratio of correct predictions the model made to the total
number of predictions. Equation (2) outlines the computational formula employed for the
accuracy assessment of the GBNN model. The accuracy precision and recall values were
computed using parameters such as true positive (TP), true negative (TN), false positive
(FP), and false negative (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
. (2)

Table 4. ANN Model parameter results over classification classed 0, 1 and average.

Classification Class Precision Recall F1 Score Accuracy

0 0.97 0.99 0.98 0.97
1 0.98 0.98 0.98 0.98

Average 0.975 0.985 0.98 0.975

Precision was computed by ascertaining the number of accurate positive predictions
made by the model and dividing this by the total count of positive predictions. Equation (3)
delineates the formula used for computing precision in the context of the ANN model.

Precision =
True Positives

True Positives + False Positives
. (3)
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Recall was determined by quantifying the number of correct positive predictions
generated by the model and dividing this figure by the total count of positive instances
within the dataset. Equation (4) elucidates the mathematical formula utilized for calculating
recall within the framework of the ANN model.

F1− Score =
(TP)

(TP + FN)
. (4)

The F1 score is a metric that assesses the equilibrium between precision and recall. This
metric was computed as the harmonic mean of both precision and recall, as demonstrated
by Equation (5), which provided the formula for calculating the F1 score within the context
of the ANN model.

Precision =
2× (Precision× Recall)
(Precision + Recall)

. (5)

4.3. Model Accuracy

Building upon the performance evaluation of the proposed system concerning the BHT
dataset, we compiled a comprehensive set of outcomes to facilitate the effective analysis
and prediction of system performance metrics. Our training efforts demonstrate that
the training prediction of the system has undergone significant enhancements, enabling
valuable performance comparisons across various datasets. Figure 10 vividly presents the
model’s accuracy, further detailed in Table 4. Model accuracy, as assessed using Equation (2),
offers insights into the system’s performance.

Sensors 2024, 24, x FOR PEER REVIEW 27 of 35 
 

 

Precision =  2 ×  (Precision × Recall)(Precision Recall) . (5)

Table 4. ANN Model parameter results over classification classed 0, 1 and average. 

Classification Class Precision Recall F1 Score Accuracy 
0 0.97 0.99 0.98 0.97 
1 0.98 0.98 0.98 0.98 

Average 0.975 0.985 0.98 0.975 

4.3. Model Accuracy 
Building upon the performance evaluation of the proposed system concerning the 

BHT dataset, we compiled a comprehensive set of outcomes to facilitate the effective 
analysis and prediction of system performance metrics. Our training efforts demonstrate 
that the training prediction of the system has undergone significant enhancements, 
enabling valuable performance comparisons across various datasets. Figure 10 vividly 
presents the model’s accuracy, further detailed in Table 4. Model accuracy, as assessed 
using Equation (2), offers insights into the system’s performance. 

 
Figure 10. Model accuracy of the proposed BHT model. 

In addition to the system’s precision, the model demonstrates a noteworthy 
reduction in the system metric, signifying remarkable accuracy levels. The epoch values 
that underpin the model’s accuracy and the subsequent improved results are of particular 
significance for research and analytical purposes. A meticulous validation test was 
conducted using the carefully selected BHT model dataset, encompassing 100 epochs, to 
yield the model’s results. The graphical depiction, with blue lines tracing the model’s loss 
during the training and its testing accuracies, provides valuable insights. The proposed 
ANN model was methodically trained to assess its performance meticulously. The 
training phase was conducted on 70% of the dataset, while the testing phase encompassed 
30% across all classification categories. The training and testing model results were 
quantified using Equations (2)–(4). The percentages denoting accuracy, precision, recall, 
and F1 score, as displayed in Table 3, underscore the elevated accuracy levels that 
persistently showcase the model’s efficacy and the functions that govern its performance. 
Figure 11 shows the model accuracy comparison with other techniques. 

Figure 10. Model accuracy of the proposed BHT model.

In addition to the system’s precision, the model demonstrates a noteworthy reduction
in the system metric, signifying remarkable accuracy levels. The epoch values that underpin
the model’s accuracy and the subsequent improved results are of particular significance
for research and analytical purposes. A meticulous validation test was conducted using
the carefully selected BHT model dataset, encompassing 100 epochs, to yield the model’s
results. The graphical depiction, with blue lines tracing the model’s loss during the training
and its testing accuracies, provides valuable insights. The proposed ANN model was
methodically trained to assess its performance meticulously. The training phase was
conducted on 70% of the dataset, while the testing phase encompassed 30% across all
classification categories. The training and testing model results were quantified using
Equations (2)–(4). The percentages denoting accuracy, precision, recall, and F1 score, as
displayed in Table 3, underscore the elevated accuracy levels that persistently showcase
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the model’s efficacy and the functions that govern its performance. Figure 11 shows the
model accuracy comparison with other techniques.
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4.4. Model Loss

Figure 12 visually portrays the model’s loss concerning the proposed BHT dataset, and
the associated accuracy results are briefly elaborated in Table 3. This graphic presentation
encapsulates the loss experienced by the suggested system across the designated dataset.
System performance evaluation hinges on utilizing training and test datasets, focusing on
the model’s loss metrics. These metrics align with the predefined dataset, thus enabling the
iterative training and testing of the proposed model. The graphical representation of the
model’s loss is visually depicted in Figure 12.
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In this configuration, the vehicles within the system employed UDP to transmit data
packets, with the transmission rate varying from 0.5 Mbps to 5 Mbps. In contrast, each
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packet was approximately 512 bytes in size. The key parameters assessed for perfor-
mance evaluation encompassed end-to-end delay, packet delay, and network throughput.
Additionally, we carefully monitored the occurrences of packet drops and inter-vehicle
communication. Each simulation scenario was rigorously executed 150 times to ensure
comprehensive and reliable results. Table 5 shows the prediction performance of the BHT
model with vehicle speed in m/s and simulation time in the simulation environment. The
table content shows the number of vehicles with speed under different simulation times
to capture the malicious nodes effectively. Implementing ML is a pivotal tool to enhance
routing efficiency. ML primarily manages traffic flow, endeavors to minimize packet trans-
mission delays, and enhances the system’s ability to detect malicious attacks. In black hole
attacks, there is a discernible impact on the packet transmission ratio, resulting in increased
hop counts for network transmission and ensuing delays. By introducing machine learning
into the routing process, we sought to augment the overall performance and refine the
criteria for detecting and mitigating malicious attacks within the network.

Table 5. Prediction performance for the BHT model.

Vehicle Speed (m/s) Simulation End Time

15 56
14 57
13 59
12 61
11 64
10 67
9 70
8 75
7 80
6 88
5 99
4 115
3 141

4.5. End-to-End Delay

In the context of vehicular ad hoc networks (VANET), end-to-end delay pertains
explicitly to measuring the time it takes for a packet to be transmitted from the source node
and successfully received at the destination node during the black hole attack scenario.
The behavior of a black hole attack depends on the routing procedure, protocols, and
the number of involved nodes. The results in Figure 13 compared existing techniques
with the minimum number of times the under-attack scenario was observed. The less
time shown here effectively affects the network routing performance less than existing
techniques. This metric is paramount during routing, reflecting data transfer efficiency in
the VANET environment. This dynamic capability of nodes to send and receive packets
directly influences the end-to-end delay, representing the culmination of packet delivery
and transmission ratios. We maintained detailed records concerning the specific setup
characteristics and network assumptions, which are pivotal in estimating end-to-end
delays. The observed delay was a valuable indicator of various aspects, including the
spatial positioning of neighboring vehicles and any routing alterations caused by malicious
nodes. Furthermore, the count of hops required for data transmission between the sender
and receiver nodes provided insights into the effectiveness of data transmission, especially
given the evolving nature of the network. In Figure 13, we graphically illustrate the end-to-
end delay in the network, comparing the results achieved by our proposed technique with
those of existing approaches.
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Figure 13. End-to-end delay for packet delivery.

The proposed methodology demonstrates an impressive reduction in end-to-end delay
within the network, marked by minimal latency in the transmission of data packets between
senders and receivers, quantified in milliseconds. As showcased in Figure 14, this reduction
was notably pronounced in scenarios with varying vehicle densities and speeds, where
the efficiency of transmitting and receiving packets between sender and receiver vehicle
nodes is paramount. Comparatively, other techniques exhibited considerably higher delays
within the network, affecting the efficiency and reliability of data delivery. In contrast, the
proposed approach consistently performed superiorly, showcasing minimal delays across
the network’s diverse scenarios.
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4.6. Average Hop Count

Average hop count (AHC) is a pivotal network simulation parameter within the
VANET context. This metric rationalizes the trajectory of network packets as they traverse
from consumer nodes to producer nodes reciprocally. The AHC meticulously tracks the
number of neighboring nodes passing by these packets, utilizing the designated simulation
parameters. The results rendered by the AHC yield predictive insights into the number of
hops required for data transmission from producer nodes to consumer nodes within VANET.
Figure 14 vividly illustrates these results, offering a comparative analysis with established
network techniques. Furthermore, Figure 15 presents a comprehensive comparison of hop
counts with well-known routing strategies such as improved ad hoc on-demand distance
vector routing (I-AODV), ad hoc on-demand distance vector routing with load balancing
(AODV-L), ad hoc on-demand distance vector routing with reliability (AODV-R), and
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trust-based ad hoc on-demand distance vector routing (T-AODV). Results in the proposed
technique were compared with those mentioned in Figure 15 to determine the average hop
count and in Figure 16 for vehicular density values.
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4.7. Average Hop Count/Throughout

Within this network, throughput was meticulously assessed following the initial posi-
tioning of vehicles and their interaction with the identified intensity levels corresponding
to vehicle speeds. Figure 16 provides a graphical representation of this relationship under
the black hole attack scenario. Notably, calculating packet drops was essential to this
evaluation, tracking the transmission paths in various vehicle communication scenarios.
Throughput essentially embodies the synchronization of comprehensive sets of data pack-
ets, encompassing their transmission and reception at diverse speeds to evaluate network
performance. A comparative analysis of throughput was performed, pitting the proposed
technique against well-established protocols, including the destination-sequenced distance-
vector routing protocol (DSDV) and the temporally ordered routing algorithm for mobility
(TORA) based on the reverse-path forwarding protocol (TBRFP). The outcomes underscore
the proposed technique’s superiority in network throughput, underscoring its efficiency in
routing for enhanced network performance under a black hole attack scenario.
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4.8. Average Delay

The “Average delay” refers to the time between processing data requests from different
networks or zones. We carefully evaluated this “Average delay” using simulations with
between 50 and 150 trucks. The basis for assessing the results of our suggested system
was the following two crucial factors. Figure 17 provides a concise graphical depiction
of the results, making it easier to understand the outcomes that our creative method
produced. The trends that were observed point to an early rise in the average delay, which
is followed by a leveling out of the delay and, finally, a thorough summary of the outcomes.
These outcomes clarify the overall approach and the definitive conclusions, which support
the effective management of the system. While the material cached in various zones
was nonexistent at the beginning of the simulation, it eventually led to the effective use
of our suggested methods. We eventually contrasted the findings obtained from our
recommended method with those obtained from improved coverage, and connectivity in
heterogeneous wireless sensor networks was improved. Routing protocol for coverage and
connectivity (RPCC) was proposed in which point coverage and connectivity was enhanced.
MLCP maintained a hierarchical topology, where elected cluster-heads at the lower level did
not participate in the next cluster-head election. Each member of the high-level cluster came
from one lower-level cluster [43]. On-demand routing protocol DSR with a CCMP-AES
mode to defend against black hole attacks provided confidentiality and authentication of
packets in both routing and link layers of MANET [44]. Payment channel networks (PCNs)
were designed and utilized to address the scalability challenge and throughput limitation
of blockchains. Routing is a core problem of PCNs. An ideal PCN routing method needs to
achieve (1) high scalability that can maintain low per-node memory and communication
costs for large PCNs, (2) high resource utilization of payment channels, and (3) the privacy
of users [45]. These outcomes significantly improve the suggested approach’s operational
effectiveness. Figure 17 illustrates how network latencies of different intensities show a
significant decrease, improving the effectiveness of cooperative results.
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5. Conclusions, Limitations, and Future Directions

The proposed methodology was embraced to address issues regarding malicious
nodes, which often lead to packet drops due to their security activities. Additionally, this
approach encompassed the task of forecasting and identifying optimal routes, effectively
employing a modified version of the AODV routing protocol. An intelligent cluster-
based routing strategy was harnessed to heighten routing efficiency within the network.
Previously, detecting malicious nodes rested with RSUs, which employed an ANN classifier
to scrutinize nodes’ behavior and discern suspicious activities. Following the establishment
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of secure clusters, the modified AODV protocol takes center stage, facilitating the dynamic
formation of on-demand paths for packet transmission. This intricate protocol leverages
forward and backward control packets during route discovery and employs objective
functions to meticulously determine the most optimal route. The results obtained from
this methodology were judiciously compared with pre-existing routing techniques. The
comparative analysis illustrated the efficiency of our proposed approach, which notably
excelled in average hop count, end-to-end delay, and network throughput.

The main limitations of the research are as follows:

• This study was confined to identifying black hole attacks within the VANET environment.
• It is worth noting that neural networks are susceptible to adversarial attacks, which can

potentially induce erroneous results within the network. This vulnerability becomes
particularly pronounced in vehicular ad hoc networks, where malicious nodes can
readily manipulate data.

• Detecting black hole attacks primarily centers on routing aspects but is delimited to
the research dimensions concerning network load balancing and its intricacies.

• While proficient in identifying the shortest, most secure, and efficient routes from
source to destination nodes, the research was limited to facilitating confidential com-
munications exclusively among vehicles engaged in specialized convoy operations,
which have implications for national security.

Using the reinforcement-learning model, our proposed technique will be refined by
adapting secure V2V communication with minimum delay.
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